2.4 Geology and Soils This Section Discusses the Existing Geology and Soils in Imperial County
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Warm Storage for Arc Magmas SEE COMMENTARY
Warm storage for arc magmas SEE COMMENTARY Mélanie Barbonia,1, Patrick Boehnkea, Axel K. Schmittb, T. Mark Harrisona,1, Phil Shanec, Anne-Sophie Bouvierd, and Lukas Baumgartnerd aDepartment of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095; bInstitute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany; cSchool of Environment, The University of Auckland, 1142 Auckland, New Zealand; and dInstitute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland Contributed by T. Mark Harrison, September 28, 2016 (sent for review August 2, 2016; reviewed by George Bergantz and Jonathan Miller) Felsic magmatic systems represent the vast majority of volcanic volumes outweigh their extrusive counterparts is sufficient rea- activity that poses a threat to human life. The tempo and son to assume that both may record different aspects of the magnitude of these eruptions depends on the physical conditions reservoir’s history (15–19); this is because melt-dominated volcanic under which magmas are retained within the crust. Recently the rocks may only represent a volumetrically minor part of the magma case has been made that volcanic reservoirs are rarely molten and reservoir, whereas plutonic rocks represent conditions in the crystal- only capable of eruption for durations as brief as 1,000 years dominated bulk of the magma reservoir (18). To provide a physical following magma recharge. If the “cold storage” model is generally context for our interpretive scheme, we point to simulations of applicable, then geophysical detection of melt beneath volcanoes is Bergantz et al. (19) that show that the full extent of thermal ex- likely a sign of imminent eruption. -
3.6 Geology and Soils
3. Environmental Setting, Impacts, and Mitigation Measures 3.6 Geology and Soils 3.6 Geology and Soils This section describes and evaluates potential impacts related to geology and soils conditions and hazards, including paleontological resources. The section contains: (1) a description of the existing regional and local conditions of the Project Site and the surrounding areas as it pertains to geology and soils as well as a description of the Adjusted Baseline Environmental Setting; (2) a summary of the federal, State, and local regulations related to geology and soils; and (3) an analysis of the potential impacts related to geology and soils associated with the implementation of the Proposed Project, as well as identification of potentially feasible mitigation measures that could mitigate the significant impacts. Comments received in response to the NOP for the EIR regarding geology and soils can be found in Appendix B. Any applicable issues and concerns regarding potential impacts related to geology and soils that were raised in comments on the NOP are analyzed in this section. The analysis included in this section was developed based on Project-specific construction and operational features; the Paleontological Resources Assessment Report prepared by ESA and dated July 2019 (Appendix I); and the site-specific existing conditions, including geotechnical hazards, identified in the Preliminary Geotechnical Report prepared by AECOM and dated September 14, 2018 (Appendix H).1 3.6.1 Environmental Setting Regional Setting The Project Site is located in the northern Peninsular Ranges geomorphic province close to the boundary with the Transverse Ranges geomorphic province. The Transverse Ranges geomorphic province is characterized by east-west trending mountain ranges that include the Santa Monica Mountains. -
The Coastal Scrub and Chaparral Bird Conservation Plan
The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California A Project of California Partners in Flight and PRBO Conservation Science The Coastal Scrub and Chaparral Bird Conservation Plan A Strategy for Protecting and Managing Coastal Scrub and Chaparral Habitats and Associated Birds in California Version 2.0 2004 Conservation Plan Authors Grant Ballard, PRBO Conservation Science Mary K. Chase, PRBO Conservation Science Tom Gardali, PRBO Conservation Science Geoffrey R. Geupel, PRBO Conservation Science Tonya Haff, PRBO Conservation Science (Currently at Museum of Natural History Collections, Environmental Studies Dept., University of CA) Aaron Holmes, PRBO Conservation Science Diana Humple, PRBO Conservation Science John C. Lovio, Naval Facilities Engineering Command, U.S. Navy (Currently at TAIC, San Diego) Mike Lynes, PRBO Conservation Science (Currently at Hastings University) Sandy Scoggin, PRBO Conservation Science (Currently at San Francisco Bay Joint Venture) Christopher Solek, Cal Poly Ponoma (Currently at UC Berkeley) Diana Stralberg, PRBO Conservation Science Species Account Authors Completed Accounts Mountain Quail - Kirsten Winter, Cleveland National Forest. Greater Roadrunner - Pete Famolaro, Sweetwater Authority Water District. Coastal Cactus Wren - Laszlo Szijj and Chris Solek, Cal Poly Pomona. Wrentit - Geoff Geupel, Grant Ballard, and Mary K. Chase, PRBO Conservation Science. Gray Vireo - Kirsten Winter, Cleveland National Forest. Black-chinned Sparrow - Kirsten Winter, Cleveland National Forest. Costa's Hummingbird (coastal) - Kirsten Winter, Cleveland National Forest. Sage Sparrow - Barbara A. Carlson, UC-Riverside Reserve System, and Mary K. Chase. California Gnatcatcher - Patrick Mock, URS Consultants (San Diego). Accounts in Progress Rufous-crowned Sparrow - Scott Morrison, The Nature Conservancy (San Diego). -
Late Holocene Earthquake History of the Imperial and Brawley Faults, Imperial Valley, California
Late Holocene Earthquake History of the Imperial and Brawley Faults, Imperial Valley, California Aron J. Meltzner and Thomas K. Rockwell Geological Sciences San Diego State University Final Technical Report U.S. Geological Survey Grant No. 02HQGR0008 February, 2004 Table of Contents List of Figures ii Abstract 1 Introduction 4 The Imperial Fault at Harris Road 10 Methodology 14 Trench Stratigraphy 15 Structure and Earthquake History 23 Event Z 23 Event X 23 Event V 24 Event T 24 Discussion 27 Conclusions 30 Acknowledgements 31 References Cited 32 Table 1a and 1b 35 Table 2 36 i LIST OF FIGURES Figure 1. Generalized fault map of the southern part of the Salton Trough. Surface ruptures indicated for the 1892 (M 71/4), 1934 (ML 7.1), 1940 (MW 6.9), 1968 (MW 6.5), 1979 (MW 6.4), and 1987 (MW 6.2 and 6.6) earthquakes. Figure 2. (a) Profiles of right-lateral component of displacement as a function of length along fault for the 1940 and 1979 ruptures. Comparison of slip in the two events shows important similarities and differences. Sieh (1996) argued that this example supports the concept of characteristic slip within individual patches of a fault, but not characteristic earthquakes. He argued that the sharp slip gradients in both 1940 and 1979 a few kilometers north of the international border suggest the presence of a fixed patch boundary. Redrafted from Sharp (1982b). (b) Diagram illustrating the “slip-patch” model as proposed by Sieh (1996) for the Imperial fault: accumulated over scores of earthquake cycles, slip along the fault between stepovers is uniform, and in both stepover regions, slip tapers to zero. -
Investigating Earthquake Hazards in the Northern Salton Trough, Southern California, Using Data from the Salton Seismic Imaging Project (SSIP)
Investigating Earthquake Hazards in the Northern Salton Trough, Southern California, Using Data from the Salton Seismic Imaging Project (SSIP) G. S. Fuis1, J. A. Hole2, J. M. Stock3, N. W. Driscoll4, G. M. Kent5, A. J. Harding4, A. Kell5, M. R. Goldman1, E. J. Rose1, R. D. Catchings1, M. J. Rymer1, V. E. Langenheim1, D. S. Scheirer1, N. D. Athens1, J. M. Tarnowski6 Refraction Models Line 6 Line 7 Abstract 1 U.S. Geological Survey (USGS), Earthquake Science Center (ESC), Menlo Park, CA. The southernmost San Andreas fault (SAF) system, in the northern Salton Trough (Salton Sea and Coachella Valley), is considered likely to produce a large-magnitude, damaging earthquake in the 2 Virginia Polytechnic Institute and State University, near future. The geometry of the SAF and the velocity and geometry of adjacent sedimentary Dept. Geosciences, Blacksburg, VA basins will strongly influence energy radiation and strong ground shaking during a future rupture. The Salton Seismic Imaging Project (SSIP) was undertaken, in part, to provide more accurate infor- 3 California Institute of Technology, Seismological mation on the SAF and basins in this region. Laboratory 252-21, Pasadena, CA. We report preliminary results from modeling four seismic profiles (Lines 4-7) that cross the Salton 4 Scripps Institution of Oceanography, La Jolla, CA. Trough in this region. Lines 4 to 6 terminate on the SW in the Peninsular Ranges, underlain by Meso- From high-res zoic batholithic rocks, and terminate on the NE in or near the Little San Bernardino or Orocopia active-source seismic - 5 Nevada Seismological Laboratory, University of From 1986 North Palm ? modeling 8 km SE PC and Mz igneous Mountains, underlain by Precambrian and Mesozoic igneous and metamorphic rocks. -
Fault-Rupture Hazard Zones in California
SPECIAL PUBLICATION 42 Interim Revision 2007 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act 1 with Index to Earthquake Fault Zones Maps 1 Name changed from Special Studies Zones January 1, 1994 DEPARTMENT OF CONSERVATION California Geological Survey STATE OF CALIFORNIA ARNOLD SCHWARZENEGGER GOVERNOR THE RESOURCES AGENCY DEPARTMENT OF CONSERVATION MIKE CHRISMAN BRIDGETT LUTHER SECRETARY FOR RESOURCES DIRECTOR CALIFORNIA GEOLOGICAL SURVEY JOHN G. PARRISH, PH.D. STATE GEOLOGIST SPECIAL PUBLICATION 42 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act With Index to Earthquake Fault Zones Maps by WILLIAM A. BRYANT and EARL W. HART Geologists Interim Revision 2007 California Department of Conservation California Geological Survey 801 K Street, MS 12-31 Sacramento, California 95814 PREFACE The purpose of the Alquist-Priolo Earthquake Fault Zoning Act is to regulate development near active faults so as to mitigate the hazard of surface fault rupture. This report summarizes the various responsibilities under the Act and details the actions taken by the State Geologist and his staff to implement the Act. This is the eleventh revision of Special Publication 42, which was first issued in December 1973 as an “Index to Maps of Special Studies Zones.” A text was added in 1975 and subsequent revisions were made in 1976, 1977, 1980, 1985, 1988, 1990, 1992, 1994, and 1997. The 2007 revision is an interim version, available in electronic format only, that has been updated to reflect changes in the index map and listing of additional affected cities. In response to requests from various users of Alquist-Priolo maps and reports, several digital products are now available, including digital raster graphic (pdf) and Geographic Information System (GIS) files of the Earthquake Fault Zones maps, and digital files of Fault Evaluation Reports and site reports submitted to the California Geological Survey in compliance with the Alquist-Priolo Act (see Appendix E). -
Nehrp Final Technical Report
NEHRP FINAL TECHNICAL REPORT Grant Number: G16AP00097 Term of Award: 9/2016-9/2017, extended to 12/2017 PI: Whitney Maria Behr1 Quaternary geologic slip rates along the Agua Blanca fault: implications for hazard to southern California and northern Baja California Abstract The Agua Blanca and San Miguel-Vallecitos Faults transfer ~14% of San Andreas-related Pacific-North American dextral plate motion across the Peninsular Ranges of Baja California. The Late Quaternary slip histories for the these faults are integral to mapping how strain is transferred by the southern San Andreas fault system from the Gulf of California to the western edge of the plate boundary, but have remained inadequately constrained. We present the first quantitative geologic slip rates for the Agua Blanca Fault, which of the two fault is characterized by the most prominent tectonic geomorphologic evidence of significant Late Quaternary dextral slip. Four slip rates from three sites measured using new airborne lidar and both cosmogenic 10Be exposure and optically stimulated luminescence geochronology suggest a steady along-strike rate of ~3 mm/a over 4 time frames. Specifically, the most probable Late Quaternary slip rates for the Agua Blanca Fault are 2.8 +0.8/-0.6 mm/a since ~65.1 ka, 3.0 +1.4/-0.8 mm/a since ~21.8 ka, 3.4 +0.8/-0.6 mm/a since ~11.8 ka, and 3.0 +3.0/-1.5 mm/a since ~1.6 ka, with all uncertainties reported at 95% confidence. These rates suggest that the Agua Blanca Fault accommodates at least half of plate boundary slip across northern Baja California. -
GEOPHYSICAL STUDY of the SALTON TROUGH of Soutllern CALIFORNIA
GEOPHYSICAL STUDY OF THE SALTON TROUGH OF SOUTllERN CALIFORNIA Thesis by Shawn Biehler In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena. California 1964 (Su bm i t t ed Ma Y 7, l 964) PLEASE NOTE: Figures are not original copy. 11 These pages tend to "curl • Very small print on several. Filmed in the best possible way. UNIVERSITY MICROFILMS, INC. i i ACKNOWLEDGMENTS The author gratefully acknowledges Frank Press and Clarence R. Allen for their advice and suggestions through out this entire study. Robert L. Kovach kindly made avail able all of this Qravity and seismic data in the Colorado Delta region. G. P. Woo11ard supplied regional gravity maps of southern California and Arizona. Martin F. Kane made available his terrain correction program. c. w. Jenn ings released prel imlnary field maps of the San Bernardino ct11u Ni::eule::> quad1-angles. c. E. Co1-bato supplied information on the gravimeter calibration loop. The oil companies of California supplied helpful infor mation on thelr wells and released somA QAnphysical data. The Standard Oil Company of California supplied a grant-In- a l d for the s e i sm i c f i e l d work • I am i ndebt e d to Drs Luc i en La Coste of La Coste and Romberg for supplying the underwater gravimeter, and to Aerial Control, Inc. and Paclf ic Air Industries for the use of their Tellurometers. A.Ibrahim and L. Teng assisted with the seismic field program. am especially indebted to Elaine E. -
Southward Continuation of the San Jacinto Fault Zone Through and Beneath the Extra and Elmore Ranch Left-Lateral Fault Arrays, Southern California
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2013 Southward Continuation of the San Jacinto Fault Zone through and beneath the Extra and Elmore Ranch Left-Lateral Fault Arrays, Southern California Steven Jesse Thornock Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Thornock, Steven Jesse, "Southward Continuation of the San Jacinto Fault Zone through and beneath the Extra and Elmore Ranch Left-Lateral Fault Arrays, Southern California" (2013). All Graduate Theses and Dissertations. 1978. https://digitalcommons.usu.edu/etd/1978 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SOUTHWARD CONTINUATION OF THE SAN JACINTO FAULT ZONE THROUGH AND BENEATH THE EXTRA AND ELMORE RANCH LEFT- LATERAL FAULT ARRAYS, SOUTHERN CALIFORNIA by Steven J. Thornock A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Geology Approved: ________________ ________________ Susanne U. Janecke James P. Evans Major Professor Committee Member ________________ ________________ Anthony Lowry Mark R. McLellan Committee Member Vice President of Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2013 ii ABSTRACT Southward Continuation of the San Jacinto Fault Zone through and beneath the Extra and Elmore Ranch Left-Lateral Fault Arrays, Southern California by Steven J. Thornock, Master of Science Utah State University, 2013 Major Professor: Dr. -
Geological Society of America Bulletin
Downloaded from gsabulletin.gsapubs.org on January 15, 2014 Geological Society of America Bulletin Oceanic magmatism in sedimentary basins of the northern Gulf of California rift Axel K. Schmitt, Arturo Martín, Bodo Weber, Daniel F. Stockli, Haibo Zou and Chuan-Chou Shen Geological Society of America Bulletin 2013;125, no. 11-12;1833-1850 doi: 10.1130/B30787.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2013 Geological Society of America Downloaded from gsabulletin.gsapubs.org on January 15, 2014 Oceanic magmatism in sedimentary basins of the northern Gulf of California rift Axel K. -
Appendix a - 2002 California Fault Parameters
APPENDIX A - 2002 CALIFORNIA FAULT PARAMETERS FAULT NAME AND GEOMETRY Fault Slip Down Dip (ss) strike slip, (r) reverse, (n) normal Length +/- Rate +/- Rank Mmax Width +/- Ruptop Rupbot Dip Endpt N Endpt. S COMMENTS (rl) rt. lateral, (ll) left lateral, (o) oblique (km) (mm/yr) (1) (2) (km) (3) (4) (5) (W) (E) Note: Entry highlighted in yellow indicates modifications to 1996 fault parameters. Entry highlighted in grey with red text indicates 1996 source that has been deleted in the 2002 fault parameters. A FAULTS SAN ANDREAS FAULT ZONE San Andreas (Coachella) (rl-ss) 96 10 25.0 5.0 P 7.2 12 2 0 12 90 -116.47; -115.71; Slip rate based on Sieh and Williams (1990); Sieh (1986); Keller et 33.92 33.35 al. (1982); Bronkowski (1981). San Andreas (San Bernardino) (rl-ss) 103 10 24.0 6.0 M 7.5 18 2 0 18 90 -117.50; -116.48; Minor modifications to digitial fault trace and minor length 34.29 33.92 modification. San Andreas (Mojave) (rl-ss) 103 10 30.0 7.0 P 7.4 12 2 0 12 90 -118.51; -117.50 Minor modifications to digitial fault trace. 1996 slip rate based on 34.70 34.29 Sieh (1984), Salyards et al. (1992), and WGCEP (1995). San Andreas (Carrizo) (rl-ss) 146 15 34.0 3.0 W 7.4 12 2 0 12 90 -119.87; -118.51; Minor modifications to digitial fault trace and minor length 35.31 34.70 modification. 1996 slip rate based on Sieh and Jahns (1984). -
Final Report for NEHRP Grant 06HQGR0031 Detecting Hidden
Final Report for NEHRP Grant 06HQGR0031 Detecting hidden, high-slip rate faults: S. San Jacinto fault zone Susanne U. Janecke PI 4505 Old Main Hill Department of Geology Utah State University Logan UT 84322-4505 Report by Benjamin E. Belgarde and Susanne U. Janecke 2008 This final report is a prepublication manuscript by Belgarde and Janecke. It is also Chapter 3 in Belgarde’s MS thesis. ii Publications from this research include one MS thesis, three abstracts, and one invited talk for the Second annual SoSAFE meeting in Pomona, California, Jan 31-Feb 2, 2008. Belgarde, Benjamin, 2007, Structural characterization of the three southeast segments of the Clark fault, Salton Trough, California [M.S thesis]: Utah State University: 4 plates, map scale 1:24,000. 216 p. (Benjamin Belgarde’s 2007 MS thesis consists of two prepublication manuscripts and three other thesis chapters) INVITED TALK presented by Janecke: Belgarde, B., and Janecke, S. U., 2007, A “hidden” fault? Structural geology of three segments of the Clark fault, San Jacinto fault zone, California: 20 minute presentation for SoSAFE workshop, Pomona California. Talk by Janecke and Belgarde will be posted in the near future. ABSTRACTS: Janecke, S. U., Belgarde, B. E., 2007, The width of dextral fault zones and shallow decollements of the San Jacinto fault zone, southern California: Annual meeting of the Southern California Earthquake Center, Palm Springs, CA, v. 17. http://www.scec.org/meetings/2007am/index.html Cross-sectional, structural, geomorphic and map analysis of recently relocated earthquakes (Shearer et al., 2005) reveals steep NE dips and transpression across much of the San Jacinto fault zone in accord with growing evidence for widespread transpression across the southern San Andreas fault (Fuis et al., 2007).