Geological Society of America Bulletin

Total Page:16

File Type:pdf, Size:1020Kb

Geological Society of America Bulletin Downloaded from gsabulletin.gsapubs.org on January 15, 2014 Geological Society of America Bulletin Oceanic magmatism in sedimentary basins of the northern Gulf of California rift Axel K. Schmitt, Arturo Martín, Bodo Weber, Daniel F. Stockli, Haibo Zou and Chuan-Chou Shen Geological Society of America Bulletin 2013;125, no. 11-12;1833-1850 doi: 10.1130/B30787.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2013 Geological Society of America Downloaded from gsabulletin.gsapubs.org on January 15, 2014 Oceanic magmatism in sedimentary basins of the northern Gulf of California rift Axel K. Schmitt1,†, Arturo Martín2, Bodo Weber2, Daniel F. Stockli3, Haibo Zou4, and Chuan-Chou Shen5 1Department of Earth and Space Sciences, University of California–Los Angeles, Los Angeles, California 90095-1567, USA 2Departamento de Geología, Centro de Investigación Científi ca y de Educación Superior de Ensenada (CICESE), Carretera Ensenada–Tijuana No. 3918, Zona Playitas, Ensenada, B.C., C.P. 22800, México 3Department of Geological Sciences, University of Texas at Austin, EPS RM 1.130, 1 University Station C9000, Austin, Texas 78712-0254, USA 4Department of Geology and Geography, Auburn University, 210 Petrie Hall, Auburn, Alabama 36849-5305, USA 5High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan, R.O.C. ABSTRACT value implies minor (<20%) assimilation of margins is due to decompression melting in the continental crustal rocks, which, however, is mantle, which ultimately produces composition- Rift-related magmatism in the northern- an upper limit because of crystal-scale evi- ally uniform, nearly anhydrous mid-ocean-ridge most Gulf of California and the adjacent sub- dence for magma contamination by uncon- basalts (MORB). First-order compositional dif- aerial Salton Trough and Cerro Prieto basins solidated sediment at the time of eruption. ferences often result from the transition between comprises intermediate to rhyolitic surfi cial Zircon crystals in felsic rocks (rhyolite lavas, these two magmatic regimes, where subduction and buried lava fl ows and domes, including intrusive microgranites, and granophyre xe- is associated with predominantly intermedi- their xenolith cargo. In addition, geothermal noliths) have trace-element and submantle ate compositions, whereas bimodal suites are a drill wells frequently penetrate subsurface δ18O compositions that are robust indicators hallmark of continental rifting (e.g., Bryan and gabbroic to granitic sills and dikes, which for a mafi c source that has exchanged oxygen Ernst, 2008). During incipient rifting, the prox- intruded into Colorado River delta fl uviatile by interacting with meteoric hydrothermal imity to sources of continent-derived detritus and lacustrine sediments. Combined single- fl uids. Collectively, these data imply that oce- shed into rift basins can also exert strong con- crystal U-Th-Pb and (U-Th)/He zircon ages anic rifting has initiated in the Salton Trough trol on the compositional diversity of mag- reveal late Pleistocene to Holocene eruption and Cerro Prieto basins. There, MORB-type mas and their representation in the geological ages for three volcanic centers in adjacent magmas formed mafi c intrusions within thick record. These controls include (1) density fi lter- rift basins (from N to S): Salton Buttes (erup- sedimentary basin fi ll, where they became ex- ing of magmas where negatively buoyant mafi c tion age: 2.48 ± 0.47 ka; 95% confi dence), posed to deep-reaching hydrothermal fl uids. magmas stall within sequences of low-density Cerro Prieto (maximum eruption age: 73 ± Diverse intermediate- to high-silica rhyolitic sediments so that the record of surfi cial vol- 7 ka), and Roca Consag (eruption age: 43 ± magmas that are prevalent at the surface canic rocks is not representative of magma fl ux 6 ka). U-Th zircon and allanite crystalliza- are produced by fractional crystallization of at depth (e.g., Fuis et al., 1984); (2) rapid sub- tion ages are close to the eruption ages, with mafi c parental magmas with minor assimila- sidence and burial, which conceal earlier phases the exception of Roca Consag lava, the zir- tion of sediments or pre-rift basement rocks, of magmatism (e.g., Herzig, 1990; Hurtado- con population of which is dominated by and by partial melting of hydrothermally al- Brito, 2012); (3) contamination of magmas dur- zircon with ca. 1 Ma crystallization ages, a tered mafi c intrusions. ing ascent through thick sequences of sedimen- population interpreted to be recycled from tary basin fi ll (through melting and assimilation, an unknown crustal source underlying the INTRODUCTION or mingling between magma and sediment; e.g., Wagner basin. Nd isotopic ratios for sub- Gibson et al., 1997); and (4) metamorphism and surface micro gabbros from Cerro Prieto The southwestern North American conti- hydrothermal alteration caused by fl uid circu- (εNd = +8.9) overlap with values for mid- nental margin evolved from a convergent plate lation through porous sediments in magmati- oceanic-ridge basalts (MORB) from the East boundary into a series of rift basins and embry- cally active rift zones (e.g., Einsele et al., 1980; Pacifi c Rise, adjacent to the southern Gulf onic oceanic spreading centers interconnected McKibben et al., 1988). of California. Cerro Prieto microgranites by NW-SE–oriented transform fault systems In order to better constrain the origins of and Salton Sea basaltic xenoliths have simi- during the late Cenozoic (Lonsdale, 1989; Oskin rift-related magmatism and the interaction larly elevated εNd values. The lowest εNd value and Stock, 2003). This plate boundary reconfi g- between magma and sediment during conti- for late Pleistocene–Holo cene igneous rocks uration encompasses a transition between fun- nental breakup, we studied a comprehensive from the northern Gulf of California is for damentally different magma production mecha- suite of surface and subsurface magmatic rocks Cerro Prieto dacitic lava (εNd = +0.6). This nisms: during subduction, melting is triggered from the northern Gulf of California, consist- by hydration of the mantle wedge, whereas ing of samples from two subaerial rift basins †E-mail: [email protected] magmatism in continental rifts and divergent (Salton Trough, Cerro Prieto) and the submarine GSA Bulletin; November/December 2013; v. 125; no. 11/12; p. 1833–1850; doi: 10.1130/B30787.1; 14 fi gures; 3 tables; Data Repository item 2013358. For permission to copy, contact [email protected] 1833 © 2013 Geological Society of America Downloaded from gsabulletin.gsapubs.org on January 15, 2014 Schmitt et al. Wagner basin (Fig. 1). In addition to whole- rock geochemical analysis, we also focused on single-crystal geochemical and geochrono- SAF logical analysis of zircon as a robust indicator 1 mineral. Single-crystal zircon geochronology IF permits us to constrain magmatic crystallization U.S.A. Mexico 2 and eruption ages at high temporal resolution, . ........................................................................................ ............................................................................... .......................CPF............................................................................................................................................... ...................................................................................................................................................................... even for subsurface rocks highly altered by geo- . ...................................................................................................................................................................... ............................................................................................................................................................. .......... ...................................................................................................................................................................... thermal activity. Alteration-resistant geochemi- . ...................................................................................................................................................................... ..................................................................................................
Recommended publications
  • In the Southern Gulf of California: the Role of the Southern Baja California Microplate and Its Eastern Boundary Zone
    University of South Florida Scholar Commons School of Geosciences Faculty and Staff Publications School of Geosciences 2-2020 Quantifying Rates of “Rifting while Drifting” in the Southern Gulf of California: The role of the Southern Baja California Microplate and its Eastern Boundary Zone Paul J. Umhoefer Northern Arizona University C. Plattner Ludwig-Maximilians Universität Rocco Malservisi University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/geo_facpub Part of the Earth Sciences Commons Scholar Commons Citation Umhoefer, Paul J.; Plattner, C.; and Malservisi, Rocco, "Quantifying Rates of “Rifting while Drifting” in the Southern Gulf of California: The role of the Southern Baja California Microplate and its Eastern Boundary Zone" (2020). School of Geosciences Faculty and Staff Publications. 2226. https://scholarcommons.usf.edu/geo_facpub/2226 This Article is brought to you for free and open access by the School of Geosciences at Scholar Commons. It has been accepted for inclusion in School of Geosciences Faculty and Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. RESEARCH Quantifying rates of “rifting while drifting” in the southern Gulf of California: The role of the southern Baja California microplate and its eastern boundary zone Paul J. Umhoefer1,*, C. Plattner2, and R. Malservisi3 1SCHOOL OF EARTH AND SUSTAINABILITY, NORTHERN ARIZONA UNIVERSITY, 624 S. KNOLES DRIVE, ASHURST BUILDING, ROOM A108, FLAGSTAFF, ARIZONA 86011, USA 2DEPARTMENT FÜR UMWELT- UND GEOWISSENSCHAFTEN, LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN, SEKTION GEOLOGIE, LUISENSTRASSE 37, 80333 MÜNCHEN, GERMANY 3SCHOOL OF GEOSCIENCES, UNIVERSITY OF SOUTH FLORIDA, 4202 E. FOWLER AVENUE, NES107, TAMPA, FLORIDA 33620, USA ABSTRACT The southern Baja California (Mexico) microplate has been rapidly moving away from the North America plate since ca.
    [Show full text]
  • Section 3.3 Geology Jan 09 02 ER Rev4
    3.3 Geology and Soils 3.3.1 Introduction and Summary Table 3.3-1 summarizes the geology and soils impacts for the Proposed Project and alternatives. TABLE 3.3-1 Summary of Geology and Soils Impacts1 Alternative 2: 130 KAFY Proposed Project: On-farm Irrigation Alternative 3: 300 KAFY System 230 KAFY Alternative 4: All Conservation Alternative 1: Improvements All Conservation 300 KAFY Measures No Project Only Measures Fallowing Only LOWER COLORADO RIVER No impacts. Continuation of No impacts. No impacts. No impacts. existing conditions. IID WATER SERVICE AREA AND AAC GS-1: Soil erosion Continuation of A2-GS-1: Soil A3-GS-1: Soil A4-GS-1: Soil from construction existing conditions. erosion from erosion from erosion from of conservation construction of construction of fallowing: Less measures: Less conservation conservation than significant than significant measures: Less measures: Less impact with impact. than significant than significant mitigation. impact. impact. GS-2: Soil erosion Continuation of No impact. A3-GS-2: Soil No impact. from operation of existing conditions. erosion from conservation operation of measures: Less conservation than significant measures: Less impact. than significant impact. GS-3: Reduction Continuation of A2-GS-2: A3-GS-3: No impact. of soil erosion existing conditions. Reduction of soil Reduction of soil from reduction in erosion from erosion from irrigation: reduction in reduction in Beneficial impact. irrigation: irrigation: Beneficial impact. Beneficial impact. GS-4: Ground Continuation of A2-GS-3: Ground A3-GS-4: Ground No impact. acceleration and existing conditions. acceleration and acceleration and shaking: Less than shaking: Less than shaking: Less than significant impact.
    [Show full text]
  • Warm Storage for Arc Magmas SEE COMMENTARY
    Warm storage for arc magmas SEE COMMENTARY Mélanie Barbonia,1, Patrick Boehnkea, Axel K. Schmittb, T. Mark Harrisona,1, Phil Shanec, Anne-Sophie Bouvierd, and Lukas Baumgartnerd aDepartment of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095; bInstitute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany; cSchool of Environment, The University of Auckland, 1142 Auckland, New Zealand; and dInstitute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland Contributed by T. Mark Harrison, September 28, 2016 (sent for review August 2, 2016; reviewed by George Bergantz and Jonathan Miller) Felsic magmatic systems represent the vast majority of volcanic volumes outweigh their extrusive counterparts is sufficient rea- activity that poses a threat to human life. The tempo and son to assume that both may record different aspects of the magnitude of these eruptions depends on the physical conditions reservoir’s history (15–19); this is because melt-dominated volcanic under which magmas are retained within the crust. Recently the rocks may only represent a volumetrically minor part of the magma case has been made that volcanic reservoirs are rarely molten and reservoir, whereas plutonic rocks represent conditions in the crystal- only capable of eruption for durations as brief as 1,000 years dominated bulk of the magma reservoir (18). To provide a physical following magma recharge. If the “cold storage” model is generally context for our interpretive scheme, we point to simulations of applicable, then geophysical detection of melt beneath volcanoes is Bergantz et al. (19) that show that the full extent of thermal ex- likely a sign of imminent eruption.
    [Show full text]
  • Late Holocene Earthquake History of the Imperial and Brawley Faults, Imperial Valley, California
    Late Holocene Earthquake History of the Imperial and Brawley Faults, Imperial Valley, California Aron J. Meltzner and Thomas K. Rockwell Geological Sciences San Diego State University Final Technical Report U.S. Geological Survey Grant No. 02HQGR0008 February, 2004 Table of Contents List of Figures ii Abstract 1 Introduction 4 The Imperial Fault at Harris Road 10 Methodology 14 Trench Stratigraphy 15 Structure and Earthquake History 23 Event Z 23 Event X 23 Event V 24 Event T 24 Discussion 27 Conclusions 30 Acknowledgements 31 References Cited 32 Table 1a and 1b 35 Table 2 36 i LIST OF FIGURES Figure 1. Generalized fault map of the southern part of the Salton Trough. Surface ruptures indicated for the 1892 (M 71/4), 1934 (ML 7.1), 1940 (MW 6.9), 1968 (MW 6.5), 1979 (MW 6.4), and 1987 (MW 6.2 and 6.6) earthquakes. Figure 2. (a) Profiles of right-lateral component of displacement as a function of length along fault for the 1940 and 1979 ruptures. Comparison of slip in the two events shows important similarities and differences. Sieh (1996) argued that this example supports the concept of characteristic slip within individual patches of a fault, but not characteristic earthquakes. He argued that the sharp slip gradients in both 1940 and 1979 a few kilometers north of the international border suggest the presence of a fixed patch boundary. Redrafted from Sharp (1982b). (b) Diagram illustrating the “slip-patch” model as proposed by Sieh (1996) for the Imperial fault: accumulated over scores of earthquake cycles, slip along the fault between stepovers is uniform, and in both stepover regions, slip tapers to zero.
    [Show full text]
  • Lithospheric Rupture in the Gulf of California – Salton Trough Region
    Lithospheric Rupture in the Gulf of California – Salton Trough Region MARGINS-RCL Workshop Ensenada, Mexico, 9-13 January, 2006 ABSTRACTS http://www.rcl-cortez.wustl.edu Contents An Author Index is located in the back Seismic imaging of the transition from continental rifting to seafloor spreading, Woodlark Rift system, Papua New Guinea ………………………………………6 Rift-to-rift Drift Transition in the Gulf of California …………………………………….7 Low-angle normal faults in the northern Gulf of California extensional province: summary and implications for fault mechanics and strain partitioning ………….8 Volcanism along the eastern margin of the Salton Trough: Constraints on the kinematics of initiation of the southern San Andreas transform fault system ………………10 Numerical models of extending and rifting thickened continental crust….……………..11 Gravity Modeling and Crustal Structure of northern eastern Baja California and the western Salton Trough …………………………………………………………..12 Constraining Upper Mantle Flow Using Seismic Anisotropy & Geodynamic Modeling.13 Crustal Structure of the Southern Gulf of California, the East Pacific Rise to the Jalisco Block …………………………………………………………………………….14 Why It Is Hard to Make a Core Complex ………………………………………………15 Exotic vs. Fringing Arc Models For the Growth Of Continents: Evidence From Mesozoic Arc-Related Basins of Baja California and Western Mexico……………………16 An overview of the petrology of oceanic basement in the southern Gulf of California ...17 Seismotectonics and Upper Mantle Deformation at the Southern Basin and Range Province in Sonora,
    [Show full text]
  • Investigating Earthquake Hazards in the Northern Salton Trough, Southern California, Using Data from the Salton Seismic Imaging Project (SSIP)
    Investigating Earthquake Hazards in the Northern Salton Trough, Southern California, Using Data from the Salton Seismic Imaging Project (SSIP) G. S. Fuis1, J. A. Hole2, J. M. Stock3, N. W. Driscoll4, G. M. Kent5, A. J. Harding4, A. Kell5, M. R. Goldman1, E. J. Rose1, R. D. Catchings1, M. J. Rymer1, V. E. Langenheim1, D. S. Scheirer1, N. D. Athens1, J. M. Tarnowski6 Refraction Models Line 6 Line 7 Abstract 1 U.S. Geological Survey (USGS), Earthquake Science Center (ESC), Menlo Park, CA. The southernmost San Andreas fault (SAF) system, in the northern Salton Trough (Salton Sea and Coachella Valley), is considered likely to produce a large-magnitude, damaging earthquake in the 2 Virginia Polytechnic Institute and State University, near future. The geometry of the SAF and the velocity and geometry of adjacent sedimentary Dept. Geosciences, Blacksburg, VA basins will strongly influence energy radiation and strong ground shaking during a future rupture. The Salton Seismic Imaging Project (SSIP) was undertaken, in part, to provide more accurate infor- 3 California Institute of Technology, Seismological mation on the SAF and basins in this region. Laboratory 252-21, Pasadena, CA. We report preliminary results from modeling four seismic profiles (Lines 4-7) that cross the Salton 4 Scripps Institution of Oceanography, La Jolla, CA. Trough in this region. Lines 4 to 6 terminate on the SW in the Peninsular Ranges, underlain by Meso- From high-res zoic batholithic rocks, and terminate on the NE in or near the Little San Bernardino or Orocopia active-source seismic - 5 Nevada Seismological Laboratory, University of From 1986 North Palm ? modeling 8 km SE PC and Mz igneous Mountains, underlain by Precambrian and Mesozoic igneous and metamorphic rocks.
    [Show full text]
  • A New Method for Fault-Scarp Detection
    EGU21 Big Data and AI in the Earth Sciences A new Method for Fault-Scarp Detection Using Linear Discriminant Analysis (LDA) in High- Resolution Bathymetry Data from the Alarcón Rise and Pescadero Basin, Gulf of California. Luis Angel Vega-Ramirez [1], Ronald Michael Spelz [2], Juan Contreras [1], David Caress [3], David A. Clague [3] and Jennifer B. Paduan [3]. [1] Centro de Investigación Científica y de Educación Superior de Ensenada, [2] Universidad Autónoma de Baja California, [3] Monterey Bay Aquarium Research Institute. PRESENTED AT: 1 EGU21 Big Data and AI in the Earth Sciences Abstract. The mapping of faults and fractures is a problem of high relevance in Earth Sciences. However, their identification in digital elevation models is a time-consuming task given the fractal nature of the resulting networks. The effort is especially challenging in submarine environments, given their inaccessibility and difficulty of collecting direct observations. Here, we propose a semi-automated method for detecting faults in high-resolution bathymetry data (~1 m horizontal and ~0.2 m vertical) of the Pescadero Basin in the southern Gulf of California, which were collected by MBARI’s D. Allan B autonomous underwater vehicle. This problem is well suited to be explored by machine learning and deep-learning methods. The method learns from a model trained to recognize fault-line scarps based on key morphological attributes in the neighboring Alarcón Rise. We use the product of the mass diffusion coefficient with time, scarp height, and RMSD error as training attributes. The method consists in projecting the attributes from a three-dimensional space to a one- dimensional space in which normal probability density functions are generated to classify faults.
    [Show full text]
  • GEOPHYSICAL STUDY of the SALTON TROUGH of Soutllern CALIFORNIA
    GEOPHYSICAL STUDY OF THE SALTON TROUGH OF SOUTllERN CALIFORNIA Thesis by Shawn Biehler In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena. California 1964 (Su bm i t t ed Ma Y 7, l 964) PLEASE NOTE: Figures are not original copy. 11 These pages tend to "curl • Very small print on several. Filmed in the best possible way. UNIVERSITY MICROFILMS, INC. i i ACKNOWLEDGMENTS The author gratefully acknowledges Frank Press and Clarence R. Allen for their advice and suggestions through­ out this entire study. Robert L. Kovach kindly made avail­ able all of this Qravity and seismic data in the Colorado Delta region. G. P. Woo11ard supplied regional gravity maps of southern California and Arizona. Martin F. Kane made available his terrain correction program. c. w. Jenn­ ings released prel imlnary field maps of the San Bernardino ct11u Ni::eule::> quad1-angles. c. E. Co1-bato supplied information on the gravimeter calibration loop. The oil companies of California supplied helpful infor­ mation on thelr wells and released somA QAnphysical data. The Standard Oil Company of California supplied a grant-In- a l d for the s e i sm i c f i e l d work • I am i ndebt e d to Drs Luc i en La Coste of La Coste and Romberg for supplying the underwater gravimeter, and to Aerial Control, Inc. and Paclf ic Air Industries for the use of their Tellurometers. A.Ibrahim and L. Teng assisted with the seismic field program. am especially indebted to Elaine E.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Marine Geophysical Study
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Marine Geophysical Study of Cyclic Sedimentation and Shallow Sill Intrusion in the Floor of the Central Gulf of California A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Jared W. Kluesner Committee in Charge: Professor Peter Lonsdale, Chair Professor Paterno Castillo Professor Graham Kent Professor Falko Kuester Professor Michael Tryon Professor Edward Winterer 2011 Copyright Jared Kluesner, 2011 All rights reserved. The Dissertation of Jared W. Kluesner is approved, and it is acceptable in quality and in form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii To my parents, Tony and Donna Kluesner and my grandfather James Kluesner iv "...Let us go, we said, into the Sea of Cortez, realizing that we become forever a part of it" The Log from the Sea of Cortez John Steinbeck v TABLE OF CONTENTS Signature Page ...................................................................................... iii Dedication.............................................................................................. iv Epigraph ................................................................................................ v Table of Contents .................................................................................. vi List of Figures ........................................................................................ ix Acknowledgments ................................................................................
    [Show full text]
  • 2008 Trough to Trough
    Trough to trough The Colorado River and the Salton Sea Robert E. Reynolds, editor The Salton Sea, 1906 Trough to trough—the field trip guide Robert E. Reynolds, George T. Jefferson, and David K. Lynch Proceedings of the 2008 Desert Symposium Robert E. Reynolds, compiler California State University, Desert Studies Consortium and LSA Associates, Inc. April 2008 Front cover: Cibola Wash. R.E. Reynolds photograph. Back cover: the Bouse Guys on the hunt for ancient lakes. From left: Keith Howard, USGS emeritus; Robert Reynolds, LSA Associates; Phil Pearthree, Arizona Geological Survey; and Daniel Malmon, USGS. Photo courtesy Keith Howard. 2 2008 Desert Symposium Table of Contents Trough to trough: the 2009 Desert Symposium Field Trip ....................................................................................5 Robert E. Reynolds The vegetation of the Mojave and Colorado deserts .....................................................................................................................31 Leah Gardner Southern California vanadate occurrences and vanadium minerals .....................................................................................39 Paul M. Adams The Iron Hat (Ironclad) ore deposits, Marble Mountains, San Bernardino County, California ..................................44 Bruce W. Bridenbecker Possible Bouse Formation in the Bristol Lake basin, California ................................................................................................48 Robert E. Reynolds, David M. Miller, and Jordon Bright Review
    [Show full text]
  • Southern Exposures
    Searching for the Pliocene: Southern Exposures Robert E. Reynolds, editor California State University Desert Studies Center The 2012 Desert Research Symposium April 2012 Table of contents Searching for the Pliocene: Field trip guide to the southern exposures Field trip day 1 ���������������������������������������������������������������������������������������������������������������������������������������������� 5 Robert E. Reynolds, editor Field trip day 2 �������������������������������������������������������������������������������������������������������������������������������������������� 19 George T. Jefferson, David Lynch, L. K. Murray, and R. E. Reynolds Basin thickness variations at the junction of the Eastern California Shear Zone and the San Bernardino Mountains, California: how thick could the Pliocene section be? ��������������������������������������������������������������� 31 Victoria Langenheim, Tammy L. Surko, Phillip A. Armstrong, Jonathan C. Matti The morphology and anatomy of a Miocene long-runout landslide, Old Dad Mountain, California: implications for rock avalanche mechanics �������������������������������������������������������������������������������������������������� 38 Kim M. Bishop The discovery of the California Blue Mine ��������������������������������������������������������������������������������������������������� 44 Rick Kennedy Geomorphic evolution of the Morongo Valley, California ���������������������������������������������������������������������������� 45 Frank Jordan, Jr. New records
    [Show full text]
  • The Salton Sea Scientific Drilling Project, California, U
    THE SALTON SEA SCIENTIFIC DRILLING PROJECT, CALIFORNIA, U. S. A.: AN INVESTIGATION OF ,A HIGH-TEMPERATURE GEOTHERMAL SYSTEM IN SEDIMENTARY ROCKS ELDERS, W. A., Institute of Geophysics and Planetary Physics, University of California, Riverside, CA 92521 U. S. A. SASS, J. H., U. S. Geological Survey, Office of Earthquakes, Volcanoes & Engineering, Tectonophysics Branch, 2255 N. Gemini Drive, Flagstaff, AZ 86001 INTRODUCTION In March 1986, a research borehole, called the "State 2-14", reached a depth of 3.22 km in the Salton Sea Geothermal System (SSGS), on the delta of the Colorado River, in Southern California (Figure 1). This was part of the Salton Sea Scientific Drilling Project (SSSDP), the first major (Le., multi-million U. S. dollar) research drilling project in the Continental Scientific Drilling Program of tne U. S. A. The principal goals of the SSSDP were to investi­ gate the physical and chemical processes going on in a high-temperature, high-salinity, hydrothermal system. The borehole encountered temperatures of up to 355°C and p'roduced metal­ rich, alkali chloride brines containing 25 weight per cent of total dissolved solids. The rocks penetrated exhibit a progressive transition from unconsolidated lacustrine and deltaic sediments to hornfelses, with lower amphibolite facies mineralogy, accompanied by pervasive copper, lead, &inc, and iron ore mineral. The SSSDP included an intensive program of rock and fluid sampling, flow testing, and downhole logging and scientific measurement (Elders and Sass, 1988). The pur­ pose of this paper is to -describe briefly the background of the project and the drilling and testing of the borehole, and to summari&e some of the important scientific results.
    [Show full text]