PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Scaling of maximum observed magnitudes 10.1002/2015GL066478 with geometrical and stress properties Key Points: of strike-slip faults • Observed maximum magnitude scales with cumulative offset for 75% of data Patricia Martínez-Garzón1, Marco Bohnhoff1,2, Yehuda Ben-Zion3, and Georg Dresen1,4 • Remaining 25% have larger stress drops and lower slip rates 1GFZ German Research Centre for Geosciences, Potsdam, Germany, 2Institute of Geological Sciences, Free University of • Earthquake rupture length scales with 3 mapped fault length Berlin, Berlin, Germany, Department of Earth Sciences, University of Southern California, Los Angeles, California, USA, 4Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany Supporting Information: • Supporting Information S1 Abstract We test potential scaling between observed maximum earthquake magnitudes along 27 strike-slip faults with various properties including cumulative displacement, mapped fault length, seismogenic thickness, Correspondence to: – P. Martínez-Garzón, slip rates, and angle between fault strike and maximum horizontal stress. For 75 80% of the data set, the
[email protected] observed maximum scalar moment scales with the product of seismogenic thickness and either cumulative displacement or mapped fault length. Most faults from this population have slip rates >5 mm/yr (interplate > Citation: faults), cumulative displacement 10 km, and relatively high angles to the maximum horizontal stress orientation. Martínez-Garzón, P., M. Bohnhoff, The remaining 20–25% population involves events at some distance from a plate boundary with slip rate Y. Ben-Zion, and G. Dresen (2015), <5 mm/yr, cumulative displacements <10 km, and ≈ 45° to the maximum horizontal stress. These earthquakes Scaling of maximum observed magnitudes with geometrical and have larger magnitudes than the previous population, likely because of larger stress drops.