Diuretics in the Treatment of Patients Who Present Congestive Heart Failure and Hypertension

Total Page:16

File Type:pdf, Size:1020Kb

Diuretics in the Treatment of Patients Who Present Congestive Heart Failure and Hypertension Journal of Human Hypertension (2002) 16 (Suppl 1), S104–S113 2002 Nature Publishing Group All rights reserved 0950-9240/02 $25.00 www.nature.com/jhh Diuretics in the treatment of patients who present congestive heart failure and hypertension AJ Reyes Institute of Cardiovascular Theory, Montevideo, Uruguay The main operational objective of diuretic therapy in ment natriuresis in patients with congestive heart failure patients who present congestive heart failure and hyper- and hypertension. The state of renal function, the exis- tension is to reduce or to suppress excess bodily fluid. tence of certain co-morbid conditions, potential Effective diuretic therapy decreases cardiac size when untoward drug actions, and possible interactions of the heart is dilated, and it reduces lung congestion and diuretics with nutrients and with other drugs are some excess water. Consequently, external respiratory work of the factors that must be considered at the time of diminishes and cardiac output would be redistributed in deciding on the diuretic drug(s) and dose(s) to be pre- favour of systemic vascular beds other than that of the scribed. Spironolactone has been found to increase life respiratory muscles; dyspnoea decreases markedly and expectancy and to reduce hospitalisation frequency there is a slight reduction in fatigue. This clinical when added to the conventional therapeutic regimen of improvement and the fall in body weight caused by patients with advanced congestive heart failure and sys- diuretics entail an increase in effort capacity. Sub- tolic dysfunction. Therefore, spironolactone should be sequent exercise training ameliorates the abnormal ven- the drug of choice to oppose the kaliuretic effect of a tilatory response to physical effort and the skeletal mus- loop or of a thiazide-type diuretic. cle myopathy that occur in heart failure, and thereby it Journal of Human Hypertension (2002) 16 (Suppl 1), S104– attenuates dyspnoea and decreases fatigue further. S113. DOI: 10.1038/sj/jhh/1001354 Loop and/or thiazide-type diuretics may be used to aug- Keywords: congestive heart failure; diuretics; hypertension; hypokalaemia; hyponatraemia; spironolactone Introduction pulmonary circulation wedge pressure, and stroke volume and cardiac output decrease initially. Upon Congestive heart failure (CHF) and hypertension prolonged administration, the cardiac index may coexist in many patients. Coronary artery disease, stay below, equal or surpass its pre-treatment value, diabetes mellitus and/or renal insufficiency fre- but the magnitude of these changes is generally quently accompany the CHF-hypertension associ- low.7,8 There is a lack of correlation between vari- ation. Few investigative endeavours have addressed ables indicating effort capacity and cardiac output the effect of diuretic therapy in patients with CHF in patients suffering from chronic CHF, but we have and hypertension specifically, despite the fact that found that the NYHA functional class9 correlates diuretics are indicated for both conditions. Effective positively and that the 6-min mean walking velo- diuretic therapy is mandatory in patients with CHF, city10 correlates negatively with clinical (Figure 1) since no drug class other than diuretics can achieve and radiological11 increasing ordinal indicators of what diuretics can in terms of control of excess bod- the magnitude of lung congestion and pulmonary 1 ily fluid and its attendant symptom mitigation. water and with the cardiothoracic ratio.12 These findings strongly suggest that the beneficial effects The clinical and functional effects of of diuretics on the main symptoms of CHF are diuretics mainly due to the decrease in thoracic fluid that results from their diuretic action. Thus, lung conges- Effective diuretic therapy provides impressive tion and water and cardiac size should be con- symptomatic relief in patients with CHF.2–5 Haemo- sidered operational objectives of diuretic therapy dynamically, forced diuresis results in a decrease in in CHF. The substantial symptomatic relief produced by diuretics in patients with CHF is independent of Correspondence: AJ Reyes, Institute of Cardiovascular Theory, whether patients also present hypertension. How- Sotelo 3908, 11700 Montevideo, Uruguay ever, the blood pressure (BP) lowering effect of E-mail: [email protected] diuretics may result in improved cardiac pump Diuretics in heart failure and hypertension AJ Reyes S105 Figure 1 The 6-min walking test was carried out and the pulmonary congestion-and-water clinical score was evaluated in 59 ambulatory patients who presented NYHA functional class I-IV congestive heart failure after 1 month of stable pharmacotherapy. Thirty-nine patients also suffered from essential hypertension. The pulmonary congestion-and-water clinical score, which has a possible range of 0–24, equals the sum of the scores assigned to eight symptoms and four signs that denote pulmonary congestion and excess water in congestive heart failure. Some dots comprise more than one patient each. From AJ Reyes, G Crippa, MG Meny, E Sverzellati, RD Espinas and M Giorgi-Pierfranceschi: unpublished study. function and thus contribute to the clinical improve- upon exercise. Patients perceive these intense ment when hypertension coexists. Reductions in and/or rapid increases in respiratory work per dyspnoea, in systemic oedema and in BP have been minute as dyspnoea.26 found to progress in parallel over the first weeks of Elevations in respiratory work per minute imply monopharmacotherapy with a diuretic in patients that a high fraction of cardiac output should be with CHF and hypertension.13 addressed to the muscles of the external respiration, The processes giving place to the two cardinal to the detriment of the fraction that perfuses other symptoms that limit physical activity in heart fail- systemic vascular beds. This added underperfusion ure, namely dyspnoea and fatigue,14,15 have not been that affects the muscles of the limbs during physical fully unveiled.16 This paucity of information pre- effort is an immediate determinant of fatigue.27 cludes that the mechanism(s) of the symptom Resting and exercise local underperfusion and the attenuation brought about by forced diuresis in systemic functional shifts that occur in CHF would patients with CHF should be fully understood, account for the muscle waste and for the microana- mainly in view that diuretic therapy does not tomical, biochemical and functional unfavourable increase cardiac output to a great extent in most changes undergone by skeletal muscle in CHF. cases. We designed an hypothesis that focuses on These changes would constitute the basis of the the possible key role played by pulmonary conges- development of fatigue when physical activity aug- tion and water and by the respiratory muscles in this ments relative underperfusion. apparent paradox,17,18 and have been updating19–21 When treatment of chronic CHF with a diuretic is our construct while considering progress in research effective, ie when it increases diuresis to the sought and opinion.22 extent, pulmonary wedge pressure and lung water Pulmonary circulation wedge pressure is decrease,28 and therefore respiratory work per increased in CHF. In consequence, there is a net minute decreases. Cardiac output would undergo a passage of fluid from the pulmonary circulation to redistribution whereby a lower fraction is addressed the lung interstitium and to the small airway.23 to the respiratory muscles, which might be better Excess lung water and pulmonary circulation en- perfused than before the institution of diuretic ther- gorgement entail a decrease in pulmonary com- apy despite this reduction, and more blood would pliance and an increase in the airway resistance to reach other systemic regions, including the muscles air flow.24 These two changes determine an increase of the limbs. Additionally, cardiomegaly subsides, in the work done by the respiratory muscles per and body weight decreases. These favourable respiratory cycle. The rise in volumes and pressures changes result in an important reduction in in the heart, in the pulmonary circulation and per- dyspnoea and in a small decrease in fatigue, and haps in intrathoracic lymphatics, the decrease in therefore in an increase in the capacity to perform pulmonary compliance, and the underperfusion and physical activity.27 In the medium range, increased structural, biochemical and functional deterioration physical activity, particularly if it includes exercise that affects certain organs such as skeletal muscles,25 training, would improve the structure and function including the respiratory muscles, originate stimuli of skeletal muscle29–33 and would reduce excess ven- that increase (effort) ventilation inordinately in tilation,33–36 thereby mitigating dyspnoea and patients with CHF. Therefore, respiratory work per fatigue further. cycle and respiratory rate rise strikingly and quickly Diuretics provide the prime relief of the symp- Journal of Human Hypertension Diuretics in heart failure and hypertension AJ Reyes S106 toms that limit physical activity. In practice, excretory response to loop diuretics is quicker than patients with CHF should be treated with diuretics the responses to the diuretics of any other class. and with other drugs. Certain co-therapies may Furosemide, bumetanide and piretanide have an amplify the beneficial effects of diuretics. ancillary site of renal action in the proximal tubule of the nephron, where they inhibit carbonic anhyd- Modern diuretics rase. Ethacrynic acid
Recommended publications
  • Pediatric Pharmacotherapy
    Pediatric Pharmacotherapy A Monthly Review for Health Care Professionals of the Children's Medical Center Volume 1, Number 10, October 1995 DIURETICS IN CHILDREN • Overview • Loop Diuretics • Thiazide Diuretics • Metolazone • Potassium Sparing Diuretics • Diuretic Dosages • Efficacy of Diuretics in Chronic Pulmonary Disease • Summary • References Pharmacology Literature Reviews • Ibuprofen Overdosage • Predicting Creatinine Clearance Formulary Update Diuretics are used for a wide variety of conditions in infancy and childhood, including the management of pulmonary diseases such as respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD)(1 -5). Both RDS and BPD are often associated with underlying pulmonary edema and clinical improvement has been documented with diuretic use.6 Diuretics also play a major role in the management of congestive heart failure (CHF), which is frequently the result of congenital heart disease (7). Other indications, include hypertension due to the presence of cardiac or renal dysfunction. Hypertension in children is often resistant to therapy, requiring the use of multidrug regimens for optimal blood pressure control (8). Control of fluid and electrolyte status in the pediatric population remains a therapeutic challenge due to the profound effects of age and development on renal function. Although diuretics have been used extensively in infants and children, few controlled studies have been conducted to define the pharmacokinetics and pharmacodynamics of diuretics in this population. Nonetheless, diuretic therapy has become an important part of the management of critically ill infants and children. This issue will review the mechanisms of action, monitoring parameters, and indications for use of diuretics in the pediatric population (1-5). Loop Diuretics Loop diuretics are the most potent of the available diuretics (4).
    [Show full text]
  • Interactions Medicamenteuses Index Des Classes Pharmaco
    INTERACTIONS MEDICAMENTEUSES INDEX DES CLASSES PHARMACO-THERAPEUTIQUES Mise à jour avril 2006 acides biliaires (acide chenodesoxycholique, acide ursodesoxycholique) acidifiants urinaires adrénaline (voie bucco-dentaire ou sous-cutanée) (adrenaline alcalinisants urinaires (acetazolamide, sodium (bicarbonate de), trometamol) alcaloïdes de l'ergot de seigle dopaminergiques (bromocriptine, cabergoline, lisuride, pergolide) alcaloïdes de l'ergot de seigle vasoconstricteurs (dihydroergotamine, ergotamine, methylergometrine) alginates (acide alginique, sodium et de trolamine (alginate de)) alphabloquants à visée urologique (alfuzosine, doxazosine, prazosine, tamsulosine, terazosine) amidons et gélatines (gelatine, hydroxyethylamidon, polygeline) aminosides (amikacine, dibekacine, gentamicine, isepamicine, kanamycine, netilmicine, streptomycine, tobramycine) amprénavir (et, par extrapolation, fosamprénavir) (amprenavir, fosamprenavir) analgésiques morphiniques agonistes (alfentanil, codeine, dextromoramide, dextropropoxyphene, dihydrocodeine, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil, tramadol) analgésiques morphiniques de palier II (codeine, dextropropoxyphene, dihydrocodeine, tramadol) analgésiques morphiniques de palier III (alfentanil, dextromoramide, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil) analogues de la somatostatine (lanreotide, octreotide) androgènes (danazol, norethandrolone, testosterone) anesthésiques volatils halogénés
    [Show full text]
  • Summary of Product Characteristics
    Sandoz Business use only Page 1 of 9 1.3.1 spc-label-pl - common-spc – 11,006 20191218 (DE/H/1772/001-002-003 – 155347 - validation) TORASEMIDE 100 MG, 200 MG, 50 MG, TABLET 721-6534.01, 721-6535.01, 721-6536.01 SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT [Nationally completed name] 50 mg tablets [Nationally completed name] 100 mg tablets [Nationally completed name] 200 mg tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet contains 50 mg of torasemide. Each tablet contains 100 mg of torasemide. Each tablet contains 200 mg of torasemide. For excipients, see section 6.1 3. PHARMACEUTICAL FORM Tablet. 50 mg tablets: White to off-white round tablet. 100 mg tablets: White to off-white round tablet with break notch. The tablet can be divided into equal doses. 200 mg tablets: White to off-white round tablet with cross break notch on both sides. The tablet can be divided into four equal doses. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications The administration of [Nationally completed name] 50 mg/- 100 mg/- 200 mg tablets is exclusively indicated in patients with highly reduced renal function (creatinine clearance less than 20 ml/min and/or serum creatinine concentration greater than 6 mg/dl). For maintenance of residual diuresis in case of severe renal insufficiency – even on dialysis if there is a considerable residual diuresis (more than 200 ml/24 hours) – if oedemas, effusions and/or hypertension exist. Note: [Nationally completed name] 50 mg/- 100 mg/- 200 mg tablets tablets are to be used only in case of highly impaired and not in normal renal function.
    [Show full text]
  • Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
    The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11.
    [Show full text]
  • Comprehensive Screening of Diuretics in Human Urine Using Liquid Chromatography Tandem Mass Spectrometry
    id5246609 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com AAnnaallyyttiiccaaISllS N : 0974-7419 Volume 13 Issue 7 CCHHEEAnMM IndIIiSaSnT TJoRuRrnYaYl Full Paper ACAIJ, 13(7) 2013 [270-283] Comprehensive screening of diuretics in human urine using liquid chromatography tandem mass spectrometry Shobha Ahi1, Alka Beotra1*, G.B.K.S.Prasad2 1National Dope Testing Laboratory, Ministry of Youth Affairs and Sports, CGO Complex, Lodhi Road, New Delhi,-110003, (INDIA) 2SOS in Biochemistry, Jiwaji University, Gwalior, (INDIA) E-mail : [email protected] ABSTRACT KEYWORDS Diuretics are drugs that increase the rate of urine flow and sodium excretion Doping, diuretics; to adjust the volume and composition of body fluids. There are several LC-MS/MS; WADA; major categories of this drug class and the compounds vary greatly in Drugs of abuse. structure, physicochemical properties, effects on urinary composition and renal haemodynamics, and site mechanism of action. Diuretics are often abused by athletes to excrete water for rapid weight loss and to mask the presence of other banned substances. Because of their abuse by athletes, ’s (WADA) diuretics have been included in the World Anti-Doping Agency list of prohibited substances. The diuretics are routinely screened by anti- doping laboratories as the use of diuretics is banned both in-competition and out-of-competition. This work provides an improved, fast and selective –tandem mass spectrometric (LC/MS/MS) method liquid chromatography for the screening of 22 diuretics and probenecid in human urine. The samples preparation was performed by liquid-liquid extraction. The limit of detection (LOD) for all substances was between 10-20 ng/ml or better.
    [Show full text]
  • Liquid Chromatography Tandem Mass Spectrometry Determination Of
    The Pharma Innovation Journal 2018; 7(7): 57-61 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Liquid chromatography tandem mass spectrometry TPI 2018; 7(7): 57-61 © 2018 TPI determination of prohibited diuretics and other acidic www.thepharmajournal.com Received: 01-05-2018 drugs in human urine: A Review Accepted: 05-06-2018 Anchal Sharma Anchal Sharma, Dr. Rajiv Tonk and Dr. Vivek Sharma M. Pharm Scholar, Delhi Pharmaceutical Sciences and Research University, New Delhi, Abstract India This paper reviews liquid chromatographic-mass spectrometric (LC-MS) procedures for the screening, identification and quantification of doping agents in urine and other biological samples and devoted to Dr. Rajiv Tonk drug testing in sports. Reviewed methods published approximately within the last five years and cited in Associate Professor, Delhi the PubMed database have been divided into groups using the same classification of the 2004 World Pharmaceutical Sciences and Anti-Doping Agency (WADA) Prohibited List. Together with procedures specifically developed for anti- Research University, New Delhi doping analysis, I.C-MS applications used in other fields (e.g., therapeutic drug monitoring, clinical and India forensic toxicology, and detection of drugs illicitly used in livestock production) have been included when considered as potentially extensible to doping control. Information on the reasons or potential Dr. Vivek Sharma abuse by athletes, on the requirements established by WADA for analysis, and on the WADA rules for Assistant Professor, Govt College of Pharmacy Rohru, Himachal the interpretation of analytical finding. The basis of human sports doping control is set by the World Pradesh.
    [Show full text]
  • High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 5-2010 High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity Albert A. Barrese III Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Biology Commons Recommended Citation Barrese, Albert A. III, "High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity" (2010). Dissertations. 500. https://scholarworks.wmich.edu/dissertations/500 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. HIGH-THROUGHPUT SCREENING STUDIES OF INHIBITION OF HUMAN CARBONIC ANHYDRASE II AND BACTERIAL FLAGELLA ANTIMICROBIAL ACTIVITY by Albert A. Barrese III A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Biological Sciences Advisor: Brian C. Tripp, Ph.D. Western Michigan University Kalamazoo, Michigan May 2010 UMI Number: 3410393 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 3410393 Copyright 2010 by ProQuest LLC.
    [Show full text]
  • Ovid MEDLINE(R)
    Supplementary material BMJ Open Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily <1946 to September 16, 2019> # Searches Results 1 exp Hypertension/ 247434 2 hypertens*.tw,kf. 420857 3 ((high* or elevat* or greater* or control*) adj4 (blood or systolic or diastolic) adj4 68657 pressure*).tw,kf. 4 1 or 2 or 3 501365 5 Sex Characteristics/ 52287 6 Sex/ 7632 7 Sex ratio/ 9049 8 Sex Factors/ 254781 9 ((sex* or gender* or man or men or male* or woman or women or female*) adj3 336361 (difference* or different or characteristic* or ratio* or factor* or imbalanc* or issue* or specific* or disparit* or dependen* or dimorphism* or gap or gaps or influenc* or discrepan* or distribut* or composition*)).tw,kf. 10 or/5-9 559186 11 4 and 10 24653 12 exp Antihypertensive Agents/ 254343 13 (antihypertensiv* or anti-hypertensiv* or ((anti?hyperten* or anti-hyperten*) adj5 52111 (therap* or treat* or effective*))).tw,kf. 14 Calcium Channel Blockers/ 36287 15 (calcium adj2 (channel* or exogenous*) adj2 (block* or inhibitor* or 20534 antagonist*)).tw,kf. 16 (agatoxin or amlodipine or anipamil or aranidipine or atagabalin or azelnidipine or 86627 azidodiltiazem or azidopamil or azidopine or belfosdil or benidipine or bepridil or brinazarone or calciseptine or caroverine or cilnidipine or clentiazem or clevidipine or columbianadin or conotoxin or cronidipine or darodipine or deacetyl n nordiltiazem or deacetyl n o dinordiltiazem or deacetyl o nordiltiazem or deacetyldiltiazem or dealkylnorverapamil or dealkylverapamil
    [Show full text]
  • DIURETICS Diuretics Are Drugs That Promote the Output of Urine Excreted by the Kidneys
    DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of Na+ transport at one or more of the four major anatomical sites along the nephron, where Na+ reabsorption takes place. The increased excretion of water and electrolytes by the kidneys is dependent on three different processes viz., glomerular filtration, tubular reabsorption (active and passive) and tubular secretion. Diuretics are very effective in the treatment of Cardiac oedema, specifically the one related with congestive heart failure. They are employed extensively in various types of disorders, for example, nephritic syndrome, diabetes insipidus, nutritional oedema, cirrhosis of the liver, hypertension, oedema of pregnancy and also to lower intraocular and cerebrospinal fluid pressure. Therapeutic Uses of Diuretics i) Congestive Heart Failure: The choice of the diuretic would depend on the severity of the disorder. In an emergency like acute pulmonary oedema, intravenous Furosemide or Sodium ethacrynate may be given. In less severe cases. Hydrochlorothiazide or Chlorthalidone may be used. Potassium-sparing diuretics like Spironolactone or Triamterene may be added to thiazide therapy. ii) Essential hypertension: The thiazides usually sever as primary antihypertensive agents. They may be used as sole agents in patients with mild hypertension or combined with other antihypertensives in more severe cases. iii) Hepatic cirrhosis: Potassium-sparing diuretics like Spironolactone may be employed. If Spironolactone alone fails, then a thiazide diuretic can be added cautiously. Furosemide or Ethacrymnic acid may have to be used if the oedema is regractory, together with spironolactone to lessen potassium loss. Serum potassium levels should be monitored periodically.
    [Show full text]
  • Extracts from PRAC Recommendations on Signals Adopted at the 9-12 March 2020 PRAC
    6 April 20201 EMA/PRAC/111218/2020 Corr2,3 Pharmacovigilance Risk Assessment Committee (PRAC) New product information wording – Extracts from PRAC recommendations on signals Adopted at the 9-12 March 2020 PRAC The product information wording in this document is extracted from the document entitled ‘PRAC recommendations on signals’ which contains the whole text of the PRAC recommendations for product information update, as well as some general guidance on the handling of signals. It can be found here (in English only). New text to be added to the product information is underlined. Current text to be deleted is struck through. 1. Immune check point inhibitors: atezolizumab; cemiplimab; durvalumab – Tuberculosis (EPITT no 19464) IMFINZI (durvalumab) Summary of product characteristics 4.4. Special warnings and precautions for use Immune-mediated pneumonitis [..] Patients with sSuspected pneumonitis should be evaluated confirmed with radiographic imaging and other infectious and disease-related aetiologies excluded, and managed as recommended in section 4.2. LIBTAYO (cemiplimab) Summary of product characteristics 1 Expected publication date. The actual publication date can be checked on the webpage dedicated to PRAC recommendations on safety signals. 2 A footnote was deleted on 8 April 2020 for the signal on thiazide and thiazide-like diuretics (see page 3). 3 A minor edit was implemented in the product information of the signal on thiazide and thiazide-like diuretics on 5 June 2020 (see page 4). Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020.
    [Show full text]
  • Spironolactone Therapy in Infants with Congestive Heart Failure Secondary to Congenital Heart Disease
    Arch Dis Child: first published as 10.1136/adc.56.12.934 on 1 December 1981. Downloaded from Archives of Disease in Childhood, 1981, 56, 934-938 Spironolactone therapy in infants with congestive heart failure secondary to congenital heart disease SUSAN M HOBBINS, RODNEY S FOWLER, RICHARD D ROWE, AND ANDREW G KOREY Division of Cardiology, Department ofPaediatrics, Hospital for Sick Children, Toronto, and Department ofPaediatrics, University of Toronto, Canada SUMMARY The efficacy of treatment with spironolactone for congestive heart failure secondary to congenital heart disease was studied in 21 infants under 1 year of age. All received digoxin and chlorothiazide. In addition, group A (n = 10) was given supplements of potassium and group B (n = 11) received spironolactone. Daily clinical observations of vital signs, weight, hepatomegaly, and vomiting were recorded. Paired t test analysis showed significant reduction in liver size and weight (P< 01) and respiratory rate (P< 0 05) in group B, and less significant decreases in group A. The incidence of vomiting was slightly lower in group B. We conclude that the addition of spiro- nolactone hastens and enhances the response to standard treatment with digoxin and chlorothiazide in infants with congestive heart failure. Spironolactone, a pharmacological antagonist of the We excluded or withdrew from the study any adrenal mineralocorticoid,l has been used for some infant in whom any of the following was present copyright. years in the treatment of congestive heart failure or developed. (1) Renal disease or dysfunction, as (CHF). By competitively binding to specific nuclear shown by blood urea nitrogen >8-925 mmol/l macromolecules in the distal convoluted renal (25 mg/100ml) or hepatic disease or dysfunction.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]