Tool Solutions Focus Segments for the Aerospace Industry Our Introdution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
V-TECS Guide for Machine Shop (Machinist). INSTITUTION South Carolina State Dept
DOCUMENT RESUME ED 264 397 CE 043 059 AUTHOR Gregory, Margaret R.; Benson, Robert T. TITLE V-TECS Guide for Machine Shop (Machinist). INSTITUTION South Carolina State Dept. of Education, Columbia. Office of Vocational Education. PUB DATE 85 NOTE 443p. PUB TYPE Guides Classroom Use - Guides (For Teachers) (052) EDRS PRICE MF01/PC18 Plus Postage. DESCRIPTORS Behavioral Objectives; Competency Based Education; Definitions; *Equipment Maintenance; *Equipment Utilization; Job Skills; Learning Activities; Lesson Plans; *Machine Tools; *Machinists; Mathematics Skills; Measurement Equipment; Measurement Techniques; Numerical Control; Safety; Secondary Education; Shop Curriculum; Teacher Developed Materials; *Trade and Industrial Education; Welding ABSTRACT This curriculum guide is intended to train trade and industrial education students in the hands-on aspects of the occupation of machinist. Included in the guide arecourse outlines that deal with the following topics: following safety procedures; performing mathematical calculations; designing and planning machine work; performing precision measurement and bench work; operating drill presses, grinders, power saws, lathes, milling machines, and shapers; welding; performing heat treatment tasks; and operating numerical controlled machines. Each course outline containssome or all of the following: a duty; a task statement; a performance objective and performance guide; suggested learning activities;a list of recommended resources; student evaluation criteria, including answers to any evaluation questions or exercises provided; a lesson test, test answers; and attachments (including handouts, forms, and transparency masters). Appendixes to the guide include definitions of terms, duty and task and tool and equipment lists, evaluation questions and answers, and a bibliography. (MN) *********************************************************************** * Reproductions supplied by EDRS are the best thatcan be made * * from the original document. -
Success Measured Beyond Tool Life
SUCCESS MEASURED BEYOND TOOL LIFE ENGINEERING CASE STUDIES 04 USING SMARTER TOOL MANAGEMENT FEATURES IN MAKINO A-51NX MILLS Manufacturing Mastery Since 1924 Central Screw Products Company (CSP) is a 3rd generation machin- ing company, founded in 1924. CSP leverages the latest in robot- ics and automation technology to achieve one of the machining industry’s most efficient engineer- ing to production ratios. The re- sult is mastery and control of the manufacturing process, maximum customer value, and unparalleled quality. We machine Titanium, Inconel, and other hard materials to precise tol- erances for the most demanding industries such as defense, medi- cal, aerospace, and automotive. Our global supply chain provides a reliable single source for diverse secondary operations and value added logistics. The Makino brand is universally renowned for high-power, high-speed precision equipment. However, all of this capability comes to a halt without smart tool CSP is ISO 9001:2015 Certified, management. AS 9100 Compliant, ITAR Regis- tered, and a proud recipient of a Central Screw Products use our Makinos to machine demanding superalloys like number of industry and OEM sup- Inconel 718. Using the tool management features built into our Makino, in con- plier quality awards. junction with Haimer holders and OSG drills, our OEE (Overall Equipment Effec- tiveness) has nearly doubled! This increased uptime in our spindles makes DGW www.centralscrewproducts.com a leader in superalloy machining. Read all CSP case studies here The Makino A51NX provides a sophisticated array of tool management features. Subscribe to CSP news For example, we can monitor and replace tools based on time, the number of workpieces, or even active parameters from spindle load monitoring or external broken tool detection. -
Tool Management
TOOL MANAGEMENT www.haimer-usa.com HAIMER TOOL MANAGEMENT LOGISTICS SYSTEM – OVERVIEW Corner module with perforated wall Connection part shrink fit machine Power Clamp Premium Plus Connection part measuring and balancing system Tool Dynamic Preset Waste disposal module Shelf module folders Assembly station Vertical cabinet universal Tool holder rack 2 Workbench assembly module Corner module with rear wall for storing collets and tools Workbench info module Shelf module parts Magazine cabinet Vertical cabinet tool holders 3 TOOL MANAGEMENT – FOR EFFICIENT WORKING Use: The HAIMER Tool Management completes the HAIMER product program as a sys- tem partner around tool clamping. That means HAIMER offers the complete Tool Management equipment from a single source. As a complete solution for tool pre- setting and tool management, the HAIMER Tool Management provides you with functional and ergonomic criteria for the design of work stations. The storage, setup and management of tools is simplified and optimized by the HAIMER solutions so that efficient working is guaranteed. – Modular room design according to the customer's requirements – Shrinking, balancing and presetting already integrated into the concept – Tidy and isolated solution for concentrated working 4 Technical data subject to change without prior notice CORNER MODULE Corner module with perforated wall Use: The perforated back wall and drawer unit provide a clean and structured workspace. The three integrated LED spots ensure a continually bright and comfortable working atmosphere. Delivery includes: – Corner module with a perforated wall, roof with LED lighting, drawer unit Description Order No. Corner module 4.0 84.802.00.3 Technical data subject to change without prior notice 5 WORKBENCH ASSEMBLY MODULE Picture shows: Assembly module with special configuration, Order No. -
3Abff7a23fc6813312aa9f80b81b
Main Catalogue EN We reserve the right to modify any specifi cation and/or item shown in the present catalogue without notice. Information, photos, drawings and technical data specifi ed in the publication have been carefully examined and thoroughly checked. They cannot, however, bind our responsibility on their exactness. GRANLUND TOOLS AB, SWEDEN 4OOLSTools When precision counts... Granlund Tools AB in Eskilstuna are one of the Granlund companies also perform: world’s leading manufacturers of precision • Subcontract work, where we offer solutions tools within the machining industry. regarding production and or assembly in large or Granlund offers a wide range of high-quality, carbide small series. and HSS cutting tools, such as counterbores, counter- • Heat treatment in a modern vacuum hardening/ sinks, tools with indexable inserts and reamers. quenching plant. With more than 60 years’ experience and representa- • Engineering. Manufacture of special measure tion in some 30 countries around the world, Granlund machines including the software. can offer the market proven technical solutions and • Machinery. Manufacture of special machinery for good local support. tube elements and special grinding machines for The Granlund interchangeable tool system was one the tube industry. of the fi rst Granlund products to receive world recog- nition. The company is certifi ed according to ISO 9001 With only 1300 parts, consisting of holders, cutters, and ISO 14001. pilots and drills, it is possible to assemble combina- GRANLUND – Tools, supplies where high quality tion tools in more than 1 500 000 different variations. and precision are required. Our fl exible easy-to-use system provides productive and cost-effi cient tool solutions for industries world- wide. -
Technical Guide
TECHNICAL GUIDE ã GRANLUND TOOLS 2002, REV 2.4 Page 1 The purpose of this manual is to explain not only how to use the complete range of tools, but also the particular features of each item in the system, indicating their advantages, disadvantages or any limitations on use. The different groups will be covered in: INTERCHANGEABLE TOOL SYSTEM page 1-3 TOOLHOLDERS page 4-5 COUNTERBORES page 5 COUNTERSINKS page 6 INDEXABLE CARBIDE INSERTS page 7 PILOTS / INSERT DRILLS page 8 CARBIDE REAMERS (BRAZED) page 8-9 SINGLE BLADE REAMERS page 9-11 BACKSPOTFACING SYSTEM page 12-13 CNC-TOOLS page 13-14 For information concerning dimension ranges, cutting conditions, regrinding information and drawings, please see our main catalogue. INTERCHANGEABLE TOOL SYSTEM OBJECTIVE The main objective with the Granlund modular tool system, is to provide the enduser with the possibility to easily build practically any special counterboring/ countersinking combination, using a wide range of standard components. In fact, with some 1300 components , the possible combinations are more than 1.500.000. Each tool is made by combining three parts: A. TOOLHOLDER B. COUNTERBORE or COUNTERSINK C. PILOT or DRILL Picture 1 GRANLUND TECHNICAL GUIDE ã GRANLUND TOOLS 2002, REV 2.4 Page 2 A. The same toolholder can be used in many different combinations. With 16 types of holders available, most applications can be covered. B. The counterbore or countersink is selected to suit the demands of each specific operation and material. In the catalogue you will find our recommendations for most cases. C. If the workpiece is predrilled, a pilot should be used, otherwise operation can be made with an insert drill.* * IMPORTANT! When step drilling, the drill must break through the workpiece before secondary cutting commences. -
Machinists-Handbook-Gcodetutor.Pdf
GCodeTutor.com Machinists Handbook GCodeTutor.com Content Conversion • G74 Peck Drilling • Calculations • G75 Peck Grooving • 1/64” to 1” • G76 Screw Cutting Single Line • 1 1/64” to 2” • G76 Screw Cutting Double Line • 2 1/64” to 3” • G83 Z-axis Peck Drilling Screw Thread Charts • G84 Z-axis Tapping • Metric Coarse Thread • G87 X-axis Peck Drilling • Metric Fine Thread • G88 X-axis Tapping • BSW British Standard Whitworth Thread G Code Canned Cycles - Milling • BSF British Standard Fine Thread • G81 Drilling • BA British Association Screw Thread • G82 Counter bore • BSPP British Standard Pipe parallel • G83 Peck Drilling • BSPT British Standard pipe Taper • G84 Tapping • UNC Unified Coarse Thread • G85 Bore in / Bore out • UNF Unified Fine Thread • G86 Bore in / Rapid out • UNEF Unified Extra Fine Thread Calculations • Reamer Drill Size • Speeds and Feeds Abbreviations • Tapping Drill CNC Programming Reference • Trigonometry • G Code Trigonometry Charts • M Code Tool Geometry • Auxiliary Commands • RH Knife Tool G Code Canned Cycles - Turning • Drill • G70 Finishing • Centre Drill • G71 Roughing • End Mill • G72 Facing • Morse Taper • G73 Pattern Repeating Afterword Machinists Handbook GCodeTutor.com Conversion Charts Machinists Handbook GCodeTutor.com Conversion Calculations Length Kilometers (km) x 0.62 = Miles (mi) Miles (mi) x 1.61 = Kilometers (km) Kilometers (km) x 3280.8 = Feet (ft) Feet (ft) x 0.0003048 = Kilometers (km) Meters (m) x 3.28 = Feet (ft) Feet (ft) x 0.3 = Meters (m) Centimeters (cm) x 0.39 = Inches (in) Inches (in) -
M Akingthebestofaslowdown
650 words text only full page; 580 with quote; 520 words with medium size image JANUARY 2009 / VOLUME 61 / ISSUE 1 staying sharp manager’s desk By Keith Jennings Making the best of a slowdown t’s a new year and if the pundits are correct, many of require reevaluation from time to time, which is never us are in the midst of a downturn, if not a recession. If convenient. The effort can reap rewards later, though. Ithis is your situation, the stress factor is probably high. Software training can also be important. With Even under these circumstances, however, there are ways to manufacturing technology becoming more essential, effectively use the extra time to add value to your business. exploiting it can provide a significant return on While most everyone prefers a full and busy workload, investment. Even though sitting in front of a training that’s not always the reality. Identifying some valuable computer all day sounds dull, a slowdown could be the activities and making time to complete them can have best time to get it done. This could include training a positive impact when your business rebounds. Under with a focus on better utilization of CAD packages, the present conditions, one of the best uses of time is manufacturing ERP applications or even Microsoft employee training. Office. We all need this on occasion. Can your employees “Training” has broad meaning and can include read and understand their productivity reports? Can education in plant safety, forklift operations, employees effectively use e-mail distribution lists and cardiopulmonary resuscitation skills, quality and prepare invoices, purchase orders and quality documents? inspection methods, Many probably can, and equipment functions and some probably have no clue. -
Management and Monitoring of Rfidbased Cutting Tool Information
ISSN (Print) : 2319-8613 ISSN (Online) : 0975-4024 Mior Uzair Mior Hassan et al. / International Journal of Engineering and Technology (IJET) Management and Monitoring of RFID- based Cutting Tool Information for Integrated Manufacturing Mior Uzair Mior Hassan#1 , Aini Zuhra Abdul Kadir#2 # Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia 1 [email protected] 2 [email protected] Abstract—The demand of integrating manufacturing design and process planning with actual production activities such as cutting tool information is essential to enhance planning efficiency as well as improve simulation accuracy. However, cutting tools information that involves static and dynamic data is difficult to track causing the planning and simulation activities to be isolated, using outdated information and lack of reliability. This paper presents the initial functions of an Integrated Cutting Tool Management and Monitoring system (ICTMMs) utilizing RFID technology. RFID is used as a device to identify individual cutting tool as well as to track cutters data at production floor. Integration is possible with the use of STEP-NC as the exchange data format. User interface is designed using Labwindows. General overview are discussed based on STEP-NC input file. The development of ICTMMs helps to simplify management of cutting tool at production floor and support the integration of tool information throughout the manufacturing chain. Keyword-Tool management, RFID, STEP-NC I. INTRODUCTION Integrated manufacturing environment involves continuous interaction of various computer-aided (CAx) systems functions to ensure full information can be utilized in assisting various manufacturing activities. For example, during production planning activities, cutting tools data is essential for effective machining operation which is normally obtained beforehand based on operator’s experience, catalogues or any theoretical documents. -
Military Training Procedure Template
MILITARY TRAINING PROCEDURE LMS 6-3 Effective Date: 12/1/2020 Version: 2 Machine Shop Practices Paul Mueller, Director of Engineering Function: Owner: Page 1 of 19 //Signature on File// Hardware Engineering PURPOSE Defines general workmanship requirements related to machine shop operations. It further defines the intent and interpretation of various drawing callouts and dimensioning and tolerancing practices. The requirements of this instruction shall be met by all Link Training & Simulation Division (hereafter referred to as Link) personnel involved in machine shop operations. AFFECTED Hardware Engineering FUNCTIONS Manufacturing REFERENCES LMS 6-1 Surface Roughness LMS 6-2 Screw Threads LMS 8-1 Sheet Metal, Miscellaneous Metal and Nonmetals ASME B46.1 Surface Texture (Surface Roughness, Waviness, and Lay) AS5202 Port or Fitting End, Internal Straight Thread, Design Standard FED-STD-H28 Screw-Thread Standard for Federal Services DEFINITIONS Burrs. A burr is defined as a material that extends beyond the line of intersection of any two intersecting surfaces of a piece, caused by machining, drilling, sawing, or punching operations. Chamfers. The term chamfer is used to designate a beveled surface at an external edge; also the internal edge of a noncircular hole or a circular hole too large for countersinking tools. Counterbore. A counterbore is a flat-bottomed hole added to another hole about the same centerline, primarily used for the recessing of a bolt, screw, or other fastener. Countersink. A countersink is a conical-shaped or beveled edge given to a hole primarily to allow the seating of a flat-head screw or other fasteners. Free-state variation. Free-state variation is the amount a part distorts after removal of external forces applied during manufacturing. -
End Mill Holders
MASTER TOOLHOLDING CATALOG Toolholding, Tapping, and Boring solutions Toolholding Tapping Boring HISTORY Parlec is established in Rochester N.Y., as a job shop specializing in 1948 the manufacturing of Sulky Hubs. Parlec begins producing and distributing the Numertap and 1973 Autofacer product lines. Parlec expands its product line with the introduction of Toolholders, 1977 which are sold as Numertap and Autofacer accessories. 1980 The first Parsetter TMM® is produced. Parlec builds a new 42,000 square-foot, state-of-the-art 1985 manufacturing facility just outside of Rochester in Fairport, N.Y. Parlec begins to manufacture and distribute its own line of 1992 Boring Tools. Parlec becomes ISO 9001 certified. Parlec’s sales triple from 1997 1992-1997. Parlec further enhances its product line to include Workholding. 1998 Construction of a 58,000 square-foot plant addition begins. Parlec enters the Asian market with the opening of a sales and 2003 service office in Nanjing China. Parlec acquires Bristol Tool. Driven and static tools are added 2004 to Parlec’s extensive product line. A new sales, engineering and distribution facility opens in Bristol, England. Parlec continues to expand its world wide footprint by opening a Wholly Owned Foreign Enterprise in Nanjing. This gives the 2006 company full sales, engineering, customer support and distribution capabilities on 3 continents. Sales offices are opened in Tianjin, Xian, Wuxi, and Chengdu to 2009 expand the China presence. Parlec partners with Gerardi for distribution of Driven & Static 2010 Tooling in Europe. Parlec begins distribution of Right angle heads in China. Parlec successfully completes a $5 million dollar capital investment 2012 campaign to automate and expand its manufacturing capabilities in the United States. -
Introduction
SECTION A Introduction UNIT ONE Careers and the Machinist’s Role in Process Plans UNIT TWO Manufacturing Competitiveness and Improvement UNIT THREE Shop Safety UNIT FOUR Threads and Fasteners UNIT FIVE Blueprint Reading Fundamentals UNIT SIX Views and Line Types UNIT SEVEN Dimensions, Tolerances, and Fits UNIT EIGHT Fundamentals of GD&T UNIT NINE Geometric Tolerancing 1 M01_KIBB3501_11_SE_C01.indd 1 07/11/18 12:02 PM 2 SECTION A INTRODUCTION INTRODUCTION The computer has found its way into almost every other phase of manufacturing as well. One important area achining processes are among the most important is computer-aided design (CAD). Product design is done on Mof the manufacturing processes. The fundamental computers and CNC programs are generated directly from cutting processes in machining such as milling and turn- those designs. ing are still the most prominent. What has changed is the In order to be competitive, industry will continue to au- way in which these processes are applied. Changes in- tomate. There will be increased use of manufacturing cells clude the cutting tool materials, the materials the parts of machines, and increased use of robotics for loading and are made from, and the methods of material removal. unloading parts to/from CNC machines. The automation These new methods include the use of lasers, electrical will continue to improve the working conditions in manu- energy, electrochemical processes, and high-pressure wa- facturing, reduce the manual labor required, and increase ter jets. the need for skilled and knowledgeable workers. Computer numerically controlled (CNC) machines have provided an exceptional degree of accuracy, reliability, and Units in This Section repeatability. -
Life Cycle Oriented Milling Tool Management in Small Scale Production
Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 29 ( 2015 ) 293 – 298 The 22nd CIRP conference on Life Cycle Engineering Life cycle oriented milling tool management in small scale production a b a Dominik Heeschen * Fritz Klocke Kristian Arntz aFraunhofer-Institute for Production Technology (IPT), Steinbachstraße 17, 52074 Aachen, Germany bLaboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Steinbachstrasse 19, 52074 Aachen, Germany * Corresponding author. Tel.: +49-241-8904-324; fax: +49-241-8904-6324. E-mail address: [email protected] Abstract The milling technology is characterized as the most important manufacturing technology in a variety of industries. Moreover, recent developments in hardware and software issues have increased technology’s complexity which is, beyond others, caused by different milling variants and a high number of different milling tools. Milling tools are responsible for a significant cost position in manufacturing driven companies which is shown in the paper by an industry wide survey. Due to the costly and wasteful production it can be shown that this is a significant cost driver. This paper introduces an integrated life cycle oriented approach for the standardization and optimization (including the reuse of tools by standardized repair processes) of milling tools in order to enhance the life cycle of milling tools, reduce overall costs and therefore raise the company’s sustainability. © 20152015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (Peerhttp://creativecommons.org/licenses/by-nc-nd/4.0/-review under responsibility of the International). Scientific Committee of the Conference “22nd CIRP conference on Life Cycle PeerEngineering.-review under responsibility of the scientifi c committee of The 22nd CIRP conference on Life Cycle Engineering Keywords: Life Cycle Management; Life Cycle Optimization; Life Cycle Costing; LCC; Manufacturing; Milling Tools 1.