Methods for Controlling Mineralization Of

Total Page:16

File Type:pdf, Size:1020Kb

Methods for Controlling Mineralization Of (19) & (11) EP 2 097 515 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 5/077 (2010.01) A61B 17/58 (2006.01) 08.08.2012 Bulletin 2012/32 (86) International application number: (21) Application number: 07834699.6 PCT/NL2007/050571 (22) Date of filing: 16.11.2007 (87) International publication number: WO 2008/060156 (22.05.2008 Gazette 2008/21) (54) METHODS FOR CONTROLLING MINERALIZATION OF EXTRACELLULAR MATRIX, THERAPEUTIC METHODS BASED THEREON AND MEDICAMENTS FOR USE THEREIN VERFAHREN ZUR STEUERUNG DER MINERALISIERUNG EXTRAZELLULÄRER MATRIX, DARAUF BERUHENDE THERAPIEVERFAHREN UND ARZNEIMITTEL ZUR VERWENDUNG DABEI PROCÉDÉS DE CONTRÔLE DE LA MINÉRALISATION DE LA MATRICE EXTRACELLULAIRE, PROCÉDÉS THÉRAPEUTIQUES BASÉS SUR CEUX-CI ET MÉDICAMENTS DESTINÉS À ÊTRE UTILISÉS DANS CEUX-CI (84) Designated Contracting States: • EIJKEN ET AL: "The essential role of AT BE BG CH CY CZ DE DK EE ES FI FR GB GR glucocorticoids for proper human osteoblast HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE differentiation and matrix mineralization" SI SK TR MOLECULAR AND CELLULAR ENDOCRINOLOGY, AMSTERDAM, NL, vol. 248, (30) Priority: 17.11.2006 PCT/NL2006/000576 no. 1-2, 27 March 2006 (2006-03-27), pages 87-93, XP005335805 ISSN: 0303-7207 (43) Date of publication of application: • SAKAI R ET AL: "Local administration of activin 09.09.2009 Bulletin 2009/37 promotesfracture healing in the rat fibula fracture model." BONE AUG 1999, vol. 25, no. 2, August (60) Divisional application: 1999 (1999-08), pages 191-196, XP002440169 12164294.6 / 2 479 261 ISSN: 8756-3282 • "23 Activin secreted from hepatocytes activates (73) Proprietor: Arcarios B.V. HSCS and plays a key role in liver fibrosis" 3015 GD Rotterdam (NL) JOURNAL OF HEPATOLOGY, MUNKSGAARD INTERNATIONAL PUBLISHERS, COPENHAGEN, (72) Inventors: DK, vol. 42, April 2005 (2005-04), page 11, • VAN LEEUWEN, Johannes Petrus Thomas Maria XP005059834 ISSN: 0168-8278 1185 HP Amstelveen (NL) • WERNER ET AL: "Roles of activin in tissue repair, • EIJKEN, Hermanus Johannes Marco fibrosis, and inflammatory disease" CYTOKINE 3035 TE Rotterdam (NL) ANDGROWTH FACTOR REVIEWS, OXFORD, GB, vol. 17, no. 3, June 2006 (2006-06), pages 157-171, (74) Representative: Hatzmann, Martin et al XP005482280 ISSN: 1359-6101 Vereenigde • IKENOUE T ET AL: "Inhibitory effects of activin- Johan de Wittlaan 7 A on osteoblast differentiation during cultures of 2517 JR Den Haag (NL) fetal ratcalvarial cells." JOURNAL OF CELLULAR BIOCHEMISTRY 1 NOV 1999, vol. 75, no. 2, 1 (56) References cited: November 1999 (1999-11-01), pages 206-214, WO-A-2006/119406 XP002440166 ISSN: 0730-2312 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 097 515 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 097 515 B1 • HASHIMOTO M ET AL: "Functional regulation of • SAKAI R ET AL: "Activin increases bone mass osteoblastic cells by the interaction of activin-A and mechanical strength of lumbar vertebrae in with follistatin." THE JOURNAL OF BIOLOGICAL aged ovariectomized rats" BONE, PERGAMON CHEMISTRY 5 MAR 1992, vol. 267, no. 7, 5 March PRESS., OXFORD, GB, vol. 27, no. 1, July 2000 1992 (1992-03-05), pages 4999-5004, (2000-07), pages 91-96, XP002294252 ISSN: XP002440167 ISSN: 0021-9258 8756-3282 • HIROTANI H ET AL: "Activin A increases the bone • GADDY-KURTEN D ET AL: "Inhibin suppresses mass of grafted bone in C3H/HeJ mice." and activin stimulates osteoblastogenesis and CALCIFIED TISSUE INTERNATIONAL APR 2002, osteoclastogenesis in murine bone marrow vol. 70, no. 4, April 2002 (2002-04), pages 330-338, cultures.", ENDOCRINOLOGY JAN 2002 LNKD- XP002440168 ISSN: 0171-967X PUBMED:11751595, vol. 143, no. 1, January 2002 (2002-01), pages 74-83, ISSN: 0013-7227 2 EP 2 097 515 B1 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to biologically active compounds for use in methods of treatment and to medi- caments for use in such treatment methods. BACKGROUND TO THE INVENTION 10 [0002] Osteoporosis is a disease in which the density and quality of bone are reduced, leading to weakness of the skeleton and increased risk of fracture, particularly of the spine, wrist, hip, pelvis and upper arm. Osteoporosis and associated fractures are an important cause of mortality and morbidity. Bone quality is a crucial feature in osteoporosis, and osteoblasts play a pivotal role as the bone forming cell and the director of bone resorption by osteoclasts. Osteoblasts have a meschenchymal origin and the differentiation of mesenchymal stem cells to an osteoblastic lineage is regulated 15 by many endocrine, paracrine and autocrine factors. During bone formation osteoblasts produce an organic extracellular matrix (ECM) or osteoid (the immature matrix before mineralizing), which is composed primarily of type I collagen and non-collagenous proteins. This ECM then mineralizes, by the deposition thereon of calcium phosphates, to form bone spicules. Initiation of bone mineralization, or ossification, requires the precipitation and attachment of calcium phosphate crystals, in particular hydroxyapatite (Ca10(PO4)6(OH)2), to the ECM. 20 [0003] This process of mineralization is not unique for bone cells. It also occurs in hypertrophic chondrocytes as part of endochondral bone formation during growth. Furthermore, in pathological conditions of vascular calcification, miner- alization of vascular smooth muscle cell (VSMC) ECM is believed to be involved in vascular calcification as well as in calcification of articular cartilage which occurs with ageing, degenerative joint diseases (e.g. osteoarthritis), and various metabolic and genetic disorders. Thus, ECM mineralization is a physiological process in bone and a pathological one 25 in soft tissues. [0004] Bone mineralization and in particular its regulation is a complicated process controlled by many factors including serum calcium and phosphate concentrations, hormones, enzymes, and the structure of the ECM. The macromolecular organization of type I collagen is a factor facilitating bone mineralization. Initially, calcium phosphate is deposited in the holes of the collagen fibrils and later fills in the pores and the rest of the space within the collagen fibrils. 30 [0005] Vascular calcification, and particular arterial calcification, has long been considered a passive process involving the necrotic core of the plaque serving as a nucleating centre for calcium phosphate mineral deposition. Recent scientific insights have challenged this hypothesis in that genetic aberrations of a variety of extracellular matrix (ECM) molecules, including matrix Gla protein and osteoprotegerin, result in spontaneous arterial calcification, indicating that like bone mineralization, arterial calcification is a delicately regulated process. 35 [0006] It is evident that the possibility of controlling the ECM mineralization process is desired, both in the direction of promoting Mineralization as in the case of osteoporosis and fracture healing, and in the case of reducing or preventing mineralization as in the case of vascular calcification, in particular atherosclerotic calcification, and calcification of car- tilage. [0007] It is an aim of the present invention to provide methods for selecting candidate therapeutic agents for controlling 40 mineralization of an extracellular matrix in a tissue of a subject, Preferably in a mammal, most preferably a human. It is another aim of the present invention to provide methods for controlling ECM mineralization in soft tissue of a mammal, preferably a human, particularly in relation to pathological calcification of cartilage and blood vessels, such as mineral- ization of VSMC produced ECM and atherosclerosis. It is still another aim of the invention to provide methods of control by providing possibilities to stimulate mineralization on the one hand, and by providing possibilities to reduce or prevent 45 mineralization on the other. It is a further aim to provide pharmaceutical compositions and medicaments for use in such methods. SUMMARY OF THE INVENTION 50 [0008] Herein described is a method for selecting a candidate therapeutic agent for controlling mineralization of an extracellular matrix in a tissue of a subject, said method comprising the steps of: a) exposing a cell from said tissue that produces an extracellular matrix to a test compound under conditions that support extracellular matrix formation and matrix maturation; 55 b) determining the expression in said cell of at least one gene in response to said exposure, wherein said gene is selected from group A consisting of genes that encode for thrombospondin 1; collagen type V alpha 1; collagen type XVI alpha 1; collagen type VIII alpha 2; collagen triple helix repeat containing 1; hyaluronan and proteoglycan link protein 1; chondroitin sulfate proteoglycan 2 (versican); latent transforming growth factor beta binding protein 3 EP 2 097 515 B1 2; biglycan; matrix metallopeptidase 2; periostin, osteoblast specific factor; fibulin 5; SPOCK1, Sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican); and ADAM metallopeptidase with thrombospondin type 1 motif; and/or 5 - group B consisting of genes
Recommended publications
  • Cleavage of Lumican by Membrane-Type Matrix Metalloproteinase-1 Abrogates This Proteoglycan-Mediated Suppression of Tumor Cell Colony Formation in Soft Agar
    [CANCER RESEARCH 64, 7058–7064, October 1, 2004] Cleavage of Lumican by Membrane-Type Matrix Metalloproteinase-1 Abrogates This Proteoglycan-Mediated Suppression of Tumor Cell Colony Formation in Soft Agar Yingyi Li,1 Takanori Aoki,1,3 Yuya Mori,1 Munirah Ahmad,1 Hisashi Miyamori,1 Takahisa Takino,1 and Hiroshi Sato1,2 1Department of Molecular Virology and Oncology and 2Center for the Development of Molecular Target Drugs, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan; and 3Daiichi Fine Chemical Co. Ltd., Takaoka, Toyama, Japan ABSTRACT or tumorigenicity in nude mice of rat fibroblast F204 cells trans- formed by K-ras or v-src oncogene (12). The small leucine-rich proteoglycan lumican was identified from a Matrix metalloproteinases (MMPs) are a family of Zn2ϩ-dependent human placenta cDNA library by the expression cloning method as a gene product that interacts with membrane-type matrix metalloproteinase-1 enzymes that are known to cleave extracellular matrix proteins in (MT1-MMP). Coexpression of MT1-MMP with lumican in HEK293T cells normal and pathological conditions (13). Currently, 23 MMP genes reduced the concentration of lumican secreted into culture medium, and have been identified in humans, and they can be subgrouped into this reduction was abolished by addition of the MMP inhibitor BB94. soluble-type and membrane-type MMPs (MT-MMPs; refs. 13, 14). Lumican protein from bovine cornea and recombinant lumican core MMPs are overexpressed in various human malignancies and have protein fused to glutathione S-transferase was shown to be cleaved at been thought to contribute to tumor invasion and metastasis by de- multiple sites by recombinant MT1-MMP.
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Electronic Supplementary Material (ESI) for Analyst. This Journal Is © the Royal Society of Chemistry 2020
    Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020 Table S1.
    [Show full text]
  • Proteoglycan Form and Function: a Comprehensive Nomenclature of Proteoglycans
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Matrix Biol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2016 May 06. Published in final edited form as: Matrix Biol. 2015 March ; 42: 11–55. doi:10.1016/j.matbio.2015.02.003. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans Renato V. Iozzo1 and Liliana Schaefer2 1Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA 2Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany Abstract We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant. Keywords Proteoglycan; Glycosaminoglycan; Cancer growth; Angiogenesis; Growth factor modulation Introduction It has been nearly 20 years since the original publication of a comprehensive classification of proteoglycan gene families [1]. For the most part, these classes have been widely accepted. However, a broad and current taxonomy of the various proteoglycan gene families and their products is not available.
    [Show full text]
  • Fibroblasts from the Human Skin Dermo-Hypodermal Junction Are
    cells Article Fibroblasts from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular Matrix Organization and Modeling Valérie Haydont 1,*, Véronique Neiveyans 1, Philippe Perez 1, Élodie Busson 2, 2 1, 3,4,5,6, , Jean-Jacques Lataillade , Daniel Asselineau y and Nicolas O. Fortunel y * 1 Advanced Research, L’Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France; [email protected] (V.N.); [email protected] (P.P.); [email protected] (D.A.) 2 Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), 91223 CEDEX Brétigny sur Orge, France; [email protected] (É.B.); [email protected] (J.-J.L.) 3 Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France 4 INSERM U967, 92260 Fontenay-aux-Roses, France 5 Université Paris-Diderot, 75013 Paris 7, France 6 Université Paris-Saclay, 78140 Paris 11, France * Correspondence: [email protected] (V.H.); [email protected] (N.O.F.); Tel.: +33-1-48-68-96-00 (V.H.); +33-1-60-87-34-92 or +33-1-60-87-34-98 (N.O.F.) These authors contributed equally to the work. y Received: 15 December 2019; Accepted: 24 January 2020; Published: 5 February 2020 Abstract: Human skin dermis contains fibroblast subpopulations in which characterization is crucial due to their roles in extracellular matrix (ECM) biology.
    [Show full text]
  • Gene Expression Alterations in Salivary Gland Epithelia of Sjögren's
    www.nature.com/scientificreports OPEN Gene expression alterations in salivary gland epithelia of Sjögren’s syndrome patients are associated with clinical and histopathological manifestations Ariana Dela Cruz1,7, Vinay Kartha2,7, Andrew Tilston‑Lunel3,7, Rongjuan Mi1,3, Taylor L. Reynolds4, Michael Mingueneau4, Stefano Monti2, Janicke L. Jensen5, Kathrine Skarstein6, Xaralabos Varelas3* & Maria A. Kukuruzinska1* Sjögren’s syndrome (SS) is a complex autoimmune disease associated with lymphocytic infltration and secretory dysfunction of salivary and lacrimal glands. Although the etiology of SS remains unclear, evidence suggests that epithelial damage of the glands elicits immune and fbrotic responses in SS. To defne molecular changes underlying epithelial tissue damage in SS, we laser capture microdissected (LCM) labial salivary gland epithelia from 8 SS and 8 non‑SS controls for analysis by RNA sequencing (RNAseq). Computational interrogation of gene expression signatures revealed that, in addition to a division of SS and non‑SS samples, there was a potential intermediate state overlapping clustering of SS and non‑SS samples. Diferential expression analysis uncovered signaling events likely associated with distinct SS pathogenesis. Notable signals included the enrichment of IFN‑γ and JAK/STAT‑ regulated genes, and the induction of genes encoding secreted factors, such as LTF, BMP3, and MMP7, implicated in immune responses, matrix remodeling and tissue destruction. Identifcation of gene expression signatures of salivary epithelia associated with mixed clinical and histopathological characteristics suggests that SS pathology may be defned by distinct molecular subtypes. We conclude that gene expression changes arising in the damaged salivary epithelia may ofer novel insights into the signals contributing to SS development and progression.
    [Show full text]
  • 3364.Full.Pdf
    [CANCER RESEARCH 63, 3364–3369, June 15, 2003] Testican 2 Abrogates Inhibition of Membrane-type Matrix Metalloproteinases by Other Testican Family Proteins1 Mitsutoshi Nakada,2 Hisashi Miyamori,2 Junkoh Yamashita, and Hiroshi Sato3 Department of Molecular Virology and Oncology [M. N., H. M., H. S.], Center for the Development of Molecular Target Drugs, Cancer Research Institute [H. S.], Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science [M. N., J. Y.], Kanazawa University, Ishikawa 920-0934, Japan ABSTRACT activation of pro-MMP-2 is a common functional role proposed for all of the MT-MMPs (4–8), expression of MT1-MMP most closely Testican family proteins are putative extracellular heparan/chondroitin correlates with invasive phenotype of human tumors (9–13). sulfate proteoglycans of unknown function. We identified recently N-Tes, Testican was first defined as an unnamed chondroitin/heparan which is a product of testican 3 splicing variant gene, as an inhibitor of membrane-type matrix metalloproteinases (MT-MMPs). The inhibitory sulfate proteoglycan in seminal plasma (14). Corresponding cDNAs function is common among testican family members except for testican 2, were isolated from human testis libraries, and the deduced protein was which was shown to uniquely abolish inhibition of MT1-MMP- or MT3- named testican (15). To date 3 members of the testican family were MMP-mediated pro-MMP-2 activation by other testican family members. identified by cDNA cloning, with deduced amino acid homologies of Testican 2 inactivates N-Tes by binding to the COOH-terminal extracel- 42%, 51%, and 44% for testican 1/testican 2, testican 1/testican 3, and lular calcium-binding domain of N-Tes through its NH2-terminal unique testican 2/testican 3, respectively (15–17).
    [Show full text]
  • Ncomms2128.Pdf
    ARTICLE Received 10 Jul 2012 | Accepted 6 Sep 2012 | Published 9 Oct 2012 DOI: 10.1038/ncomms2128 A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis Nathan E. Reticker-Flynn1,2, David F. Braga Malta1,2,3,4, Monte M. Winslow1,5, John M. Lamar1, Mary J. Xu2, Gregory H. Underhill1,6, Richard O. Hynes1,7,8, Tyler E. Jacks1,7,8,9 & Sangeeta N. Bhatia1,2,8,10,11 Extracellular matrix interactions have essential roles in normal physiology and many pathological processes. Although the importance of extracellular matrix interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Here we report a novel-screening platform capable of measuring phenotypic responses to combinations of extracellular matrix molecules. Using a genetic mouse model of lung adenocarcinoma, we measure the extracellular matrix-dependent adhesion of tumour-derived cells. Hierarchical clustering of the adhesion profiles differentiates metastatic cell lines from primary tumour lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8 or laminin. We show that these molecules correlate with human disease and that their interactions are mediated in part by α3β1 integrin. Thus, our platform allowed us to interrogate interactions between metastatic cells and their microenvironments, and identified extracellular matrix and integrin interactions that could serve as therapeutic targets. 1 David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 2 Harvard- MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
    [Show full text]