2015 Virginia Math Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FIELDS MEDAL for Mathematical Efforts R
Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study, -
L. Maligranda REVIEW of the BOOK by MARIUSZ URBANEK
Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems. -
Fall 2020 Issue
MATHEMATICS + BERKELEY Fall 2020 IN THIS ISSUE Letter from the Chair 2 Department News 4 Happy Hours, New Horizons 3 Grad and Undergrad News 5 Prize New Faculty and Staff 7 Chair Michael Hutchings (PhD, Harvard, 1998) has been a member of the math faculty since 2001. His research is in low dimension- al and symplectic geometry and topology. He became Chair in Fall 2019. Dear Friends of Berkeley Math, Due to Covid-19, this last year has been quite extraordinary for almost everyone. I have been deeply moved by the enormous efforts of members of our department to make the most of the The department’s weekly afternoon tea in virtual 1035 Evans Hall on gather.town. Some attendees are dressed as vampires and pumpkins, others are playing pictionary. circumstances and continue our excellence in teaching and research. rejoined the department as an Assistant Teaching Professor. Yingzhou Li, who works in Applied Mathematics, and Ruix- We switched to remote teaching in March with just two days iang Zhang, who works in Analysis, will join the department of preparation time, and for the most part will be teaching as Assistant Professors in Spring and Fall 2021, respectively. remotely at least through Spring 2021. As anyone who teach- es can probably tell you, teaching online is no easier than And we need to grow our faculty further, in order to meet very teaching in person, and often much more difficult. However, high teaching demand. In Spring 2020 we had over 900 mathe- developing online courses has also given us an opportunity to matics majors, and we awarded a record 458 undergraduate de- rethink how we can teach and interact with students. -
NOTE the Theorem on Planar Graphs
HISTORIA MATHEMATICA 12(19X5). 356-368 NOTE The Theorem on Planar Graphs JOHN W. KENNEDY AND LOUIS V. QUINTAS Mathematics Department, Pace University, Pace Plaza, New York, New York, 10038 AND MACEJ M. SYSKO Institute of Computer Science, University of Wroc+aw, ul. Prz,esyckiego 20, 511.51 Wroclow, Poland In the late 1920s several mathematicians were on the verge of discovering a theorem for characterizing planar graphs. The proof of such a theorem was published in 1930 by Kazi- mierz Kuratowski, and soon thereafter the theorem was referred to as the Kuratowski Theorem. It has since become the most frequently cited result in graph theory. Recently, the name of Pontryagin has been coupled with that of Kuratowski when identifying this result. The events related to this development are examined with the object of determining to whom and in what proportion the credit should be given for the discovery of this theorem. 0 1985 AcademicPress. Inc Pendant les 1920s avancts quelques mathkmaticiens &aient B la veille de dCcouvrir un theor&me pour caracttriser les graphes planaires. La preuve d’un tel th6or&me a et6 publiCe en 1930 par Kazimierz Kuratowski, et t6t apres cela, on a appele ce thCor&me le ThCortime de Kuratowski. Depuis ce temps, c’est le rtsultat le plus citC de la thCorie des graphes. Rtcemment le nom de Pontryagin a &e coup16 avec celui de Kuratowski en parlant de ce r&&at. Nous examinons les CvCnements relatifs g ce dCveloppement pour determiner 2 qui et dans quelle proportion on devrait attribuer le mtrite de la dCcouverte de ce th6oreme. -
COMPLEXITY of CURVES 1. Introduction in This Note We Study
COMPLEXITY OF CURVES UDAYAN B. DARJI AND ALBERTO MARCONE Abstract. We show that each of the classes of hereditarily locally connected, 1 ¯nitely Suslinian, and Suslinian continua is ¦1-complete, while the class of 0 regular continua is ¦4-complete. 1. Introduction In this note we study some natural classes of continua from the viewpoint of descriptive set theory: motivations, style and spirit are the same of papers such as [Dar00], [CDM02], and [Kru03]. Pol and Pol use similar techniques to study problems in continuum theory in [PP00]. By a continuum we always mean a compact and connected metric space. A subcontinuum of a continuum X is a subset of X which is also a continuum. A continuum is nondegenerate if it contains more than one point. A curve is a one- dimensional continuum. Let us start with the de¯nitions of some classes of continua: all these can be found in [Nad92], which is our main reference for continuum theory. De¯nition 1.1. A continuum X is hereditarily locally connected if every subcon- tinuum of X is locally connected, i.e. a Peano continuum. A continuum X is hereditarily decomposable if every nondegenerate subcontin- uum of X is decomposable, i.e. is the union of two proper subcontinua. A continuum X is regular if every point of X has a neighborhood basis consisting of sets with ¯nite boundary. A continuum X is rational if every point of X has a neighborhood basis consisting of sets with countable boundary. The following classes of continua were de¯ned by Lelek in [Lel71]. -
L. Maligranda REVIEW of the BOOK by ROMAN
Математичнi Студiї. Т.46, №2 Matematychni Studii. V.46, No.2 УДК 51 L. Maligranda REVIEW OF THE BOOK BY ROMAN DUDA, “PEARLS FROM A LOST CITY. THE LVOV SCHOOL OF MATHEMATICS” L. Maligranda. Review of the book by Roman Duda, “Pearls from a lost city. The Lvov school of mathematics”, Mat. Stud. 46 (2016), 203–216. This review is an extended version of my two short reviews of Duda's book that were published in MathSciNet and Mathematical Intelligencer. Here it is written about the Lvov School of Mathematics in greater detail, which I could not do in the short reviews. There are facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach's book and also books by Mazur, Schauder and Tarski. My two short reviews of Duda’s book were published in MathSciNet [16] and Mathematical Intelligencer [17]. Here I write about the Lvov School of Mathematics in greater detail, which was not possible in the short reviews. I will present the facts described in the book as well as some information the books lacks as, for instance, the information about the planned print in Mathematical Monographs of the second volume of Banach’s book and also books by Mazur, Schauder and Tarski. So let us start with a discussion about Duda’s book. In 1795 Poland was partioned among Austria, Russia and Prussia (Germany was not yet unified) and at the end of 1918 Poland became an independent country. -
L. Maligranda REVIEW of the BOOK BY
Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems. -
Leaders of Polish Mathematics Between the Two World Wars
COMMENTATIONES MATHEMATICAE Vol. 53, No. 2 (2013), 5-12 Roman Duda Leaders of Polish mathematics between the two world wars To Julian Musielak, one of the leaders of post-war Poznań mathematics Abstract. In the period 1918-1939 mathematics in Poland was led by a few people aiming at clearly defined but somewhat different goals. They were: S. Zaremba in Cracow, W. Sierpiński and S. Mazurkiewicz in Warsaw, and H. Steinhaus and S. Banach in Lvov. All were chairmen and editors of mathematical journals, and each promoted several students to continue their efforts. They were highly successful both locally and internationally. When Poland regained its independence in 1918, Polish mathematics exploded like a supernova: against a dark background there flared up, in the next two deca- des, the Polish Mathematical School. Although the School has not embraced all mathematics in the country, it soon attracted common attention for the whole. Ho- wever, after two decades of a vivid development the School ended suddenly also like a supernova and together with it there silenced, for the time being, the rest of Polish mathematics. The end came in 1939 when the state collapsed under German and Soviet blows from the West and from the East, and the two occupants cooperated to cut short Polish independent life. After 1945 the state and mathematics came to life again but it was a different state and a different mathematics. The aim of this paper is to recall great leaders of the short-lived interwar Polish mathematics. By a leader we mean here a man enjoying an international reputation (author of influential papers or monographs) and possessing a high position in the country (chairman of a department of mathematics in one of the universities), a man who had a number of students and promoted several of them to Ph.D. -
THÔNG TIN TOÁN HỌC Tháng 9 Năm 2014 Tập 18 Số 3 Thông Tin Toán Học (Lưu Hành Nội Bộ)
Hội Toán Học Việt Nam THÔNG TIN TOÁN HỌC Tháng 9 Năm 2014 Tập 18 Số 3 Thông Tin Toán Học (Lưu hành nội bộ) Tổng biên tập Bản tin Thông Tin Toán Học nhằm ∙ ∙ Ngô Việt Trung mục đích phản ánh các sinh hoạt chuyên môn trong cộng đồng toán học Phó tổng biên tập Việt Nam và quốc tế. Bản tin ra thường ∙ kỳ 4 số trong một năm. Nguyễn Thị Lê Hương Thư ký tòa soạn ∙ Đoàn Trung Cường Thể lệ gửi bài: Bài viết bằng tiếng Việt. ∙ Tất cả các bài, thông tin về sinh hoạt Ban biên tập ∙ toán học ở các khoa (bộ môn) toán, Trần Nguyên An về hướng nghiên cứu hoặc trao đổi về Đào Phương Bắc phương pháp nghiên cứu và giảng dạy Trần Nam Dũng đều được hoan nghênh. Bản tin cũng Trịnh Thanh Đèo nhận đăng các bài giới thiệu tiềm năng Đào Thị Thu Hà khoa học của các cơ sở cũng như các Đoàn Thế Hiếu bài giới thiệu các nhà toán học. Bài viết Nguyễn An Khương xin gửi về tòa soạn theo email hoặc địa Lê Công Trình chỉ ở trên. Nếu bài được đánh máy tính, xin gửi kèm theo file với phông chữ Nguyễn Chu Gia Vượng unicode. Địa chỉ liên hệ ∙ Bản tin: Thông Tin Toán Học Viện Toán Học 18 Hoàng Quốc Việt, 10307 Hà Nội Email: [email protected] Trang web: http://www.vms.org.vn/ttth/ttth.htm c Hội Toán Học Việt Nam ○ Ảnh bìa 1. Xem trang 25 Trang web của Hội Toán học: Nguồn: Internet http://www.vms.org.vn 1 Cảm nhận về Đại hội Toán học Quốc tế tại Seoul Ngô Việt Trung (Viện Toán học) Năm 2009 GS Lovasz và GS Groetschel, - Tiến hành các nỗ lực đặc biệt nhằm vận Chủ tịch và Tổng thư ký Liên đoàn toán động mọi công dân trong mọi tổ chức, học thế giới đến thăm Việt Nam. -
The Jones-Witten Invariants of Knots Astérisque, Tome 189-190 (1990), Séminaire Bourbaki, Exp
Astérisque MICHAEL ATIYAH The Jones-Witten invariants of knots Astérisque, tome 189-190 (1990), Séminaire Bourbaki, exp. no 715, p. 7-16 <http://www.numdam.org/item?id=SB_1989-1990__32__7_0> © Société mathématique de France, 1990, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Seminaire BOURBAKI novembre 1989 42eme annee, 1989-90, n° 715 THE JONES-WITTEN INVARIANTS OF KNOTS par Michael ATIYAH 1. INTRODUCTION One of the most remarkable developments of recent years has been the work initiated by Vaughan Jones [2] [3] on knot invariants. This has all the hallmarks of great mathematics. It produces simple new invariants which solve classical problems and it involves a very wide range of ideas and techniques from practically all branches of mathematics and physics. Here is a list of the areas which have been significantly involved in the theory up to the present : combinatorics, group representations, algebraic geom- etry, differential geometry, differential equations, topology, Von Neumann algebras, statistical mechanics, quantum field theory..Moreover the subject continues to develop rapidly and a final picture has not yet emerged. Given this very wide field I have to be very selective for a one-hour presentation. I will concentrate on some aspects and I shall have to omit all the technicalities. -
Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published By
titelbild_2008:Layout 1 26.01.2009 20:19 Seite 1 Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published by Mathematisches Forschungsinstitut Oberwolfach Direktor Gert-Martin Greuel Gesellschafter Gesellschaft für Mathematische Forschung e.V. Adresse Mathematisches Forschungsinstitut Oberwolfach gGmbH Schwarzwaldstr. 9-11 D-77709 Oberwolfach-Walke Germany Kontakt http://www.mfo.de [email protected] Tel: +49 (0)7834 979 0 Fax: +49 (0)7834 979 38 Das Mathematische Forschungsinstitut Oberwolfach ist Mitglied der Leibniz-Gemeinschaft. © Mathematisches Forschungsinstitut Oberwolfach gGmbH (2009) JAHRESBERICHT 2008 / ANNUAL REPORT 2008 INHALTSVERZEICHNIS / TABLE OF CONTENTS Vorwort des Direktors / Director’s Foreword ......................................................................... 6 1. Besondere Beiträge / Special contributions 1.1 Das Jahr der Mathematik 2008 / The year of mathematics 2008 ................................... 10 1.1.1 IMAGINARY - Mit den Augen der Mathematik / Through the Eyes of Mathematics .......... 10 1.1.2 Besuch / Visit: Bundesministerin Dr. Annette Schavan ............................................... 17 1.1.3 Besuche / Visits: Dr. Klaus Kinkel und Dr. Dietrich Birk .............................................. 18 1.2 Oberwolfach Preis / Oberwolfach Prize ....................................................................... 19 1.3 Oberwolfach Vorlesung 2008 .................................................................................... 27 1.4 Nachrufe .............................................................................................................. -
The Emergence of “Two Warsaws”: Transformation of the University In
The emergence of “two Warsaws”: Transformation of the University in Warsaw and the analysis of the role of young, talented and spirited mathematicians in this process Stanisław Domoradzki (University of Rzeszów, Poland), Margaret Stawiska (USA) In 1915, when the front of the First World War was moving eastwards, Warsaw, which had been governed by Russians for over a century, found itself under a German rule. In the summer of 1915 the Russians evacuated the Imperial University to Rostov-on-Don and in the fall of 1915 general Hans von Beseler opened a Polish-language University of Warsaw and gave it a statute. Many Poles from other occupied territories as well as those studying abroad arrived then to Warsaw, among others Kazimierz Kuratowski (1896–1980), from Glasgow. At the beginning Stefan Mazurkiewicz (1888–1945) played the leading role in the university mathematics, joined in 1918 by Zygmunt Janiszewski (1888–1920) after complet- ing service in the Legions. The career of both scholars was related to scholarly activities of Wacław Sierpi ński (1882–1969) in Lwów. Janiszewski worked there since 1912, nostrified a doctorate from Sorbonne and got veniam legendi (1913), Mazurkiewicz obtained a doctorate (1913). During the war Sierpi ński was interned in Russia as an Austro-Hungarian subject. In 1918 he was nominated for a chair in mathematics at the University of Warsaw. The commu- nity congregating around these mathematicians managed to create somewhat later a solid mathematical school focused on set theory and its applications. It corresponded to a vision of a mathematical school presented by Janiszewski. Warsaw had an efficiently functioning mathematical community for several decades.