Contribution of Warsaw Logicians to Computational Logic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Minimal Non-Fregean Grzegorczyk Logic
Joanna Golinska-Pilarek´ On the Minimal Non-Fregean Grzegorczyk Logic To the Memory of Andrzej Grzegorczyk Abstract. The paper concerns Grzegorczyk’s non-Fregean logics that are intended to be a formal representation of the equimeaning relation defined on descriptions. We argue that the main Grzegorczyk logics discussed in the literature are too strong and we propose a new logical system, MGL, which satisfies Grzegorczyk’s fundamental requirements. We present a sound and complete semantics for MGL and we prove that it is decidable. Finally, we show that many non-classical logics are extensions of MGL, which makes it a generic non-Fregean logic. Keywords: Non-Fregean logic, Descriptive equivalence, Equimeaning, Extensionality. Introduction There are plenty of logical systems discussed in the literature which are fo- cused on different aspects of formal representation of real world problems. Over the years, the question as to which logic is adequate has been a matter of lively discussion. One of the fundamental controversies is the philosoph- ical status of classical two-valued logic, and in particular the paradoxes of material implication and equivalence. In order to remedy the dissatisfactory aspects of classical logic, many logical systems have been introduced, such as modal, intuitionistic, relevant, non-Fregean, and paraconsistent logics, among others. In [3] Andrzej Grzegorczyk introduced yet another logical system in- tended to cover the fundamental properties of descriptive equivalence of sentences. His main assumption is that the human language is used pri- marily to create descriptions of reality and logical connectives are the main tool to represent them formally. In order to be able to speak about inter- actions between descriptions—as Grzegorczyk argues—a logical language Presented by Heinrich Wansing; Received February 21, 2015 Studia Logica (2016) 104: 209–234 DOI: 10.1007/s11225-015-9635-y c The Author(s) 2015. -
L. Maligranda REVIEW of the BOOK by MARIUSZ URBANEK
Математичнi Студiї. Т.50, №1 Matematychni Studii. V.50, No.1 УДК 51 L. Maligranda REVIEW OF THE BOOK BY MARIUSZ URBANEK, “GENIALNI – LWOWSKA SZKOL A MATEMATYCZNA” (POLISH) [GENIUSES – THE LVOV SCHOOL OF MATHEMATICS] L. Maligranda. Review of the book by Mariusz Urbanek, “Genialni – Lwowska Szko la Matema- tyczna” (Polish) [Geniuses – the Lvov school of mathematics], Wydawnictwo Iskry, Warsaw 2014, 283 pp. ISBN: 978-83-244-0381-3 , Mat. Stud. 50 (2018), 105–112. This review is an extended version of my short review of Urbanek's book that was published in MathSciNet. Here it is written about his book in greater detail, which was not possible in the short review. I will present facts described in the book as well as some false information there. My short review of Urbanek’s book was published in MathSciNet [24]. Here I write about his book in greater detail. Mariusz Urbanek, writer and journalist, author of many books devoted to poets, politicians and other figures of public life, decided to delve also in the world of mathematicians. He has written a book on the phenomenon in the history of Polish science called the Lvov School of Mathematics. Let us add that at the same time there were also the Warsaw School of Mathematics and the Krakow School of Mathematics, and the three formed together the Polish School of Mathematics. The Lvov School of Mathematics was a group of mathematicians in the Polish city of Lvov (Lw´ow,in Polish; now the city is in Ukraine) in the period 1920–1945 under the leadership of Stefan Banach and Hugo Steinhaus, who worked together and often came to the Scottish Caf´e (Kawiarnia Szkocka) to discuss mathematical problems. -
New Publications Offered by The
New Publications Offered by the AMS To subscribe to email notification of new AMS publications, please go to http://www.ams.org/bookstore-email. Algebra and Algebraic Contemporary Mathematics, Volume 544 June 2011, 159 pages, Softcover, ISBN: 978-0-8218-5259-0, LC Geometry 2011007612, 2010 Mathematics Subject Classification: 17A70, 16T05, 05C12, 43A90, 43A35, 43A75, 22E27, AMS members US$47.20, List US$59, Order code CONM/544 New Developments in Lie Theory and Its On Systems of Applications Equations over Free Carina Boyallian, Esther Galina, Partially Commutative and Linda Saal, Universidad Groups Nacional de Córdoba, Argentina, Montserrat Casals-Ruiz and Ilya Editors Kazachkov, McGill University, This volume contains the proceedings of Montreal, QC, Canada the Seventh Workshop in Lie Theory and Its Applications, which was held November 27–December 1, 2009 at Contents: Introduction; Preliminaries; the Universidad Nacional de Córdoba, in Córdoba, Argentina. The Reducing systems of equations over workshop was preceded by a special event, “Encuentro de teoria de G to constrained generalised equations over F; The process: Lie”, held November 23–26, 2009, in honor of the sixtieth birthday Construction of the tree T ; Minimal solutions; Periodic structures; of Jorge A. Vargas, who greatly contributed to the development of The finite tree T0(Ω) and minimal solutions; From the coordinate ∗ T Lie theory in Córdoba. group GR(Ω ) to proper quotients: The decomposition tree dec and the extension tree Text; The solution tree Tsol(Ω) and the main This volume focuses on representation theory, harmonic analysis in theorem; Bibliography; Index; Glossary of notation. Lie groups, and mathematical physics related to Lie theory. -
NOTE the Theorem on Planar Graphs
HISTORIA MATHEMATICA 12(19X5). 356-368 NOTE The Theorem on Planar Graphs JOHN W. KENNEDY AND LOUIS V. QUINTAS Mathematics Department, Pace University, Pace Plaza, New York, New York, 10038 AND MACEJ M. SYSKO Institute of Computer Science, University of Wroc+aw, ul. Prz,esyckiego 20, 511.51 Wroclow, Poland In the late 1920s several mathematicians were on the verge of discovering a theorem for characterizing planar graphs. The proof of such a theorem was published in 1930 by Kazi- mierz Kuratowski, and soon thereafter the theorem was referred to as the Kuratowski Theorem. It has since become the most frequently cited result in graph theory. Recently, the name of Pontryagin has been coupled with that of Kuratowski when identifying this result. The events related to this development are examined with the object of determining to whom and in what proportion the credit should be given for the discovery of this theorem. 0 1985 AcademicPress. Inc Pendant les 1920s avancts quelques mathkmaticiens &aient B la veille de dCcouvrir un theor&me pour caracttriser les graphes planaires. La preuve d’un tel th6or&me a et6 publiCe en 1930 par Kazimierz Kuratowski, et t6t apres cela, on a appele ce thCor&me le ThCortime de Kuratowski. Depuis ce temps, c’est le rtsultat le plus citC de la thCorie des graphes. Rtcemment le nom de Pontryagin a &e coup16 avec celui de Kuratowski en parlant de ce r&&at. Nous examinons les CvCnements relatifs g ce dCveloppement pour determiner 2 qui et dans quelle proportion on devrait attribuer le mtrite de la dCcouverte de ce th6oreme. -
COMPLEXITY of CURVES 1. Introduction in This Note We Study
COMPLEXITY OF CURVES UDAYAN B. DARJI AND ALBERTO MARCONE Abstract. We show that each of the classes of hereditarily locally connected, 1 ¯nitely Suslinian, and Suslinian continua is ¦1-complete, while the class of 0 regular continua is ¦4-complete. 1. Introduction In this note we study some natural classes of continua from the viewpoint of descriptive set theory: motivations, style and spirit are the same of papers such as [Dar00], [CDM02], and [Kru03]. Pol and Pol use similar techniques to study problems in continuum theory in [PP00]. By a continuum we always mean a compact and connected metric space. A subcontinuum of a continuum X is a subset of X which is also a continuum. A continuum is nondegenerate if it contains more than one point. A curve is a one- dimensional continuum. Let us start with the de¯nitions of some classes of continua: all these can be found in [Nad92], which is our main reference for continuum theory. De¯nition 1.1. A continuum X is hereditarily locally connected if every subcon- tinuum of X is locally connected, i.e. a Peano continuum. A continuum X is hereditarily decomposable if every nondegenerate subcontin- uum of X is decomposable, i.e. is the union of two proper subcontinua. A continuum X is regular if every point of X has a neighborhood basis consisting of sets with ¯nite boundary. A continuum X is rational if every point of X has a neighborhood basis consisting of sets with countable boundary. The following classes of continua were de¯ned by Lelek in [Lel71]. -
Infinite Computation, Co-Induction and Computational Logic
Infinite Computation, Co-induction and Computational Logic Gopal Gupta Neda Saeedloei, Brian DeVries, Richard Min, Kyle Marple, Feliks Klu´zniak Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080. Abstract. We give an overview of the coinductive logic programming paradigm. We discuss its applications to modeling ω-automata, model checking, verification, non-monotonic reasoning, developing SAT solvers, etc. We also discuss future research directions. 1 Introduction Coinduction is a technique for reasoning about unfounded sets [12], behavioral properties of programs [2], and proving liveness properties in model checking [16]. Coinduction also provides the foundation for lazy evaluation [9] and type inference [21] in functional programming as well as for interactive computing [33]. Coinduction is the dual of induction. Induction corresponds to well-founded structures that start from a basis which serves as the foundation: e.g., natural numbers are inductively defined via the base element zero and the successor function. Inductive definitions have 3 components: initiality, iteration and mini- mality. For example, the inductive definition of lists of numbers is as follows: (i) [] (empty list) is a list (initiality); (ii) [H|T] is a a list if T is a list and H is some number (iteration); and, (iii) the set of lists is the smallest set satisfying (i) and (ii) (minimality). Minimality implies that infinite-length lists of numbers are not members of the inductively defined set of lists of numbers. Inductive definitions correspond to least fixed point (LFP) interpretations of recursive definitions. Coinduction eliminates the initiality condition and replaces the minimality condition with maximality. Thus, the coinductive definition of a list of numbers is: (i) [H|T] is as a list if T is a list and H is some number (iteration); and, (ii) the set of lists is the largest set of lists satisfying (i) (maximality). -
On the Topological Aspects of the Theory of Represented Spaces∗
On the topological aspects of the theory of represented spaces∗ Arno Pauly Clare College University of Cambridge, United Kingdom [email protected] Represented spaces form the general setting for the study of computability derived from Turing ma- chines. As such, they are the basic entities for endeavors such as computable analysis or computable measure theory. The theory of represented spaces is well-known to exhibit a strong topological flavour. We present an abstract and very succinct introduction to the field; drawing heavily on prior work by ESCARDO´ ,SCHRODER¨ , and others. Central aspects of the theory are function spaces and various spaces of subsets derived from other represented spaces, and – closely linked to these – properties of represented spaces such as compactness, overtness and separation principles. Both the derived spaces and the properties are introduced by demanding the computability of certain mappings, and it is demonstrated that typically various interesting mappings induce the same property. 1 Introduction ∗ Just as numberings provide a tool to transfer computability from N (or f0;1g ) to all sorts of countable structures; representations provide a means to introduce computability on structures of the cardinality of the continuum based on computability on Cantor space f0;1gN. This is of course essential for com- n m k n m putable analysis [66], dealing with spaces such as R, C (R ;R ), C (R ;R ) or general Hilbert spaces [8]. Computable measure theory (e.g. [65, 58, 44, 30, 21]), or computability on the set of countable ordinals [39, 48] likewise rely on representations as foundation. Essentially, by equipping a set with a representation, we arrive at a represented space – to some extent1 the most general structure carrying a notion of computability that is derived from Turing ma- chines2. -
Resources for Further Study
Resources for Further Study A number of valuable resources are available for further study of philosophical logic. In addition to the books and articles cited in the references at the end of each chapter included in this volume, there are four general categories of resources that can be consulted for information about the history and current research developments in philosophical logic. Additional materials can be found by soliciting advice from logicians, philosophers, and mathematicians at local colleges and universities. Logic Handbooks Many university and independent presses publish books on or related to mathematical and philo- sophical logic. There are also several special series of original monographs in logic that are worth investigating. The literature is too vast to justify a selection of the individual books that have con- tributed to the development of logic. We can nevertheless identify special categories of texts of special interest, beginning with handbooks and book series dedicated to logic and philosophical logic. Here are some recent relevant publications: Boyer, Robert S. (1988) A Computational Logic Handbook. Boston, MA: Academic Press. Sherwood, John C. (1960) Discourse of Reason: A Brief Handbook of Semantics and Logic. New York: Harper & Row. Handbook of Fuzzy Computation, ed. Enrique H. Ruspini, Piero P. Bonissone and Witold Pedrycz. Philadelphia, PA: Institute of Physics Publications, 1998. Handbook of Logic and Language, ed. Johan van Benthem and Alice ter Meulen. Cambridge, MA: MIT Press, 1997. Handbook of Logic in Artificial Intelligence and Logic Programming, ed. Dov Gabbay, C. J. Hogger, and J. A. Robinson. Oxford: Clarendon Press, 1993–8. Emmet, E. R. (1984) Handbook of Logic. -
Computability and Analysis: the Legacy of Alan Turing
Computability and analysis: the legacy of Alan Turing Jeremy Avigad Departments of Philosophy and Mathematical Sciences Carnegie Mellon University, Pittsburgh, USA [email protected] Vasco Brattka Faculty of Computer Science Universit¨at der Bundeswehr M¨unchen, Germany and Department of Mathematics and Applied Mathematics University of Cape Town, South Africa and Isaac Newton Institute for Mathematical Sciences Cambridge, United Kingdom [email protected] October 31, 2012 1 Introduction For most of its history, mathematics was algorithmic in nature. The geometric claims in Euclid’s Elements fall into two distinct categories: “problems,” which assert that a construction can be carried out to meet a given specification, and “theorems,” which assert that some property holds of a particular geometric configuration. For example, Proposition 10 of Book I reads “To bisect a given straight line.” Euclid’s “proof” gives the construction, and ends with the (Greek equivalent of) Q.E.F., for quod erat faciendum, or “that which was to be done.” arXiv:1206.3431v2 [math.LO] 30 Oct 2012 Proofs of theorems, in contrast, end with Q.E.D., for quod erat demonstran- dum, or “that which was to be shown”; but even these typically involve the construction of auxiliary geometric objects in order to verify the claim. Similarly, algebra was devoted to developing algorithms for solving equa- tions. This outlook characterized the subject from its origins in ancient Egypt and Babylon, through the ninth century work of al-Khwarizmi, to the solutions to the quadratic and cubic equations in Cardano’s Ars Magna of 1545, and to Lagrange’s study of the quintic in his R´eflexions sur la r´esolution alg´ebrique des ´equations of 1770. -
A Philosophically Plausible Formal Interpretation of Intuitionistic Logic
MATHEMATICAL LOGIC A PHILOSOPHICALLY PLAUSIBLE FORMAL INTERPRETATION OF INTUITIONISTIC LOGIC BY ANDRZEJ GRZEGORCZYK (Communicated by Prof. A. HEYTING at the meeting of September 26, 1964} The notion of forcing introduced by P. J. CoHEN [2] in order to prove the independence of the axiom of choice, may be considered as a modi fication of the notion of fulfilment of a formula by a tree introduced by E. W. BETH [l] p. 447. But the word "forcing" used by Cohen suggests an interesting philosophical interpretation of intuitionistic logic. According to this interpretation, which shall be described in detail, the intuitionistic logic can be understood as the logic of scientific research (rather positivistically conceived) while on the other hand the classical logic is the logic of ontological thought. l. The formal description of scientific research Scientific research (e.g. an experimental investigation) consists of the successive enrichment of the set of data by new established facts obtained by means of our method of inquiry. When making inquiries we question Nature and offer her a set of possible answers. Nature chooses one of them. Hence scientific research may be conceived as a triple R=(J, o, P). The elements of R will be called: J - the information set, i.e. the set of all possible experimental data, o - the initial information, P - the function of possible prolongations of the informations. The set J may be finite or infinite. The elements of J are finite ordered collections of atomic sentences: Pt1(aJ), Pt2(aJ> ak), ... where Ptn are n-place predicates and a1, ak, .. -
I Topics in the Theory of Generative Grammar (The Hague, Paris: Mouton, 1969), P
NOTES I I Topics in the Theory of Generative Grammar (The Hague, Paris: Mouton, 1969), p. 11. 2 John Berryman, 77 Dream Songs (New York: Farrar, Straus and Giroux, 1965), p.5. 3 Time, Vol. 99, No.8, Feb. 21 (1972), p. 8. 4 See my Understanding Understanding (Ithaca: Cornell University Press, 1972), Chap. II for a discussion of "what is said". 5 See my Philosophic Turnings (Ithaca: Cornell University Press, 1966), Chaps. XI - XIII for a discussion of related matters. 6 D. B. Wyndham Lewis and Charles Lee (eds.), The Stuffed Owl: An Anthology of Bad Verse (New York: Capricorn Books, 1962), p. ix. This is the source of some of the verse cited in this essay. 7 The wild Barbary sheep also called an aoudad. 8 Peter Selz with texts by the artist, The Work ofJean Dubuffet (New York: The Museum of Modern Art, 1962), p. 97. 9 Op. cit .. p. 103. 10 John Skelton (1460-1529) wrote a funeral service for the sparrow Philip slain by a cat. I I All Souls College of Oxford University. Christopher Wren the room designer. 12 From Andrew Marvell's poem of the nymph complaining of the death of her faun. 13 Section XIX of the version edited by W. F. Stead. 14 In T. S. Eliot's Fragment of an Agon. IS See T. Roethke's The Meadow Mouse. in his The Far Field. 16 See M. Gell-Mann and E. P. Rosenbaum, 'Elementary Particles', Scientific American (July, 1957), p. 5 - my source for these comments. 17 Landscaped Tables Landscapes of the Mind Stones of Philosophy (New York: Pierre Matisse Gallery, 1952), p. -
Giorgi Japaridze
Giorgi Japaridze Curriculum Vitae CONTACT INFORMATION Address: Computing Sciences Department, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA. Email: [email protected] Telephone: (1) 610 519 7332 Fax: (1) 610 519 7889 Home page: http://www.csc.villanova.edu/~japaridz/ EDUCATION 1998 Ph.D. Computer Science, University of Pennsylvania Dissertation: The Logic of Resources and Tasks 1987 Ph.D. Logic, Moscow State University Dissertation: Modal-Logical Means of Studying Provability 1983 M.S. Philosophy, Tbilisi State University (Georgia, former USSR) Thesis: The Notion of Truth in Formalized Languages LANGUAGES: Georgian, Russian, English, Chinese (Mandarin), German. EMPLOYMENT HISTORY 2008 - present Full Professor Computing Sciences Department, Villanova University, Villanova, PA, USA 2010 - 2013 Chair Professor School of Computer Science and Technology, Shandong University, Jinan, China 2004-2008 Associate Professor Computing Sciences Department, Villanova University, Villanova, PA, USA 2007 Visiting Professor School of Information Science and Technology, Institute of Artificial Intelligence, Xiamen University, Fujian, Xiamen, China 1998 -2003 Assistant Professor Computing Sciences Department, Villanova University, Villanova, PA, USA 1995-1998 Research Assistant Dept. of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA 1993-1994 Visiting Associate Professor Philosophy Department, University of Notre Dame, Notre Dame, IN, USA 1992-1993 Postdoctoral Fellow Dept. of Mathematics and Computer Science, University of Amsterdam, Amsterdam, The Netherlands 1987-1992 Senior Researcher Institute of Philosophy, Georgian Academy of Sciences, Tbilisi, Georgia (former USSR) Main Contributions to Science Provability and interpretability logics (1985-1998) While a student, introduced polymodal provability logic GLP, and proved its arithmetical completeness. This contained a solution of an open problem on the logic of provability raised by George Boolos a decade earlier (1985-1988).