Problems in Low-Dimensional Topology

Total Page:16

File Type:pdf, Size:1020Kb

Problems in Low-Dimensional Topology Problems in Low-Dimensional Topology Edited by Rob Kirby Berkeley - 22 Dec 95 Contents 1 Knot Theory 7 2 Surfaces 85 3 3-Manifolds 97 4 4-Manifolds 179 5 Miscellany 259 Index of Conjectures 282 Index 284 Old Problem Lists 294 Bibliography 301 1 2 CONTENTS Introduction In April, 1977 when my first problem list [38,Kirby,1978] was finished, a good topologist could reasonably hope to understand the main topics in all of low dimensional topology. But at that time Bill Thurston was already starting to greatly influence the study of 2- and 3-manifolds through the introduction of geometry, especially hyperbolic. Four years later in September, 1981, Mike Freedman turned a subject, topological 4-manifolds, in which we expected no progress for years, into a subject in which it seemed we knew everything. A few months later in spring 1982, Simon Donaldson brought gauge theory to 4-manifolds with the first of a remarkable string of theorems showing that smooth 4-manifolds which might not exist or might not be diffeomorphic, in fact, didn’t and weren’t. Exotic R4’s, the strangest of smooth manifolds, followed. And then in late spring 1984, Vaughan Jones brought us the Jones polynomial and later Witten a host of other topological quantum field theories (TQFT’s). Physics has had for at least two decades a remarkable record for guiding mathematicians to remarkable mathematics (Seiberg–Witten gauge theory, new in October, 1994, is the latest example). Lest one think that progress was only made using non-topological techniques, note that Freedman’s work, and other results like knot complements determining knots (Gordon- Luecke) or the Seifert fibered space conjecture (Mess, Scott, Gabai, Casson & Jungreis) were all or mostly classical topology. So editing a problem list in 1994 is a very different task than in 1977. It would not have been possible for this editor without an enormous amount of help from others. For no particular reason, I did not keep track at first of who provided help with the Updates of the lists from 1977 and 1982 [39,Kirby,1984], so there are no names attached to the Updates. However Geoff Mess alone must have provided me with half the Updates in dimensions 2 and 3, as well as others. I also received much help from Joel Hass, Cameron Gordon, Dieter Kotschick, Walter Neumann, Peter Teichner, Larry Taylor, Jonathan Hillman, Peter Kronheimer, Marty Scharlemann, Ron Stern, Andrew Casson, Francis Bonahon, Paulo Ney de Souza, Hyam Rubinstein, Lee Rudolph, Robert Myers, Bob Gompf, Selman Akbulut, Chuck Livingston, Tom Mrowka, Mike Freedman, Pat Gilmer, Michel Boileau, Peter Scott, 3 4 CONTENTS Abby Thompson, Steve Bleiler, Curt McMullen, Raymond Lickorish, Tsuyoshi Kobayashi, Yasha Eliashberg, Yukio Matsumoto, Danny Ruberman, Zarkoˇ Biˇzaca, Wolfgang Metzler, Jim Milgram, Dave Gabai, Darryl McCullough, and many others who contributed to Updates involving their own work. One can imagine an editor who reads and understands hundreds of papers so as to personally write and vouch for each Update; that is not the case here. Rather I am indebted to many erudite and hardworking friends. The new Problems often have a name or names attached; occasionally the name is the originator of a conjecture or question, but most of the time is the person who helped me write the problem. I’d like to thank also a handful of people who reviewed parts of the penultimate draft: Mess, Gordon, Neumann, Kotschick, Akbulut and Gompf. One might expect, with a problem list of this size, that the list is all inclusive. Wrong. Of course I have made attempts to cover obvious areas, but I never wished to take on the task of covering everything. For example, laminations are already beautifully covered by Dave Gabai in another problem list in these Proceedings. In the 1977 list, I particularly tried to get problems involving related subjects, but this time, that task was too daunting and no great effort was made. There are not as many problems involving contact structures, graph theory, dynamics, for example, as there could have been. Will Kazez suggested this task in June 1992, no doubt hoping that I would be done shortly after the August, 1993, Georgia conference. But not much was accomplished before the Georgia conference at which many of the problems were proposed. More were added at conferences in Warwick (August, 1993), Oberwolfach (September 1993), the Park City gauge theory conference (July, 1994), Huia, New Zealand (December, 1994), Princeton (January, 1995), Max Planck Institute, Bonn (May, 1995), and Gokova, Turkey (May 1995); and many problems turned up by e-mail or through personal contacts. Another half year would have elapsed if I had not had the help of Paulo Ney de Souza for Updates, computer drawn figures, wise advise on editing, and (with Faye Yeager) high tech typing and editing. He is primarily responsible for the huge task of organizing the bibliography and making it complete and accurate. Significant further help in LATEXing was provided by Larry Taylor, and in producing figures by Silvio Levy, Leo Tenenblat, and Jonas Gomes. The format of the 1977 list has, in a Procrustean way, been continued. There are still five chapters, one each for the four dimensions plus miscellaneous. The old problems keep their numbers, except that the 1982 list of 4-manifold problems with a few 2-in-4 knot problems, have had the N dropped, e.g. Problem N4.45 became Problem 4.45. Then the new Problems continue the numbering, so, for example, in Chapter 1, Problems 1.1 through 1.51 are from 1977, Problems 1.52 through 1.57 are from 1982, and Problems 1.58 through 1.105 are new. This means that, for example, problems on knot groups can appear in three different sections CONTENTS 5 rather than together. But there is liberal cross referencing, as in the table of contents for each chapter. The old Problems are stated without changes, except for completed references and cor- rections of errors. The texts of the Problems contain abbreviated references, typically just the author, journal, and year, which should usually be enough for the reader to guess the paper rather than pause to consult the bibliography where the full citation occurs. There are indices of conjectures, and an index of mathematical terms including symbols, knots and manifolds. Finally, there is a list of old problem lists. The manuscript was prepared in LATEX2based on a specially enlarged version of TEX running on a SUN Sparcstation 20 at UC Berkeley over the last year, merging several pre- existing documents. Each problem was kept as a single file that could be formatted indi- vidually and sent out by e-mail. These files are then called by a master file that formats the whole document using several standard LATEX packages as well as in-house developed ones and a package developed by Larry Taylor enabling each bibliographic item to list the problems in which it is cited. All graphics have been produced in PostScript; most of them were drawn by the Math- ematica program NiceKnots by Silvio Levy, with some of them further manipulated by CorelDraw and labels introduced using the geompsfi package from the Geometry Center, Minn. Care was taken to prepare a source document for later translation in HTML, PDF, and other electronic formats, which is now work in progress. Berkeley April 25, 1996 6 CONTENTS Chapter 1 Knot Theory • Problems 1.1–1.51 (1977), 1.52–1.57 (1982), 1.58–1.105 (new). • S1 ,→ S3, 1.1–1.47, 1.52, 1.53, 1.58–1.101. • S2 ,→ S4, 1.48–1.51, 1.54–1.57, 1.103–1.105. • Braids, 1.7, 1.8, 1.84, 1.100. • Knot groups, 1.9–1.14, 1.57, 1.85, 1.86. • Properties P, R, 1.15–1.18, 1.82. • Branched covers, 1.21–1.29, 1.74. • Concordance and slice knots, 1.19, 1.30–1.47, 1.52, 1.53, 1.93–1.97. • Various genera, 1.1, 1.20, 1.40–1.42, 1.83. • Crossing, unknotting and tunnel numbers, 1.63–1.73. • Hyperbolic knots, 1.75–1.77. • Dehn surgery, 1.15–1.18, 1.77–1.82. • Jones polynomial, etc., 1.87–1.92. • Contact, complex structures, 1.98–1.102. 7 8 CHAPTER 1. KNOT THEORY Introduction Definitions and notation: most definitions are given in the problems, but here are some that are widely used. A diagram for a knot K in S3 is, intuitively, how we draw a knot on the blackboard; that is, it is a generic projection onto a plane (but preserving over and undercrossings) of a representative in the isotopy class of submanifolds in S3 which is K. Then the crossing number c(K)ofaknotKin S3 is the minimal number of crossings in a diagram for K, the minimum being taken over all possible diagrams of K. The unknotting number u(K)ofaknotKin S3 is the minimum, taken over all diagrams of K, of the number of crossings which must be changed to obtain a diagram of the unknot. The tunnel number t(K)ofaknotKin S3 is the minimal number of arcs which must be added to the knot, forming a graph with three edges at a vertex, so that the complement in S3 (of an open regular neighborhood of the graph) is a handlebody. The boundary of this handlebody is then a minimal Heegaard splitting of the knot complement. This graph is the simplest graph, formed by adding arcs to the knot, which (allowing edges to slide over edges) can be moved into a plane, yet contains the knot.
Recommended publications
  • Geometric Manifolds
    Wintersemester 2015/2016 University of Heidelberg Geometric Structures on Manifolds Geometric Manifolds by Stephan Schmitt Contents Introduction, first Definitions and Results 1 Manifolds - The Group way .................................... 1 Geometric Structures ........................................ 2 The Developing Map and Completeness 4 An introductory discussion of the torus ............................. 4 Definition of the Developing map ................................. 6 Developing map and Manifolds, Completeness 10 Developing Manifolds ....................................... 10 some completeness results ..................................... 10 Some selected results 11 Discrete Groups .......................................... 11 Stephan Schmitt INTRODUCTION, FIRST DEFINITIONS AND RESULTS Introduction, first Definitions and Results Manifolds - The Group way The keystone of working mathematically in Differential Geometry, is the basic notion of a Manifold, when we usually talk about Manifolds we mean a Topological Space that, at least locally, looks just like Euclidean Space. The usual formalization of that Concept is well known, we take charts to ’map out’ the Manifold, in this paper, for sake of Convenience we will take a slightly different approach to formalize the Concept of ’locally euclidean’, to formulate it, we need some tools, let us introduce them now: Definition 1.1. Pseudogroups A pseudogroup on a topological space X is a set G of homeomorphisms between open sets of X satisfying the following conditions: • The Domains of the elements g 2 G cover X • The restriction of an element g 2 G to any open set contained in its Domain is also in G. • The Composition g1 ◦ g2 of two elements of G, when defined, is in G • The inverse of an Element of G is in G. • The property of being in G is local, that is, if g : U ! V is a homeomorphism between open sets of X and U is covered by open sets Uα such that each restriction gjUα is in G, then g 2 G Definition 1.2.
    [Show full text]
  • Black Hole Physics in Globally Hyperbolic Space-Times
    Pram[n,a, Vol. 18, No. $, May 1982, pp. 385-396. O Printed in India. Black hole physics in globally hyperbolic space-times P S JOSHI and J V NARLIKAR Tata Institute of Fundamental Research, Bombay 400 005, India MS received 13 July 1981; revised 16 February 1982 Abstract. The usual definition of a black hole is modified to make it applicable in a globallyhyperbolic space-time. It is shown that in a closed globallyhyperbolic universe the surface area of a black hole must eventuallydecrease. The implications of this breakdown of the black hole area theorem are discussed in the context of thermodynamics and cosmology. A modifieddefinition of surface gravity is also given for non-stationaryuniverses. The limitations of these concepts are illustrated by the explicit example of the Kerr-Vaidya metric. Keywocds. Black holes; general relativity; cosmology, 1. Introduction The basic laws of black hole physics are formulated in asymptotically flat space- times. The cosmological considerations on the other hand lead one to believe that the universe may not be asymptotically fiat. A realistic discussion of black hole physics must not therefore depend critically on the assumption of an asymptotically flat space-time. Rather it should take account of the global properties found in most of the widely discussed cosmological models like the Friedmann models or the more general Robertson-Walker space times. Global hyperbolicity is one such important property shared by the above cosmo- logical models. This property is essentially a precise formulation of classical deter- minism in a space-time and it removes several physically unreasonable pathological space-times from a discussion of what the large scale structure of the universe should be like (Penrose 1972).
    [Show full text]
  • Dehn Surgery on Knots in S^ 3 Producing Nil Seifert Fibred Spaces
    Dehn surgery on knots in S3 producing Nil Seifert fibred spaces Yi Ni Department of Mathematics, Caltech 1200 E California Blvd, Pasadena, CA 91125 Email: [email protected] Xingru Zhang Department of Mathematics, University at Buffalo Email: xinzhang@buffalo.edu Abstract We prove that there are exactly 6 Nil Seifert fibred spaces which can be obtained by Dehn surgeries on non-trefoil knots in S3, with {60, 144, 156, 288, 300} as the exact set of all such surgery slopes up to taking the mirror images of the knots. We conjecture that there are exactly 4 specific hyperbolic knots in S3 which admit Nil Seifert fibred surgery. We also give some more general results and a more general conjecture concerning Seifert fibred surgeries on hyperbolic knots in S3. 1 Introduction 3 3 For a knot K in S , we denote by SK (p/q) the manifold obtained by Dehn surgery along K with slope p/q. Here the slope p/q is parameterized by the standard meridian/longitude coordinates of K and we always assume gcd(p, q) = 1. In this paper we study the problem of on which knots in S3 with which slopes Dehn surgeries can produce Seifert fibred spaces admitting the Nil geometry. Recall that every closed connected orientable Seifert fibred space W admits one of 6 canonical geometries: S2 R, E3, 2 3 × H R, S , Nil, SL (R). More concretely if e(W ) denotes the Euler number of W and χ( W ) denotes × 2 B the orbifold Euler characteristic of the base orbifold W of W , then the geometry of W is uniquely B determined by thef values of e(W ) and χ( W ) according to the following table (cf.
    [Show full text]
  • L-Space Surgery and Twisting Operation
    Algebraic & Geometric Topology 16 (2016) 1727–1772 msp L-space surgery and twisting operation KIMIHIKO MOTEGI A knot in the 3–sphere is called an L-space knot if it admits a nontrivial Dehn surgery yielding an L-space, ie a rational homology 3–sphere with the smallest possible Heegaard Floer homology. Given a knot K, take an unknotted circle c and twist K n times along c to obtain a twist family Kn . We give a sufficient condition for Kn f g f g to contain infinitely many L-space knots. As an application we show that for each torus knot and each hyperbolic Berge knot K, we can take c so that the twist family Kn contains infinitely many hyperbolic L-space knots. We also demonstrate that f g there is a twist family of hyperbolic L-space knots each member of which has tunnel number greater than one. 57M25, 57M27; 57N10 1 Introduction Heegaard Floer theory (with Z=2Z coefficients) associates a group HFc.M; t/ to a c c closed, orientable spin 3–manifold .M; t/. The direct sum of HFc.M; t/ for all spin structures is denoted by HFc.M /. A rational homology 3–sphere M is called an c c L-space if HFc.M; t/ is isomorphic to Z=2Z for all spin structures t Spin .M /. 2 Equivalently, the dimension dimZ=2Z HFc.M / is equal to the order H1.M Z/ .A j I j knot K in the 3–sphere S 3 is called an L-space knot if the result K.r/ of r –surgery on K is an L-space for some nonzero integer r , and the pair .K; r/ is called an L-space surgery.
    [Show full text]
  • Some Remarks on Cabling, Contact Structures, and Complex Curves
    Proceedings of 14th G¨okova Geometry-Topology Conference pp. 49 – 59 Some remarks on cabling, contact structures, and complex curves Matthew Hedden Abstract. We determine the relationship between the contact structure induced by a fibered knot, K ⊂ S3, and the contact structures induced by its various cables. Understanding this relationship allows us to classify fibered cable knots which bound a properly embedded complex curve in the four-ball satisfying a genus constraint. This generalizes the well-known classification of links of plane curve singularities. 1. Introduction A well-known construction of Thurston and Winkelnkemper [ThuWin] associates a contact structure to an open book decomposition of a three-manifold. This allows us to talk about the contact structure associated to a fibered knot. Here, a fibered knot is a pair, (F, K) ⊂ Y , such that Y − K admits the structure of a fiber bundle over the circle with fibers isotopic to F and ∂F = K. We denote the contact structure associate to a fibered knot by ξF,K or, when the fiber surface is unambiguous, by ξK . Thus any operation on knots (or Seifert surfaces) which preserves the property of fiberedness induces an operation on contact structures. For instance, one can consider the Murasugi sum operation on surfaces-with-boundary (see [Gab] for definition). In this case, a result of Stallings [Sta] indicates that the Murasugi sum of two fiber surfaces is also fibered (a converse to this was proved by Gabai [Gab]). The effect on contact structures is given by a result of Torisu: Theorem 1.1. (Theorem 1.3 of [Tor].) Let (F1,∂F1) ⊂ Y1 (F2,∂F2) ⊂ Y2 be two fiber surfaces, and let (F1 ∗ F2,∂(F1 ∗ F2)) ⊂ Y1#Y2 denote any Murasugi sum.
    [Show full text]
  • Fibered Knots and Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures
    Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures with Bob Gompf and Abby Thompson June 2011 Berkeley FreedmanFest Theorem (Gabai 1987) If surgery on a knot K ⊂ S3 gives S1 × S2, then K is the unknot. Question: If surgery on a link L of n components gives 1 2 #n(S × S ), what is L? Homology argument shows that each pair of components in L is algebraically unlinked and the surgery framing on each component of L is the 0-framing. Conjecture (Naive) 1 2 If surgery on a link L of n components gives #n(S × S ), then L is the unlink. Why naive? The result of surgery is unchanged when one component of L is replaced by a band-sum to another. So here's a counterexample: The 4-dimensional view of the band-sum operation: Integral surgery on L ⊂ S3 $ 2-handle addition to @B4. Band-sum operation corresponds to a 2-handle slide U' V' U V Effect on dual handles: U slid over V $ V 0 slid over U0. The fallback: Conjecture (Generalized Property R) 3 1 2 If surgery on an n component link L ⊂ S gives #n(S × S ), then, perhaps after some handle-slides, L becomes the unlink. Conjecture is unknown even for n = 2. Questions: If it's not true, what's the simplest counterexample? What's the simplest knot that could be part of a counterexample? A potential counterexample must be slice in some homotopy 4-ball: 3 S L 3-handles L 2-handles Slice complement is built from link complement by: attaching copies of (D2 − f0g) × D2 to (D2 − f0g) × S1, i.
    [Show full text]
  • Prospects in Topology
    Annals of Mathematics Studies Number 138 Prospects in Topology PROCEEDINGS OF A CONFERENCE IN HONOR OF WILLIAM BROWDER edited by Frank Quinn PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY 1995 Copyright © 1995 by Princeton University Press ALL RIGHTS RESERVED The Annals of Mathematics Studies are edited by Luis A. Caffarelli, John N. Mather, and Elias M. Stein Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources Printed in the United States of America by Princeton Academic Press 10 987654321 Library of Congress Cataloging-in-Publication Data Prospects in topology : proceedings of a conference in honor of W illiam Browder / Edited by Frank Quinn. p. cm. — (Annals of mathematics studies ; no. 138) Conference held Mar. 1994, at Princeton University. Includes bibliographical references. ISB N 0-691-02729-3 (alk. paper). — ISBN 0-691-02728-5 (pbk. : alk. paper) 1. Topology— Congresses. I. Browder, William. II. Quinn, F. (Frank), 1946- . III. Series. QA611.A1P76 1996 514— dc20 95-25751 The publisher would like to acknowledge the editor of this volume for providing the camera-ready copy from which this book was printed PROSPECTS IN TOPOLOGY F r a n k Q u in n , E d it o r Proceedings of a conference in honor of William Browder Princeton, March 1994 Contents Foreword..........................................................................................................vii Program of the conference ................................................................................ix Mathematical descendants of William Browder...............................................xi A. Adem and R. J. Milgram, The mod 2 cohomology rings of rank 3 simple groups are Cohen-Macaulay........................................................................3 A.
    [Show full text]
  • Natural Cadmium Is Made up of a Number of Isotopes with Different Abundances: Cd106 (1.25%), Cd110 (12.49%), Cd111 (12.8%), Cd
    CLASSROOM Natural cadmium is made up of a number of isotopes with different abundances: Cd106 (1.25%), Cd110 (12.49%), Cd111 (12.8%), Cd 112 (24.13%), Cd113 (12.22%), Cd114(28.73%), Cd116 (7.49%). Of these Cd113 is the main neutron absorber; it has an absorption cross section of 2065 barns for thermal neutrons (a barn is equal to 10–24 sq.cm), and the cross section is a measure of the extent of reaction. When Cd113 absorbs a neutron, it forms Cd114 with a prompt release of γ radiation. There is not much energy release in this reaction. Cd114 can again absorb a neutron to form Cd115, but the cross section for this reaction is very small. Cd115 is a β-emitter C V Sundaram, National (with a half-life of 53hrs) and gets transformed to Indium-115 Institute of Advanced Studies, Indian Institute of Science which is a stable isotope. In none of these cases is there any large Campus, Bangalore 560 012, release of energy, nor is there any release of fresh neutrons to India. propagate any chain reaction. Vishwambhar Pati The Möbius Strip Indian Statistical Institute Bangalore 560059, India The Möbius strip is easy enough to construct. Just take a strip of paper and glue its ends after giving it a twist, as shown in Figure 1a. As you might have gathered from popular accounts, this surface, which we shall call M, has no inside or outside. If you started painting one “side” red and the other “side” blue, you would come to a point where blue and red bump into each other.
    [Show full text]
  • Recognizing Surfaces
    RECOGNIZING SURFACES Ivo Nikolov and Alexandru I. Suciu Mathematics Department College of Arts and Sciences Northeastern University Abstract The subject of this poster is the interplay between the topology and the combinatorics of surfaces. The main problem of Topology is to classify spaces up to continuous deformations, known as homeomorphisms. Under certain conditions, topological invariants that capture qualitative and quantitative properties of spaces lead to the enumeration of homeomorphism types. Surfaces are some of the simplest, yet most interesting topological objects. The poster focuses on the main topological invariants of two-dimensional manifolds—orientability, number of boundary components, genus, and Euler characteristic—and how these invariants solve the classification problem for compact surfaces. The poster introduces a Java applet that was written in Fall, 1998 as a class project for a Topology I course. It implements an algorithm that determines the homeomorphism type of a closed surface from a combinatorial description as a polygon with edges identified in pairs. The input for the applet is a string of integers, encoding the edge identifications. The output of the applet consists of three topological invariants that completely classify the resulting surface. Topology of Surfaces Topology is the abstraction of certain geometrical ideas, such as continuity and closeness. Roughly speaking, topol- ogy is the exploration of manifolds, and of the properties that remain invariant under continuous, invertible transforma- tions, known as homeomorphisms. The basic problem is to classify manifolds according to homeomorphism type. In higher dimensions, this is an impossible task, but, in low di- mensions, it can be done. Surfaces are some of the simplest, yet most interesting topological objects.
    [Show full text]
  • 3-Manifold Groups
    3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Commentary on Thurston's Work on Foliations
    COMMENTARY ON FOLIATIONS* Quoting Thurston's definition of foliation [F11]. \Given a large supply of some sort of fabric, what kinds of manifolds can be made from it, in a way that the patterns match up along the seams? This is a very general question, which has been studied by diverse means in differential topology and differential geometry. ... A foliation is a manifold made out of striped fabric - with infintely thin stripes, having no space between them. The complete stripes, or leaves, of the foliation are submanifolds; if the leaves have codimension k, the foliation is called a codimension k foliation. In order that a manifold admit a codimension- k foliation, it must have a plane field of dimension (n − k)." Such a foliation is called an (n − k)-dimensional foliation. The first definitive result in the subject, the so called Frobenius integrability theorem [Fr], concerns a necessary and sufficient condition for a plane field to be the tangent field of a foliation. See [Spi] Chapter 6 for a modern treatment. As Frobenius himself notes [Sa], a first proof was given by Deahna [De]. While this work was published in 1840, it took another hundred years before a geometric/topological theory of foliations was introduced. This was pioneered by Ehresmann and Reeb in a series of Comptes Rendus papers starting with [ER] that was quickly followed by Reeb's foundational 1948 thesis [Re1]. See Haefliger [Ha4] for a detailed account of developments in this period. Reeb [Re1] himself notes that the 1-dimensional theory had already undergone considerable development through the work of Poincare [P], Bendixson [Be], Kaplan [Ka] and others.
    [Show full text]