Fern Species Diversity Across Various Land Use Types of Mt. Makiling, Luzon Island, Philippines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Native and Exotic “Boston Ferns” and “Sword Ferns” (Nephrolepis Spp.)
A Case of Mistaken Identity Native and Exotic “Boston Ferns” and “Sword Ferns” (Nephrolepis spp.) Figure 1. Florida’s native sword fern, also known as wild Boston fern, is a dominant feature of south Florida hammocks and a popular native landscape plant (Nephrolepis exaltata). Shown here in DuPuis Preserve (Palm Beach/Martin County). Ken Langeland desired plants of grow- University of Florida Center for ers and yearly sales Aquatic and Invasive Plants soared in the hundred Figure 2. st 7922 NW 71 Street, Gainesville, FL 32653 thousands.” In 1894, a Fronds of [email protected] cultivar of N. exaltata Florida’s was discovered in a native giant Introduction shipment from a Phil- sword fern Florida’s native sword fern, also adelphia grower to a (Nephrolepis know as wild Boston fern, (Nephrolepis Boston distributer and biserrata) are exaltata) (Figure 1) and giant sword fern named N. exaltata cv. often 2 m (Nephrolepis biserrata) (Figure 2), were ‘Bostoniensis’, hence the long. Shown highly admired by early botanists, commonly used name here in Fern naturalists, and horticulturists (Small Boston fern (Foster Forest, 1918a, 1918b, Simpson 1920, Foster 1984). Other derivatives Pompano 1984). Charles Torrey Simpson (1920) of N. exaltata cv. ‘Bosto- Beach wrote: “But the real glory of the ham- niensis’, ranging from (Broward mock is the two species of Nephrolepis, 1-5-pinnate, and with County). one being the well known “Boston“ such descriptive names fern.” According to Foster (1984) as N. exaltata cv. ‘Florida “—they [N. exaltata] could be seen in [Fluffy] Ruffles’ were homes and public buildings almost developed and are still known from native sword fern and giant sword everywhere. -
The Nephrolepis Boston Fern Complex Series Editors (Including Nephrolepis Exaltata [L.] Dan Blanchon Schott), Nephrolepidaceae, Naturalised in New Zealand
PERSPECTIVES IN Biosecurity RESEARCH SERIES 2/2016 The Nephrolepis Boston fern complex SERIES EDITORS (including Nephrolepis exaltata [L.] Dan Blanchon Schott), Nephrolepidaceae, naturalised in New Zealand. Mel Galbraith Mark Large and Lizzy Farrington PERSPECTIVES IN BIOSECURITY RESEARCH SERIES 2/2016 The Nephrolepis Boston fern complex (including Nephrolepis exaltata [L.] Schott), Nephrolepidaceae, naturalised in New Zealand. By Mark Large and Lizzy Farrington The Nephrolepis Boston fern complex (including Nephrolepis exaltata [L.] Schott), Nephrolepidaceae, naturalised in New Zealand by Mark Large and Lizzy Farrington is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This publication may be cited as: Large, M., and Farrington, L. (2016). The Nephrolepis Boston fern complex (including Nephrolepis exaltata [L.] Schott), Nephrolepidaceae, naturalised in New Zealand. Unitec ePress Perspectives in Biosecurity Research Series (2). Retrieved from http://www.unitec.ac.nz/epress/ About this series: Perspectives in Biosecurity is an occasional, multi-disciplinary electronic series of research papers and other outputs covering all aspects of the field of biosecurity, including, but not restricted to: invasion biology and ecology, invasive species identification/ diagnostics, management and eradication/control, new invasive species records, modelling, biosecurity law and policy, relationships between human society and invasive species. Papers in Perspectives in Biosecurity are primarily the results of research carried out by staff, students, graduates, associates, and collaborators of Unitec Institute of Technology. All papers are subject to a double blind peer review process. For more papers in this series please visit: www.unitec.ac.nz/epress/index.php/category/publications/epress-series/perspectives-in-biosecurity/ Cover design by Penny Thomson Cover image by Mel Galbraith On the cover is the Australian tachinid fly (Trigonospila brevifacies), a parasitoid of other insects, specifically larvae of a number of Lepidoptera. -
Thelypteroid Comprising Species Chiefly Regions. These Family, Its
BLUMEA 27(1981) 239-254 Comparative morphologyof the gametophyteof some Thelypteroidferns Tuhinsri Sen Department of Botany, Kalyani University, Kalyani 741235, West Bengal, India. Abstract A study of the developmentofthe gametophytes of sixteen thelypteroidferns reveals similarities and differences them. Combinations of the diversified features of the significant among prothalli appear to identification delimitation of the taxa, and the views of have a tremendous impact on and major support those authors who the taxonomic of these ferns. propose segregation Introduction The thelypteroid ferns comprising about one thousand species are chiefly inhabitants the and few of them in These of tropics only a occur temperate regions. plants are exceptionally varied in structure, yet they constitute a natural family, its members being easily distinguishable by their foliar acicular hairs, cauline scales with marginal and superficial appendages, and two hippocampus type of petiolar fern this bundles. It is certainly significant that no other has assemblage of vegetative characters. A critical survey through the literaturereveals that probably in no other group of ferns the generic concept of the taxonomists is so highly in the and Reed assembled all contrasting as thelypteroids. Morton (1963) (1968) the thelypteroids in a single genus, Thelypteris. Iwatsuki (1964) on the other hand, subdivided them into three genera. Copeland (1947) recognised eight genera (including with them the unrelated Currania) while Christensen (1938) tentatively suggested about twelve. Pichi Sermolli (1970) stated that no less than eighteen have to be and increased this numberto in 1977 genera kept distinct, thirtytwo (Pichi Sermolli, 1977); Ching (1963) maintainednineteen genera in Asia. Holttum (1971), Old in his new system of genera in the World Thelypteridaceae circumscribed twentythree genera. -
Ferns, Cycads, Conifers and Vascular Plants
Flora of Australia Glossary — Ferns, Cycads, Conifers and Vascular plants A main glossary for the Flora of Australia was published in Volume 1 of both printed editions (1981 and 1999). Other volumes contain supplementary glossaries, with specific terms needed for particular families. This electronic glossary is a synthesis of all hard-copy Flora of Australia glossaries and supplementary glossaries published to date. The first Flora of Australia glossary was compiled by Alison McCusker. Mary D. Tindale compiled most of the fern definitions, and the conifer definitions were provided by Ken D. Hill. Russell L. Barrett combined all of these to create the glossary presented here, incorporating additional terms from the printed version of Volume 37. This electronic glossary contains terms used in all volumes, but with particular reference to the flowering plants (Volumes 2–50). This glossary will be updated as future volumes are published. It is the standard to be used by authors compiling future taxon treatments for the Flora of Australia. It also comprises the terms used in Species Plantarum — Flora of the World. Alternative terms For some preferred terms (in bold), alternative terms are also highlighted (in parentheses). For example, apiculum is the preferred term, and (=apiculus) is an alternative. Preferred terms are those also used in Species Plantarum — Flora of the World. © Copyright Commonwealth of Australia, 2017. Flora of Australia Glossary — Ferns, Cycads, Conifers and Vascular plants is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 4.0 International licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. -
The Development Op the Sorus in Some Species Of
THE DEVELOPMENT OP THE SORUS IN SOME SPECIES OF NEPHROLEPIS, TOGETHER WITH OBSERVATIONS ON POINTS OP ANATOMICAL INTEREST. * * * i|t * * ** * * * $ # $ ** * * * * ** * * * * * Thesis submitted by Isabella M. Case, M. A. , B. Sc. for The Degree of Ph.D. ProQuest Number: 13905578 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13905578 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Introduction, Systematic position etc. Materials used Dev. of sorus of N, bis errata External appearance and habit of plant Origin of stolons Operation of size factor Detailed anatomy of stolon Anatomy of stem Pinna trace N • acuminata N. exaltata, etc. Comparative Discussion Summary Bibliography Description of figures THE DEVELOPMENT OP THE SORUS IN SOME SPECIES OP NEPHROLEPIS, TOGETHER WITH OBSERVATIONS ON POINTS OP ANATOMICAL INTEREST . Hooker in his "Species Filicum" (Vol. IV) describes six species of Nephrolepis, viz. N. tuberosa (Pr.), N. exaltata (Schott), N. acuta (Pr.), N. obliterata (Hook), N. floccigera (Moore) and N. davallioides (Kze.), the nomenclature being upheld by Christensen (Index Pilicum) In only two cases, viz. N. -
Descripción (Pdf)
XIX. THELYPTERIDACEAE 85 3. Thelypteris 3. Thelypteris Schmidel [nom. cons.] * [Thelýpteris f. – gr. thēlypterís = helecho hembra // nombre de helecho. Según algunos, Pteridium aquilinum] Rizoma postrado-radicante. Frondes esparcidas; pecíolo generalmente me- nor que la lámina; ésta, 1-pinnada, de lanceolada a oblongo-lanceolada, con nervadura libre y nervios, a veces bifurcados, que alcanzan el margen de las pínnulas, glabra en el haz y envés con pelos esparcidos y abundantes pelos ma- zudos; pinnas 1-pinnatisectas, con raquis canaliculado; pínnulas con bordes re- volutos en la madurez. Soros redondeados, con indusio glanduloso. Esporan- gios con pelos cortos y mazudos cerca del anillo. 1. Th. palustris Schott, Gen. Fil.: [24] (1834) [palústris] Acrostichum thelypteris L., Sp. Pl.: 1071 (1753) [nom. subst.] Polystichum thelypteris (L.) Roth, Tent. Fl. Germ. 3: 77(1799) Dryopteris thelypteris (L.) A. Gray, Manual: 630 (1848) Th. thelypteroides subsp. glabra Holub in Taxon 21: 332 (1972) Ind. loc.: “Habitat in Europae septentrionalioris paludibus” [sec. Linnaeus] Ic.: Lám. 32 Rizoma 2-3 mm de diámetro, con páleas ovadas, papilosas, caedizas. Fron- des 20-100 cm; pecíolo glabro o con escasos pelos hialinos, negro en la base; pínnulas enteras. Soros densos, al fin confluentes; indusio umbilicado, gene- ralmente caduco. Esporas elipsoidales, con perisporio verrucoso. 2n = 70*; n = 35*, 36*. Lugares húmedos o encharcados, en ambientes frescos; 0-500 m. IV-X. Europa, N de América, C y E de Asia. N y W de la Península, Cádiz, Levante y Zaragoza. Esp.: Bu C Ca Cc Cs Ge H Le Lu Na Po S Sa SS To V Z. Port.: AAl BA BAl BL E R. -
A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 367 - 377 THE NEW PTERIDOPHYTE CLASSIFICATION AND SEQUENCE EM- PLOYED IN THE HERBARIUM BOGORIENSE (BO) FOR MALESIAN FERNS Received July 19, 2012; accepted September 11, 2012 WITA WARDANI, ARIEF HIDAYAT, DEDY DARNAEDI Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jl. Raya Jakarta -Bogor Km. 46, Cibinong 16911, Indonesia. E-mail: [email protected] ABSTRACT. WARD AM, W., HIDAYAT, A. & DARNAEDI D. 2012. The new pteridophyte classification and sequence employed in the Herbarium Bogoriense (BO) for Malesian ferns. -
Researc Research Article
zz Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 11, Issue, 09, pp.7060-7072, September, 2019 DOI: https://doi.org/10.24941/ijcr.36246.09.2019 ISSN: 0975-833X RESEARCH ARTICLE PALYNOLOGICAL CHARACTERIZATION OF FERNS OF ACARAI STATE PARK, SÃO FRANCISCO DO SUL, SANTA CATARINA STATE, SOUTHERN BRAZIL *1Nilton Paulo Vieira Junior, 1Gabriel da Rosa Schroeder, 2Enderlei Dec and 3Denise Monique Dubet da Silva Mouga 1 Academic, University of the Region of Joinville - UNIVILLE, Rua Paulo Malschitzki 10, CEP 89219-710, Joinville, 2 State of Santa Catarina, Brazil MSc, Museu Nacional, Federal University of Rio de Janeiro - UFRJ, Quinta da Boa Vista, CEP 20940-040, Rio de 3 Janeiro, State of Rio de Janeiro, Brazil PhD, Department of Biological Sciences, University of the Region of Joinville - UNIVILLE, Rua Paulo Malschitzki ARTICLE INFO 10, CEPABSTRACT 89219-710, Joinville, State of Santa Catarina, Brazil Article History: Sporopalynological descriptions are provided for fourteen species of ferns found to occur in Acarai Received 17th June, 2019 State Park, a full-protection conservation unit in Praia Grande, São Francisco do Sul, Santa Catarina, Received in revised form Brazil: Asplenium brasiliense Sw., Campyloneurum acrocarpon Fée, Cyathea phalerata Mart, 10th July, 2019 Lindsaea lancea (L.) Bedd, Macrothelypteris torresiana (Gaudich.) Ching, Microgramma Accepted 14th August, 2019 vacciniifolia (Langsd and Fisch.). Copel, Niphidium crassifolium (L.) Lellinger, Pecluma st Published online 30 September, 2019 chnoophora (Kunze) Salino and Costa Assis, Pecluma pectinatiformis (Lindm.) M.G. Price, Lepidopteris pleopeltis (Langsd. and Fisch.) de la Sota, Rumohra adiantiformis (G. Forst.) Ching, Key Word: Schizaea elegans (Vahl) Sw., Serpocaulon latipes (Langsd. -
Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China
diversity Article Taxonomic, Phylogenetic, and Functional Diversity of Ferns at Three Differently Disturbed Sites in Longnan County, China Xiaohua Dai 1,2,* , Chunfa Chen 1, Zhongyang Li 1 and Xuexiong Wang 1 1 Leafminer Group, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China; [email protected] (C.C.); [email protected] (Z.L.); [email protected] (X.W.) 2 National Navel-Orange Engineering Research Center, Ganzhou 341000, China * Correspondence: [email protected] or [email protected]; Tel.: +86-137-6398-8183 Received: 16 March 2020; Accepted: 30 March 2020; Published: 1 April 2020 Abstract: Human disturbances are greatly threatening to the biodiversity of vascular plants. Compared to seed plants, the diversity patterns of ferns have been poorly studied along disturbance gradients, including aspects of their taxonomic, phylogenetic, and functional diversity. Longnan County, a biodiversity hotspot in the subtropical zone in South China, was selected to obtain a more thorough picture of the fern–disturbance relationship, in particular, the taxonomic, phylogenetic, and functional diversity of ferns at different levels of disturbance. In 90 sample plots of 5 5 m2 along roadsides × at three sites, we recorded a total of 20 families, 50 genera, and 99 species of ferns, as well as 9759 individual ferns. The sample coverage curve indicated that the sampling effort was sufficient for biodiversity analysis. In general, the taxonomic, phylogenetic, and functional diversity measured by Hill numbers of order q = 0–3 indicated that the fern diversity in Longnan County was largely influenced by the level of human disturbance, which supports the ‘increasing disturbance hypothesis’. -
TECTARIACEAE 1. ARTHROPTERIS J. Smith in J. D. Hooker, Fl. Nov.-Zel
This PDF version does not have an ISBN or ISSN and is not therefore effectively published (Melbourne Code, Art. 29.1). The printed version, however, was effectively published on 6 June 2013. Xing, F. W., Y. H. Yan, S. Y. Dong, F. G. Wang, M. J. M. Christenhusz & P. H. Hovenkamp. 2013. Tectariaceae. Pp. 730–746 in Z. Y. Wu, P. H. Raven & D. Y. Hong, eds., Flora of China, Vol. 2–3 (Pteridophytes). Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. TECTARIACEAE 三叉蕨科 san cha jue ke Xing Fuwu (邢福武)1, Yan Yuehong (严岳鸿)2, Dong Shiyong (董仕勇)1, Wang Faguo (王发国)1; Maarten J. M. Christenhusz3, Peter H. Hovenkamp4 Plants terrestrial, 10–300 cm tall. Rhizome erect or ascending to creeping, short or long, stout or slender, scaly at apex; rhizome and basal stipe scales brown, linear or lanceolate, margins entire, finely toothed, or ciliate, membranous. Stipe yellow, brown, or black, scaly at base or sometimes throughout. Fronds tufted or approximate, monomorphic to strongly dimorphic, simple or pinnate to 4 times pinnate-pinnatifid, often triangular or pentagonal, usually decompound toward apices; rachises and costae usually (in most genera) covered with articulate multicellular (ctenitoid) hairs; veins free or variously anastomosing, included veinlets if present simple or forked. Sori terminal on included free veins, dorsal on veins or compital on (at intersection of) connected veins, usually orbicular, sometimes elongate, anastomosing in lines, in some species throughout abaxial surface of lamina when mature, indusiate or exindusiate; indusia if present orbicular-reniform, persistent or caducous. Spores ovoid or elliptic, monolete, perispore with winglike folds, cristate, echinate, verrucose, rugose, or spinose. -
Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001
Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Kadoorie Farm and Botanic Garden in collaboration with Zhongshan University Zhaoqing Forestry Bureau February 2004 South China Forest Biodiversity Survey Report Series: No. 37 (Online Simplified Version) Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Editors Bosco P.L. Chan, Ng Sai-Chit, Michael W.N. Lau and John R. Fellowes Contributors Kadoorie Farm and Botanic Garden: Michael W.N. Lau (ML) Bosco P.L. Chan (BC) John R. Fellowes (JRF) Lee Kwok Shing (LKS) Ng Sai-Chit (NSC) Roger Kendrick (RCK) Zhongshan University: Chang Hong (CH) Voluntary specialists: Graham T. Reels (GTR) Keith D.P. Wilson (KW) Background The present report details the findings of a trip to Northwest Guangdong by members of Kadoorie Farm and Botanic Garden (KFBG) in Hong Kong and their colleagues, as part of KFBG's South China Biodiversity Conservation Programme (renamed the China Programme in 2003). The overall aim of the programme is to minimise the loss of forest biodiversity in the region, and the emphasis in the first three years is on gathering up-to-date information on the distribution and status of fauna and flora. Citation Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 . South China Forest Biodiversity Survey Report Series (Online Simplified Version): No. 37. KFBG, Hong Kong SAR, ii + 33 pp. Copyright Kadoorie Farm and Botanic Garden Corporation Lam Kam Road, Tai Po, N.T., Hong Kong February 2004 - i - Contents Objectives ……………………………………………………………………………………. -
Fern Classification
16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.