Striped Raphael Catfish

Total Page:16

File Type:pdf, Size:1020Kb

Striped Raphael Catfish Striped Raphael catfish Striped Raphael catfish (Platydoras armatulus) is a catfish of the family Doradidae. It may also be called Southern striped Striped Raphael catfish Raphael, talking catfish, chocolate doradid, chocolate catfish or thorny catfish.[1] It is native to the Amazon, Paraguay–Paraná and lower Orinoco basins in South America.[2] This peaceful, nocturnal species is a popular aquarium fish due to its pleasant temperament and curious nature.[3] This catfish has long been confused with Platydoras costatus of Suriname and French Guiana, where the pale stripe on the body does not extend onto the head.[2] Scientific classification Domain: Eukaryota Contents Kingdom: Animalia Description and behavior Phylum: Chordata In the aquarium Class: Actinopterygii See also Order: Siluriformes References Family: Doradidae Genus: Platydoras Description and behavior Species: P. armatulus These fish burrow in the soft river bottoms and frequently occurs Binomial name on sandy bottoms.[4] These fish feed on mollusks, crustaceans and Platydoras armatulus organic debris.[4] (Valenciennes, 1840) They have rigid pectoral fin spines. The striped Raphael catfish Synonyms also has tiny and curved protective spines running along its body. The typically reported maximum standard length of this species is Doras armatulus 20–24 cm (7.9–9.4 in).[5][6] Considerably larger individuals, up to 43 cm (17 in) long, have been reported from the Tocantins– Valenciennes, 1840 Araguaia basin,[4][7] but this population, together with those from the Tapajós and Xingu, likely represent an undescribed species (not to be confused with P. birindellii, a species from the Xingu basin that was described in 2018).[2][8] Juvenile striped raphael catfish have been recorded cleaning piscivorous fish such as Hoplias cf. malabaricus. The stripe pattern in the young may serve as a signal that allows for its recognition as a cleaner. It is noted that the striping pattern is not as strong in adults, and so the cleaning behavior is probably only seen in juveniles.[9] In the aquarium The striped Raphael catfish is a fine and sociable community fish that are peaceful to fellow catfishes and other fish species.[3] However, they are nocturnal, and are usually not visible during the day.[3] It is best not to catch the striped Raphael catfish with a fish net because they are prone to sticking out their pectoral fin spines in a very rigid manner, especially if stressed. Untangling these spines from a net is difficult and dangerous to both handler and fish. Alternative methods should be used. Although known as a spawning Striped Raphael catfish in an fish, sexual differences are unknown and there have been no reports aquarium. of being successfully bred in captivity.[3] Because of this, these fish must be wild-caught, and therefore contaminants sometime occur in the hobby, such as Orinocodoras eigenmanni, which differs in a longer snout.[3] The Raphael catfish will make some grunting/squeaking noises while out of water. Although generally sociable with other fish, sometimes this fish can feed on smaller fish so take care when introducing one to an established tank. See also List of freshwater aquarium fish species References 1. Agbayani, Eli (2004-12-10). "Common Names List" (http://www.fishbase.org/ComNames/CommonNa meSummary.cfm?autoctr=80798107). FishBase. Retrieved 2007-05-21. 2. Piorski, Nivaldo M.; Garavello, Julio C.; Arce H., Mariangeles; Pérez, Mark H. Sabaj (2008). "Platydoras brachylecis, a new species of thorny catfish (Siluriformes: Doradidae) from northeastern Brazil" (https://doi.org/10.1590%2FS1679-62252008000300021). Neotropical Ichthyology. 6 (3): 481–494. doi:10.1590/S1679-62252008000300021 (https://doi.org/10.1590%2FS1679-62252008000 300021). 3. "PlanetCatfish::Catfish of the Month::July 1999" (http://www.planetcatfish.com/cotm/cotm.php?article _id=76). Planetcatfish.com. 2007-02-10. Retrieved 2007-06-19. 4. Froese, Rainer and Pauly, Daniel, eds. (2018). "Platydoras armatulus" (http://www.fishbase.org/sum mary/SpeciesSummary.php?genusname=Platydoras&speciesname=armatulus) in FishBase. July 2018 version. 5. "Platydoras armatulus" (https://www.planetcatfish.com/common/species.php?species_id=880). Planetcatfish. 3 October 2014. Retrieved 25 July 2018. 6. "Platydoras costatus" (https://www.seriouslyfish.com/species/platydoras-armatulus/). SeriouslyFish. Retrieved 25 July 2018. 7. Garcia-Ayala, J.R.; E.M. Brambilla; F.A. Travassos; E.D. Carvalho; G.S. David (2014). "Length– weight relationships of 29 fish species from the Tucuruí Reservoir (Tocantins/Araguaia Basin, Brazil)". J. Appl. Ichthyol. 30 (5): 1092–1095. doi:10.1111/jai.12449 (https://doi.org/10.1111%2Fjai.12 449). 8. Sousa, L.M.; M.S. Chaves; A. Akama; J. Zuanon; M.H. Sabaj (2018). "Platydoras birindellii, new species of striped raphael catfish (Siluriformes: Doradidae) from the Xingu Basin, Brazil". Proceedings of the Academy of Natural Sciences of Philadelphia. 166 (1): 1–13. doi:10.1635/053.166.0106 (https://doi.org/10.1635%2F053.166.0106). 9. Carvalho, Lucélia Nobre; Arruda, Rafael; Zuanon, Jansen Zuanon (2003). "Record of cleaning behavior by Platydoras costatus (Siluriformes: Doradidae) in the Amazon Basin, Brazil" (https://web. archive.org/web/20070927193437/http://www.ufrgs.br/ni/vol1num2/1(2)scientificnotes_02.pdf) (PDF). Neotropical Ichthyology. 1 (2): 137–139. doi:10.1590/S1679-62252003000200009 (https://doi.org/10. 1590%2FS1679-62252003000200009). Archived from the original (http://www.ufrgs.br/ni/vol1num2/1 (2)scientificnotes_02.pdf) (PDF) on 2007-09-27. Retrieved from "https://en.wikipedia.org/w/index.php?title=Striped_Raphael_catfish&oldid=951474891" This page was last edited on 17 April 2020, at 10:19 (UTC). Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization..
Recommended publications
  • Year of the Catfish with the Intention of Writing an Article Relating to Some Aspect of Catfish in the Aquarium on a Monthly Basis
    YYeeaarr ooff tthhee CCaattffiisshh A monthly column about Catfish Talking... (Doradidae) by Derek Tustin (Author’s Note: I started The Year of the Catfish with the intention of writing an article relating to some aspect of Catfish in the aquarium on a monthly basis. Last month, April 2013, I did not. I know this caused a bit of consternation on the part of Klaus Steinhaus, the editor of Tank Talk, and he had to find another article to fill the space. As such, I offer both he and the readers of Tank Talk my sincere apologies and to make up for it, give you a double helping of The Year of the Catfish this month. – Derek P.S. Tustin) o you have that one fish species of fish that you have Agamyxis pectinifrons D an unbridled affinity for? That one special species that just strikes a chord with you that you want to keep no matter what? Perhaps something that you have kept every time the opportunity presents? I think we all have a small group of species that no matter how unattractive other aquarists may find them, we want to keep them. I think you all know by now my absolute fascination with rainbowfish, and the extent that I am willing to go to obtain certain species. Given that, you might be surprised to know that my “soft-spot species” isn’t a rainbowfish, but rather a catfish, specifically the White-Spotted Doradid, Agamyxis pectinifrons. (Or it actually might be… but I’ll get to that in a bit.) Agamyxis pectinifrons is a member of the Doradidae family.
    [Show full text]
  • Hearing in Fishes Under Noise Conditions
    JARO 6: 28–36 (2005) DOI: 10.1007/s10162-004-4043-4 Hearing in Fishes under Noise Conditions LIDIA EVA WYSOCKI AND FRIEDRICH LADICH Institute of Zoology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria Received: 13 October 2003; Accepted: 27 September 2004; Online publication: 3 December 2004 ABSTRACT hearing specialists, are limited by noise regimes in their environment. Ourcurrentknowledgeon sound detection in fishes is Keywords: auditory evoked potential, auditory mainly based on data acquired under quiet laborato- sensitivity, hearing specializations, masking, teleosts ry conditions. However, it is important to relate auditory thresholds to background noise in order to determine the signal-detecting abilities of animals in the natural environment. We investigated the influ- ence of two noise levels within the naturally occurring INTRODUCTION range on the auditory sensitivity of two hearing specialists (otophysines) and a hearing generalist. The auditory system is particularly important for Audiograms of the goldfish Carassius auratus, the aquatic vertebrates when visual orientation is restrict- lined Raphael catfish Platydoras costatus and the ed. Sounds from different sources provide them with pumpkinseed sunfish Lepomis gibbosus (hearing gen- information relevant for survival, e.g., finding mates eralist) were determined between 200 and 4000 Hz and prey or avoiding predators. The natural environ- (100Y800 Hz for L. gibbosus) under laboratory con- ment of fishes, especially that of marine fishes ditions and under continuous white noise by record- (Knudsen et al. 1948; Wenz 1962; Urick 1983; ing auditory evoked potentials (AEPs). Baseline Myrberg 1990), but also freshwater habitats (Hawkins thresholds showed greatest hearing sensitivity around and Johnstone 1978; Rogers and Cox 1988; Lugli 500 Hz in goldfish and catfish and at 100 Hz in the and Fine 2003), is characterized by a permanent sunfish.
    [Show full text]
  • Faculdade De Biociências
    FACULDADE DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA ANÁLISE FILOGENÉTICA DE DORADIDAE (PISCES, SILURIFORMES) Maria Angeles Arce Hernández TESE DE DOUTORADO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Av. Ipiranga 6681 - Caixa Postal 1429 Fone: (51) 3320-3500 - Fax: (51) 3339-1564 90619-900 Porto Alegre - RS Brasil 2012 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA ANÁLISE FILOGENÉTICA DE DORADIDAE (PISCES, SILURIFORMES) Maria Angeles Arce Hernández Orientador: Dr. Roberto E. Reis TESE DE DOUTORADO PORTO ALEGRE - RS - BRASIL 2012 Aviso A presente tese é parte dos requisitos necessários para obtenção do título de Doutor em Zoologia, e como tal, não deve ser vista como uma publicação no senso do Código Internacional de Nomenclatura Zoológica, apesar de disponível publicamente sem restrições. Dessa forma, quaisquer informações inéditas, opiniões, hipóteses e conceitos novos apresentados aqui não estão disponíveis na literatura zoológica. Pessoas interessadas devem estar cientes de que referências públicas ao conteúdo deste estudo somente devem ser feitas com aprovação prévia do autor. Notice This thesis is presented as partial fulfillment of the dissertation requirement for the Ph.D. degree in Zoology and, as such, is not intended as a publication in the sense of the International Code of Zoological Nomenclature, although available without restrictions. Therefore, any new data, opinions, hypothesis and new concepts expressed hererin are not available
    [Show full text]
  • A Draft Genome of the Striped Catfish, Pangasianodon Hypophthalmus, for Comparative Analysis of Genes Relevant to Development An
    Kim et al. BMC Genomics (2018) 19:733 https://doi.org/10.1186/s12864-018-5079-x RESEARCHARTICLE Open Access A draft genome of the striped catfish, Pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement Oanh T. P. Kim1*† , Phuong T. Nguyen1†, Eiichi Shoguchi2†, Kanako Hisata2, Thuy T. B. Vo1, Jun Inoue2, Chuya Shinzato2,4, Binh T. N. Le1, Koki Nishitsuji2, Miyuki Kanda3, Vu H. Nguyen1, Hai V. Nong1 and Noriyuki Satoh2* Abstract Background: The striped catfish, Pangasianodon hypophthalmus, is a freshwater and benthopelagic fish common in the Mekong River delta. Catfish constitute a valuable source of dietary protein. Therefore, they are cultured worldwide, and P. hypophthalmus is a food staple in the Mekong area. However, genetic information about the culture stock, is unavailable for breeding improvement, although genetics of the channel catfish, Ictalurus punctatus, has been reported. Toacquiregenomesequencedataasausefulresourcefor marker-assisted breeding, we decoded a draft genome of P. hypophthalmus and performed comparative analyses. Results: Using the Illumina platform, we obtained both nuclear and mitochondrial DNA sequences. Molecular phylogeny using the mitochondrial genome confirmed that P. hypophthalmus is a member of the family Pangasiidae and is nested within a clade including the families Cranoglanididae and Ictaluridae. The nuclear genome was estimated at approximately 700 Mb, assembled into 568 scaffolds with an N50 of 14.29 Mbp, and was estimated to contain ~ 28,600 protein-coding genes, comparable to those of channel catfish and zebrafish. Interestingly, zebrafish produce gadusol, but genes for biosynthesis of this sunscreen compound have been lost from catfish genomes.
    [Show full text]
  • Structure of Tropical River Food Webs Revealed by Stable Isotope Ratios
    OIKOS 96: 46–55, 2002 Structure of tropical river food webs revealed by stable isotope ratios David B. Jepsen and Kirk O. Winemiller Jepsen, D. B. and Winemiller, K. O. 2002. Structure of tropical river food webs revealed by stable isotope ratios. – Oikos 96: 46–55. Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relation- ships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish d15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers.
    [Show full text]
  • Phylogenetic Relationships of the South American Doradoidea (Ostariophysi: Siluriformes)
    Neotropical Ichthyology, 12(3): 451-564, 2014 Copyright © 2014 Sociedade Brasileira de Ictiologia DOI: 10.1590/1982-0224-20120027 Phylogenetic relationships of the South American Doradoidea (Ostariophysi: Siluriformes) José L. O. Birindelli A phylogenetic analysis based on 311 morphological characters is presented for most species of the Doradidae, all genera of the Auchenipteridae, and representatives of 16 other catfish families. The hypothesis that was derived from the six most parsimonious trees support the monophyly of the South American Doradoidea (Doradidae plus Auchenipteridae), as well as the monophyly of the clade Doradoidea plus the African Mochokidae. In addition, the clade with Sisoroidea plus Aspredinidae was considered sister to Doradoidea plus Mochokidae. Within the Auchenipteridae, the results support the monophyly of the Centromochlinae and Auchenipterinae. The latter is composed of Tocantinsia, and four monophyletic units, two small with Asterophysus and Liosomadoras, and Pseudotatia and Pseudauchenipterus, respectively, and two large ones with the remaining genera. Within the Doradidae, parsimony analysis recovered Wertheimeria as sister to Kalyptodoras, composing a clade sister to all remaining doradids, which include Franciscodoras and two monophyletic groups: Astrodoradinae (plus Acanthodoras and Agamyxis) and Doradinae (new arrangement). Wertheimerinae, new subfamily, is described for Kalyptodoras and Wertheimeria. Doradinae is corroborated as monophyletic and composed of four groups, one including Centrochir and Platydoras, the other with the large-size species of doradids (except Oxydoras), another with Orinocodoras, Rhinodoras, and Rhynchodoras, and another with Oxydoras plus all the fimbriate-barbel doradids. Based on the results, the species of Opsodoras are included in Hemidoras; and Tenellus, new genus, is described to include Nemadoras trimaculatus, N.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Center for Systematic Biology & Evolution
    CENTER FOR SYSTEMATIC BIOLOGY & EVOLUTION 2008 ACTIVITY REPORT BY THE NUMBERS Research Visitors ....................... 253 Student Visitors.......................... 230 Other Visitors.......................... 1,596 TOTAL....................... 2,079 Outgoing Loans.......................... 535 Specimens/Lots Loaned........... 6,851 Information Requests .............. 1,294 FIELD WORK Botany - Uruguay Diatoms – Russia (Commander Islands, Kamchatka, Magdan) Entomology – Arizona, Colorado, Florida, Hawaii, Lesotho, Minnesota, Mississippi, Mongolia, Namibia, New Jersey, New Mexico, Ohio, Pennsylvania, South Africa, Tennessee LMSE – Zambia Ornithology – Alaska, England Vertebrate Paleontology – Canada (Nunavut Territory), Pennsylvania PROPOSALS BOTANY . Digitization of Latin American, African and other type specimens of plants at the Academy of Natural Sciences of Philadelphia, Global Plants Initiative (GPI), Mellon Foundation Award. DIATOMS . Algal Research and Ecologival Synthesis for the USGS National Water Quality Assessment (NAWQA) Program Cooperative Agreement 3. Co-PI with Don Charles (Patrick Center for Environmental Research, Phycology). Collaborative Research on Ecosystem Monitoring in the Russian Northern Far-East, Trust for Mutual Understanding Grant. CSBE Activity Report - 2008 . Diatoms of the Northcentral Pennsylvania, Pennsylvania Department of Conservation and Natural Resources, Wild Rescue Conservation Grant. Renovation and Computerization of the Diatom Herbarium at the Academy of Natural Sciences of Philadelphia, National
    [Show full text]
  • Platydoras Costatus (Raphael Catfish) Ecological Risk Screening Summary
    Raphael Catfish (Platydoras costatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, July 2018 Web Version, 9/20/2019 Photo: Erling Holm, via FishWise Professional. Licensed under Creative Commons BY-NC-SA. Available: http://eol.org/data_objects/24181426. (July 2018). 1 Native Range and Status in the United States Native Range From Nico et al. (2018): “South America, from Venezuela and the Guianas to Argentina (Robins et al. 1991), including the Amazon, Tocantins, Parnaíba, Orinoco, and Essequibo River basins and coastal drainages in French Guiana and Suriname.” From Piorski et al. (2008): “[…] coastal drainages of Suriname and French Guiana […]” 1 From Eschmeyer et al. (2018): “Distribution: Amazon, Tocantins, Parnaíba, Orinoco and Essequibo River basins and coastal drainages in French Guiana and Suriname: Bolivia, Brazil, Ecuador, ?Colombia, French Guiana, Guyana, Peru, Suriname and Venezuela. But perhaps only coastal drainages of Suriname and French Guiana.” Conflicting descriptions of the distribution of P. costatus are apparent in the quotations above. In this ERSS, the broader definition is used because most information available refers to this definition of the species range. Status in the United States From Nico et al. (2018): “Reported from Florida and Texas. Likely failed introduction: there have been no additional specimens or reports since initial sightings.” Nico et al. (2018) report that the record from Florida dates to 1984 and the record from Texas dates to 1999. VertNet (2018) reports an occurrence in May 2002 in New Mexico: “Caught 15 May 2002 by Frank Jimenez of Tesuque […] at Santa Cruz Lake, Santa Fe Co. with a net as it was swimming near shoreline.” The frequency of this species in trade is unclear (see Remarks).
    [Show full text]
  • Hoplias Malabaricus (Guabine) Family: Erythrinidae (Trahiras) Order: Characiformes (Characins and Allied Fish) Class: Actinopterygii (Ray-Finned Fish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Hoplias malabaricus (Guabine) Family: Erythrinidae (Trahiras) Order: Characiformes (Characins and Allied Fish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Guabine, Hoplias malabaricus. [http://upload.wikimedia.org/wikipedia/commons/thumb/3/34/Hoplias_malabaricus1.jpg/800px- Hoplias_malabaricus1.jpg , downloaded 13 November 2012] TRAITS. The guabine, Hoplias malabaricus, is also known as wolf-fish or tahira in Trinidad and Tobago (Phillip & Ramnarine 2001). This freshwater fish can grow up to 40 cm in length and can weigh more than 1.5 kg (Kenny 2008). The shape is cylindrical and it has a large mouth since it is a predatory creature. The name wolf-fish was given to the guabine due to the presence of the dog-like teeth. When bitten, the jaws of this fish are locked onto the prey (Kenny 2008). The coloration of the guabine fish is usually dark brown or grey as seen in Fig.1 above with either darker vertical stripes or a single horizontal stripe on the body (Wikipedia, 2012) so that they can camouflage and hunt better. The fish can be identified and distinguished from other species by the shape of the under-jaw where a V-shape is formed when the inside jaw lines come to the front of the fish (Cousins 2011). The juvenile stages of the guabine resemble the adult forms with the exception of the size where the juveniles are more slender than the adults. According to Cousins (2011), the females have a bigger build than the males. UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour ECOLOGY.
    [Show full text]
  • Diversity and Risk Patterns of Freshwater Megafauna: a Global Perspective
    Diversity and risk patterns of freshwater megafauna: A global perspective Inaugural-Dissertation to obtain the academic degree Doctor of Philosophy (Ph.D.) in River Science Submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin By FENGZHI HE 2019 This thesis work was conducted between October 2015 and April 2019, under the supervision of Dr. Sonja C. Jähnig (Leibniz-Institute of Freshwater Ecology and Inland Fisheries), Jun.-Prof. Dr. Christiane Zarfl (Eberhard Karls Universität Tübingen), Dr. Alex Henshaw (Queen Mary University of London) and Prof. Dr. Klement Tockner (Freie Universität Berlin and Leibniz-Institute of Freshwater Ecology and Inland Fisheries). The work was carried out at Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Germany, Freie Universität Berlin, Germany and Queen Mary University of London, UK. 1st Reviewer: Dr. Sonja C. Jähnig 2nd Reviewer: Prof. Dr. Klement Tockner Date of defense: 27.06. 2019 The SMART Joint Doctorate Programme Research for this thesis was conducted with the support of the Erasmus Mundus Programme, within the framework of the Erasmus Mundus Joint Doctorate (EMJD) SMART (Science for MAnagement of Rivers and their Tidal systems). EMJDs aim to foster cooperation between higher education institutions and academic staff in Europe and third countries with a view to creating centres of excellence and providing a highly skilled 21st century workforce enabled to lead social, cultural and economic developments. All EMJDs involve mandatory mobility between the universities in the consortia and lead to the award of recognised joint, double or multiple degrees. The SMART programme represents a collaboration among the University of Trento, Queen Mary University of London and Freie Universität Berlin.
    [Show full text]
  • Global Catfish Biodiversity 17
    American Fisheries Society Symposium 77:15–37, 2011 © 2011 by the American Fisheries Society Global Catfi sh Biodiversity JONATHAN W. ARMBRUSTER* Department of Biological Sciences, Auburn University 331 Funchess, Auburn University, Alabama 36849, USA Abstract.—Catfi shes are a broadly distributed order of freshwater fi shes with 3,407 cur- rently valid species. In this paper, I review the different clades of catfi shes, all catfi sh fami- lies, and provide information on some of the more interesting aspects of catfi sh biology that express the great diversity that is present in the order. I also discuss the results of the widely successful All Catfi sh Species Inventory Project. Introduction proximately 10.8% of all fi shes and 5.5% of all ver- tebrates are catfi shes. Renowned herpetologist and ecologist Archie Carr’s But would every one be able to identify the 1941 parody of dichotomous keys, A Subjective Key loricariid catfi sh Pseudancistrus pectegenitor as a to the Fishes of Alachua County, Florida, begins catfi sh (Figure 2A)? It does not have scales, but it with “Any damn fool knows a catfi sh.” Carr is right does have bony plates. It is very fl at, and its mouth but only in part. Catfi shes (the Siluriformes) occur has long jaws but could not be called large. There is on every continent (even fossils are known from a barbel, but you might not recognize it as one as it Antarctica; Figure 1); and the order is extremely is just a small extension of the lip. There are spines well supported by numerous complex synapomor- at the front of the dorsal and pectoral fi ns, but they phies (shared, derived characteristics; Fink and are not sharp like in the typical catfi sh.
    [Show full text]