A Natural Whale-Fall from the Antarctic Deep-Sea

Total Page:16

File Type:pdf, Size:1020Kb

A Natural Whale-Fall from the Antarctic Deep-Sea Title Observations of organic falls from the abyssal Clarion-Clipperton Zone in the tropical eastern Pacific Ocean Authors Amon, Diva; Hilario, A; Arbizu, PM; Smith, CR Date Submitted 2020-09-11 Observations of organic falls in the abyssal Clarion-Clipperton Zone, tropical eastern Pacific Ocean Diva J. Amon a*, Ana Hilario b, Pedro Martinez Arbizu c, Craig R. Smith a a Department of Oceanography, University of Hawai’i at Mānoa, 1000 Pope Road, Honolulu, HI 96822 USA b Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-125 Aveiro, Portugal c German Center for Marine Biodiversity Research, Senckenberg am Meer, Südstrand 44, D-26382 Wilhelmshaven, Germany *Corresponding author - D.J. Amon, [email protected] Acknowledgements The authors thank the National Research Foundation of Singapore, Ocean Mineral Singapore and the National University of Singapore for supporting this work done in partnership with the Keppel-NUS Corporate Laboratory, as well as UK Seabed Resources Ltd. Cruise SO239, EcoResponse was financed by the German Ministry of Education and Science BMBF as a contribution to the European project JPI-Oceans “Ecological Aspects of Deep-Sea Mining”. PMA acknowledges funding from the European Union Seventh Framework Programme (FP7/2007–2013) under the MIDAS project, grant agreement n° 603418 and funding from BMBF contract 03 F0707E. This work has also received funding from FCT (Apoios Especiais 2015 - Fundo de Apoio à Comunidade Científica) under the framework of JPI Oceans. Thanks to the Masters, crew and scientists of the RV Thompson (TN319, ABYSSLINE 02), the RV Sonne (SO239, EcoResponse) and the ROV Kiel 6000 (GEOMAR) for their support during fieldwork in the Clarion-Clipperton Zone. We are grateful to the AUV REMUS6000 team from Woods Hole Oceanographic Institution for the collection of the imagery during the UKSRL-funded AYBSSLINE 02 cruise. Further thanks to Dr. Jeffrey Drazen from the University of Hawai’i at Manoa for checking fish identifications, Christopher Mah from the Smithsonian Museum for identifying the asteroids, and Kai George from Senckenberg am Meer for help in identifying the laophontodid copepods. The conclusions put forward reflect the views of the authors alone. This is UH SOEST publication number XXXX. 1 1 Abstract 2 Organic falls can form nutrient-rich, ephemeral hotspots of productivity and biodiversity at the 3 deep-sea floor, especially in food-poor abyssal plains. We report here the first wood falls and 4 second carcass fall recorded from the Clarion-Clipperton Zone in the tropical eastern Pacific 5 Ocean, an area that could be mined for polymetallic nodules in the future. A small cetacean fall 6 in the mobile-scavenger stage likely recently arrived on the seafloor was observed, whereas most 7 of the wood falls were highly degraded. There were multiple species in attendance at the wood 8 falls including organic-fall specialists such as Xylophagaidae molluscs. Many of the taxa 9 attending the carcass fall were known mobile scavengers that regularly attend bait parcels in the 10 Pacific Ocean. These results further confirm that wood falls can occur at large distances (> 1450 11 km) from major land masses, providing an adequate supply of wood to the abyssal seafloor for 12 colonization by wood-boring molluscs and associated fauna. Organic falls may be regionally 13 abundant and are likely to influence species and habitat diversity in the abyssal areas of the 14 CCZ. 15 16 Keywords: whale fall, wood fall, scavenger, Clarion-Clipperton Zone, deep-sea mining, 17 Xylophagaidae 2 18 1. Introduction 19 Organic falls are ephemeral habitat islands, which include two important types: wood falls and 20 cetacean falls. These habitats are often nutrient-rich compared to the food-poor deep-sea floor, are 21 known to support a high diversity of both specialist and opportunistic species, are sources of 22 evolutionary novelty, and may also act as stepping stones between chemosynthetic deep-sea habitats 23 (Baco and Smith 2003; Distel et al. 2000; Smith et al. 2015). Whale falls, and to a lesser extent, wood 24 falls, pass through several decompositional stages on the deep-sea floor (Bienhold et al. 2013; Smith 25 and Baco 2003). Shortly after a cetacean carcass arrives on the seafloor, the mobile-scavenger stage 26 begins; during this stage, which may last weeks to years, the soft tissue is removed by large 27 scavenging organisms such as fish, galatheids and amphipods (Smith and Baco 2003; Smith et al. 28 2015). The enrichment-opportunist stage follows, supporting a different faunal assemblage that is 29 attracted to the detrital enrichment resulting from the previous stage, and can last for over 7 years 30 (Smith and Baco 2003; Smith et al. 2014a). This is followed by the sulfophilic stage, which occurs 31 when anaerobic microbial degradation of the lipid-rich skeleton creates reduced compounds that fuel a 32 chemosynthetic community that can last for decades (Amon et al. 2013; Schuller et al. 2004; Smith 33 and Baco 2003; Smith et al. 2015; Smith et al. 1998). Wood falls that are colonized by wood-boring 34 bivalves show a similar pattern to that of cetacean falls (Bienhold et al. 2013). The feeding activity of 35 wood-boring bivalves results in the deposition of detrital matter enriching the sediment surrounding 36 the wood fall (Bernardino et al. 2010; Bienhold et al. 2013). This enrichment stage can last for years 37 and leads to a sulfophilic stage as seen at most whale falls (Bernardino et al. 2010; Bienhold et al. 38 2013). 39 The Clarion-Clipperton Zone (CCZ) is a region of the tropical eastern Pacific Ocean where 40 deep-sea mining may take place in the near future (Ramirez-Llodra et al. 2011; Wedding et al. 2013). 41 High-grade polymetallic nodules, which could provide a commercial source of copper, cobalt, nickel, 42 and manganese (among other metals), are abundant in this six-million km2 region (Amon et al. 2016; 43 Clark et al. 2013). Thus far, there have been 16 leases (each up to 75,000 km2 in area) granted by the 44 International Seabed Authority for exploration in the CCZ with those for exploitation expected to soon 45 follow (https://www.isa.org.jm/). It is expected that nodule mining will drastically alter this unique 46 habitat and yet, very little is known about the ecology and biogeography of the fauna inhabiting the 47 region (Amon et al. 2016; Vanreusel et al. 2016). 48 Discoveries of organic-fall habitats have been serendipitous. It has been hypothesized that 49 cetacean falls are most abundant along cetacean migration routes, and wood falls in higher densities in 50 terrestrial conduits to the deep sea, e.g., estuarine areas, submarine canyons and on the continental 51 slope (Roman et al. 2014; Smith and Baco 2003; Vetter and Dayton 1998). Few organic falls have 52 been found in abyssal regions or even at great distances from land, likely not because they do not exist 53 but rather due to the low levels of deep-sea research in these remote areas. There has only been one 54 record of a natural modern organic fall in the CCZ: a large odontocete whale fall in the sulfophilic 3 55 stage, which was observed at 4850 m (Smith et al. 2015). Blackened areas of sediment and white 56 bacterial mats indicated the presence of sulfides resulting from the anaerobic decay of whale biomass 57 (Smith et al. 2015). The only recognizable fauna attending this whale fall were squat lobsters 58 (galatheids), likely from the genus Munidopsis (Smith et al. 2015). There have also been several 59 records of abyssal manganese-encrusted fossil whale falls in the CCZ (Heezen and Hollister 1971; 60 Smith et al. 2015)(Amon and Smith, unpublished data). However, no wood falls or wood-fall 61 associated fauna have been recorded from the vast region of the CCZ. Here, we present the first 62 records of wood falls, including one collected with associated fauna, and the second record of a likely 63 cetacean fall in the CCZ. We also discuss the ecology of these organic falls and the potential impacts 64 of polymetallic-nodule mining in the region on these unique habitats. 65 66 2. Methods and study sites 67 2.1. Locations of the organic falls 68 Seven organic falls were found serendipitously in the CCZ (Fig. 1). Four wood falls and a 69 cetacean fall were located during the second cruise of the ABYSSal baseLINE (ABYSSLINE) project, 70 AB02 (RV Thompson TN-319). This cruise conducted benthic baseline surveys in the exploration 71 contract area leased to UK Seabed Resources Ltd. (UK-1), the exploration contract area leased to 72 Ocean Minerals Singapore (OMS-1), and the International Seabed Authority’s Area of Particular 73 Environmental Interest 4 (APEI-4). Three wood falls (“A”, “B” and “C”) were observed during 74 megafaunal and geophysical surveys conducted by the AUV REMUS in the UK-1 exploration contract 75 area (Fig. 1 and Table 1). The cetacean fall and one wood fall “D” were observed during megafaunal 76 and geophysical surveys conducted by the AUV REMUS in the OMS-1 contract area (Fig. 1 and Table 77 1). Two more wood falls (“E” and “F”) were discovered during the SO239 EcoResponse cruise 78 onboard the RV Sonne, as part of the JPI Oceans (JPIO) “Ecological Aspects of Deep Sea Mining” 79 project. The falls were observed during two surveys using the ROV Kiel 6000. Wood fall “E” was 80 observed in an exploration contract area leased to IFREMER (IFREMER-East), and wood fall “F” was 81 observed in APEI-3, another of the areas targeted by the ISA for preservation (Fig. 1 and Table 1) 82 (Wedding et al.
Recommended publications
  • Polymetallic Nodules Are Essential for Food-Web Integrity of a Prospective Deep-Seabed Mining Area in Pacific Abyssal Plains
    www.nature.com/scientificreports OPEN Polymetallic nodules are essential for food‑web integrity of a prospective deep‑seabed mining area in Pacifc abyssal plains Tanja Stratmann1,2,3*, Karline Soetaert1, Daniel Kersken4,5 & Dick van Oevelen1 Polymetallic nodule felds provide hard substrate for sessile organisms on the abyssal seafoor between 3000 and 6000 m water depth. Deep‑seabed mining targets these mineral‑rich nodules and will likely modify the consumer‑resource (trophic) and substrate‑providing (non‑trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food‑web integrity remains unclear. Here, we use seafoor imagery and published literature to develop highly‑resolved trophic and non‑trophic interaction webs for the Clarion‑Clipperton Fracture Zone (CCZ, central Pacifc Ocean) and the Peru Basin (PB, South‑East Pacifc Ocean) and to assess how nodule removal may modify these networks. The CCZ interaction web included 1028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8044 links. We show that knock‑down efects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all taxa and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identifed stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food‑web integrity and that their absence will likely result in reduced local benthic biodiversity. Abyssal plains, the deep seafoor between 3000 and 6000 m water depth, have been relatively untouched by anthropogenic impacts due to their extreme depths and distance from continents 1.
    [Show full text]
  • Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
    Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B.
    [Show full text]
  • Mollusca, Pholadidae, Xylophagainae)
    Turner: Xylopholas altenai 97 n. gen. n. sp. A new genus and species of deep water wood-boring bivalve (Mollusca, Pholadidae, Xylophagainae) by Ruth+D. Turner Museum ofComparativeZoology, Harvard University, Cambridge,Mass., U.S.A. The Xylophagainae are marine wood-boring bivalves which are confined than 150 largely to depths greater meters. They are not found the intertidal the sublittoral in zone, occur in only in higher latitudes, and are the sole wood-borers in depths over 200 meters. The greatest known depth for the invasion oftest wood by Teredini- dae is 200 meters (Tipper, 1968). The known depth range for the Xylophagainae extends from two meters below low tide in Millport, Scotland, to 7290 meters in the Banda Trench, off Ceram. Only occasionally are they found in drift wood, and this is usually after storms, the water logged wood having been lifted offthe bottom and carried ashore by strong waves. The discovery of the new genus and species described here is the result of a world-wide study of the Xylophagainae, a subfamily of the Pholadidae characterized by teredinid-like shells and a small, divided mesoplax. They lack apophyses (as do the Jouannetiinae) and do not produce a callum in the adult stage (as in the Phola- in dinae). They are unique among the Pholadidae having a wood- storing caecum. The author is grateful to Dr. Frederick Bayer, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Dr. J0r- gen Knudsen, Universitetets Zoologiske Museum, Copenhagen, Den- mark, and Dr. W. Adam, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium, for the loan of specimens and the opportunity to remove specimens from dredged wood or other plant material in their collections.
    [Show full text]
  • Rov Kiel 6000“
    Journal of large-scale research facilities, 3, A117 (2017) http://dx.doi.org/10.17815/jlsrf-3-160 Published: 23.08.2017 Remotely Operated Vehicle “ROV KIEL 6000“ GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel * Facilities Coordinators: - Dr. Friedrich Abegg, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Germany, phone: +49(0) 431 600 2134, email: [email protected] - Dr. Peter Linke, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Germany, phone: +49(0) 431 600 2115, email: [email protected] Abstract: The remotely operated vehicle ROV KIEL 6000 is a deep diving platform rated for water depths of 6000 meters. It is linked to a surface vessel via an umbilical cable transmitting power (copper wires) and data (3 single-mode glass bers). As standard it comes equipped with still and video cameras and two dierent manipulators providing eyes and hands in the deep. Besides this a set of other tools may be added depending on the mission tasks, ranging from simple manipulative tools such as chisels and shovels to electrically connected instruments which can send in-situ data to the ship through the ROVs network, allowing immediate decisions upon manipulation or sampling strategies. 1 Introduction ROV KIEL 6000 was manufactured by FMCTI / Schilling Robotics LLC (CA/USA) and was delivered to GEOMAR, Kiel in 2007. Funding came from the German state of Schleswig-Holstein, whose capital city Kiel provided the name. The ROV was designed and built to specications which aimed at a balance between system weight, capabilities of the supporting research vessels and the scientic demands. It is one of the most versatile ROV systems world-wide, rated for 6000 m water depth, reaching approx.
    [Show full text]
  • Download-The-Data (Accessed on 12 July 2021))
    diversity Article Integrative Taxonomy of New Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region Kareen E. Schnabel 1,* , Qi Kou 2,3 and Peng Xu 4 1 Coasts and Oceans Centre, National Institute of Water & Atmospheric Research, Private Bag 14901 Kilbirnie, Wellington 6241, New Zealand 2 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 3 College of Marine Science, University of Chinese Academy of Sciences, Beijing 100049, China 4 Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; [email protected] * Correspondence: [email protected]; Tel.: +64-4-386-0862 Abstract: The New Zealand fauna of the crustacean infraorder Stenopodidea, the coral and sponge shrimps, is reviewed using both classical taxonomic and molecular tools. In addition to the three species so far recorded in the region, we report Spongicola goyi for the first time, and formally describe three new species of Spongicolidae. Following the morphological review and DNA sequencing of type specimens, we propose the synonymy of Spongiocaris yaldwyni with S. neocaledonensis and review a proposed broad Indo-West Pacific distribution range of Spongicoloides novaezelandiae. New records for the latter at nearly 54◦ South on the Macquarie Ridge provide the southernmost record for stenopodidean shrimp known to date. Citation: Schnabel, K.E.; Kou, Q.; Xu, Keywords: sponge shrimp; coral cleaner shrimp; taxonomy; cytochrome oxidase 1; 16S ribosomal P. Integrative Taxonomy of New RNA; association; southwest Pacific Ocean Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region.
    [Show full text]
  • Molluscan Studies
    Journal of The Malacological Society of London Molluscan Studies Journal of Molluscan Studies (2013) 79: 90–94. doi:10.1093/mollus/eys037 RESEARCH NOTE Downloaded from https://academic.oup.com/mollus/article-abstract/79/1/90/1029851 by IFREMER user on 14 November 2018 PROGENETIC DWARF MALES IN THE DEEP-SEA WOOD-BORING GENUS XYLOPHAGA (BIVALVIA: PHOLADOIDEA) Takuma Haga1 and Tomoki Kase2 1Marine Biodiversity Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan; and 2Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan Correspondence: T. Haga; e-mail: [email protected] Sunken plant debris (sunken wood, hereafter) in deep-sea absence of pelagic larval development implies a low capacity environments harbours an idiosyncratic fauna that is based dir- for dispersal and for finding ephemeral resources in the deep ectly or indirectly on wood decomposition (Turner, 1973, sea (Knudsen, 1961; Scheltema, 1994; Voight, 2009). 1978). This resource is ecologically comparable with deep-sea An alternative hypothesis concerning the association of tiny whale-falls, because of its ephemeral nature (Distel et al., individuals with larger conspecifics in many Xylophaga species 2000). The obligate wood-boring and wood-consuming (xyl- is that, instead of externally-brooded offspring, they represent ophagous) bivalve genera Xylophaga, Xylopholas and Xyloredo, mating partners in the form of dwarf males. Dwarf males are, all belonging to the family Xylophagaidae (Turner, 2002;we in general, tiny individuals (50% or less of the normal body here regard it as an independent family based on unpublished size) that attach to large individuals in gonochoristic organ- molecular phylogenetic data of TH), occur primarily in the isms.
    [Show full text]
  • Vision-Based Shipwreck Mapping: on Evaluating Features Quality and Open Source State Estimation Packages
    Vision-Based Shipwreck Mapping: on Evaluating Features Quality and Open Source State Estimation Packages A. Quattrini Li, A. Coskun, S. M. Doherty, S. Ghasemlou, A. S. Jagtap, M. Modasshir, S. Rahman, A. Singh, M. Xanthidis, J. M. O’Kane and I. Rekleitis Computer Science and Engineering Department, University of South Carolina Email: [albertoq,yiannisr,jokane]@cse.sc.edu, [acoskun,dohertsm,sherving,ajagtap,modasshm,srahman,akanksha,mariosx]@email.sc.edu Abstract—Historical shipwrecks are important for many rea- sons, including historical, touristic, and environmental. Cur- rently, limited efforts for constructing accurate models are performed by divers that need to take measurements manually using a grid and measuring tape, or using handheld sensors. A commercial product, Google Street View1, contains underwater panoramas from select location around the planet including a few shipwrecks, such as the SS Antilla in Aruba and the Yongala at the Great Barrier Reef. However, these panoramas contain no geometric information and thus there are no 3D representations available of these wrecks. This paper provides, first, an evaluation of visual features quality in datasets that span from indoor to underwater ones. Second, by testing some open-source vision-based state estimation packages on different shipwreck datasets, insights on open chal- Fig. 1. Aqua robot at the Pamir shipwreck, Barbados. lenges for shipwrecks mapping are shown. Some good practices for replicable results are also discussed. demonstrations. However, applying any of these packages on a I. INTRODUCTION new dataset has been proven extremely challenging, because Historical shipwrecks tell an important part of history and of two main factors: software engineering challenges, such at the same time have a special allure for most humans, as as lack of documentation, compilation, dependencies; and exemplified by the plethora of movies and artworks of the algorithmic limitations—e.g., special initialization motions for Titanic.
    [Show full text]
  • Atlantic Ridge (5°S - 11°S) (MAR-SÜD V)
    Mid-Atlantic Expedition 2009 FS METEOR Cruise No. 78, Leg 2 Mantle to ocean on the southern Mid- Atlantic Ridge (5°S - 11°S) (MAR-SÜD V) 02.04.2009 Port of Spain – 11.05.2009 Rio de Janeiro SPP 1144: “From Mantle to Ocean: Energy, Material and Life Cycles at Spreading Axes”. SPP 1144 Cruise Report M78/2 June 2009 Content Page 2.1 Participants 3 2.2 Research Program 5 2.3 Narrative of the Cruise 7 2.4 Preliminary Results 13 2.4.1 ROV Kiel 6000 Deployments 13 2.4.2 AUV-Dives 15 2.4.3 Geological Observations and Sampling 21 2.4.4 Physical Oceanography 37 2.4.5 Fluid Chemistry 44 2.4.6 Gases in Hydrothermal Fluids and Plumes 48 2.4.7 Microbial Ecology 52 2.4.8. Hydrothermal Symbioses 56 2.4.9 Volatile Organohalogens 59 2.4.10 Temperature Measurements of Hydrothermal Fluids 64 2.5. Journey Course and Weather 67 2.6 References 69 2.7 Acknowledgments 70 Appendix A 2.1 Stationlist A 1 A 2.2 ROV Station Protocols A 4 A 2.3 Rock Sampling Protocol M78/2: Inside Corner High at 5°S A 56 A 2.4 Fluid Chemistry A 64 A 2.5 Gas Chemistry A 72 A 2.6 Microbiology A 74 A 2.7 Animals Collected During M 78/2 for Symbioses Research A 81 A 2.8 Temperature Measurements of Hydrothermal Fluids A 83 2 / 70 SPP 1144 Cruise Report M78/2 June 2009 2.1 Participants Leg M 78/2 1.
    [Show full text]
  • Algemene Directie Material Resources Divisie Overheidsopdrachten
    Brussel, de … MRMP-N/P 17-… Pagina’s: 31 (… Bijl) Algemene Directie Material Resources Divisie Overheidsopdrachten BESTEK MRMP-N/P Nr 17NP002 betreffende de verwerving van een nieuw oceanografisch onderzoeksschip (Research Vessel) voor de Programmatorische Overheidsdienst Wetenschapsbeleid opgesteld op basis van de Wet van 15 juni 2006 (inzake klassieke sectoren) Correspondent: Mark ARNALSTEEN Algemene Directie Material Resources Fregatkapitein Militair Administrateur Divisie Overheidsopdrachten Tel: +32(0)2/44.15432 Sectie Naval Systems Fax: +32(0)2/44.39427 Ondersectie Programma’s E-mail: [email protected] Kwartier Koningin ELISABETH Eversestraat 1 1140 BRUSSEL BELGIË BESTEK MRMP-N/P Nr 17NP002 Pagina 2 Inhoudstafel 0. Gebruikte afkortingen ............................................................................................................ 5 1. Bijzondere bepalingen betreffende de uitvoering van de opdracht ................................... 6 a. Afwijkingen van de algemene uitvoeringsregels (KB2) ...................................................................... 6 b. Andersluidende bepalingen betreffende de toepassing van het KB1 ................................................ 6 2. De overheidsopdracht ........................................................................................................... 6 a. Toepasselijke wetgeving .................................................................................................................... 6 b. Op deze overheidsopdracht toepasselijke opdrachtdocumenten
    [Show full text]
  • Deep-Sea Life Issue 16, January 2021 Cruise News Sedimentation Effects Survey Series (ROBES III) Completed
    Deep-Sea Life Issue 16, January 2021 Despite the calamity caused by the global pandemic, we are pleased to report that our deep ocean continues to be investigated at an impressive rate. Deep-Sea Life 16 is another bumper issue, brimming with newly published research, project news, cruise news, scientist profiles and so on. Even though DOSI produce a weekly Deep-Sea Round Up newsletter and DOSI and DSBS are active on social media, there’s still plenty of breaking news for Deep- Sea Life! Firstly a quick update on the status of INDEEP. As most of you are aware, INDEEP was a legacy programme of the Census of Marine Life (2000-2010) and was established to address knowledge gaps in deep-sea ecology. Among other things, the INDEEP project played central role in the creation of the Deep-Ocean Stewardship Initiative and funded initial DOSI activities. In 2018, the DOSI Decade of Ocean Science working group was established with a view to identifying key priorities for deep-ocean science to support sustainable development and to ensure deep- ocean ecological studies were included in the UN Decade plans via truly global collaborative science. This has resulted in an exciting new initiative called “Challenger 150”. You are all invited to learn more about this during a webinar on 9th Feb (see p. 22 ). INDEEP has passed on the baton and has now officially closed its doors.Eva and I want to sincerely thank all those that led INDEEP with us and engaged in any of the many INDEEP actions. It was a productive programme that has left a strong legacy.
    [Show full text]
  • IFM-GEOMAR Report No. 50
    RV SONNE Fahrtbericht / Cruise Report SO239 EcoResponse Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule Field Systems Balboa (Panama) – Manzanillo (Mexico) 11.03. -30.04.2015 GEOMAR REPORT Berichte aus dem GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Nr. 25 (N. Ser.) November 2015 RV SONNE Fahrtbericht / Cruise Report SO239 EcoResponse Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule Field Systems Balboa (Panama) – Manzanillo (Mexico) 11.03. -30.04.2015 Berichte aus dem GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Nr. 25 (N. Ser.) ISSN Nr.: 2193-8113 Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel The GEOMAR Helmholtz Centre for Ocean Research Kiel ist Mitglied der Helmholtz-Gemeinschaft is a member of the Helmholtz Association of Deutscher Forschungszentren e.V. German Research Centres Herausgeber / Editor: Prof. Dr. Pedro Martínez Arbizu and Matthias Haeckel GEOMAR Report ISSN N..r 2193-8113, DOI 10.3289/GEOMAR_REP_NS_25_2015 Helmholtz-Zentrum für Ozeanforschung Kiel / Helmholtz Centre for Ocean Research Kiel GEOMAR Dienstgebäude Westufer / West Shore Building Düsternbrooker Weg 20 D-24105 Kiel Germany Helmholtz-Zentrum für Ozeanforschung Kiel / Helmholtz Centre for Ocean Research Kiel GEOMAR Dienstgebäude Ostufer / East Shore Building Wischhofstr. 1-3 D-24148 Kiel Germany Tel.: +49 431 600-0 Fax: +49 431 600-2805 www.geomar.de RV SONNE SO239 Cruise Report / Fahrtbericht Balboa (Panama) – Manzanillo (Mexico) 11th March 2015 – 30th April 2015 SO239 EcoResponse Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule field Systems Chief scientist: Prof. Dr. Pedro Martínez Arbizu, Senckenberg am Meer, Deutsches Zentrum für Marine Biodiversitätsforschung, Wilhelmshaven 1 TOC / Inhaltsverzeichnis Inhalt 1. Cruise summary / Zusammenfassung .................................................................................... 4 1.1 German / Deutsch ............................................................................................................
    [Show full text]
  • Twenty-Fifth International Research Ship Operators Meeting (IRSO) 16–19 October 2012 National Oceanography Center Southampton
    Twenty‐fifth International Research Ship Operators Meeting (IRSO) 16–19 October 2012 National Oceanography Center Southampton, UK RS I O 2012 25th IRSO 2012 ‐ Minutes Southampton, UK A. PROCEEDINGS 6 A.1. Opening Session 6 A.1.1. Welcome and administrative matters 6 A.1.2. Round table introduction of participants 6 A.1.3. Welcome and introduction to the National Oceanography Center 6 A.1.4. Review of the minutes of 24th IRSO and adoption of agenda 6 A.1.5. Membership rules and adoption of the Terms of Reference 7 A.2. Theme 1: Delegates Reports of Activities 8 A.3. Theme 2: Research Vessel Builds, Modifications & Performance 9 A.3.1. Maritime environmental issues ‐ Gillian Reynolds (GLReynolds) 9 A.3.2. RV Investigator – Toni Moate (CSIRO) 9 A.3.3. RRS Discovery – Ed Cooper (NOC) 9 A.3.4. LICORICE Project – Olivier Lefort (IFREMER) 9 A.3.5. Ke Xue – Yin Hong (IOCAS) 9 A.3.6. RV Sonne replacement – Klaus von Broeckel (GEOMAR) 9 A.3.7. UNOLS/NSF fleet renewal – Bob Houtman (NSF) & Tim Schnoor (US Naval Research) 9 A.3.8. US NOAA fleet – Mike Devany (NOAA) 9 A.3.9. Canadian fleet renewal – Jennifer Nield (Fisheries & Oceans) and Eric Lengelle (Canadian CG) 9 A.3.10. JAMSTEC new build – Kazohiro Maeda (JAMSTEC) 9 A.3.11. IMR new builds – Hilde Spjeld (IMR Norway) 9 A.3.12. HROV: new AUV/ROV – Olivier Lefort (IFREMER) 9 A.3.13. Contracted maintenance of an older vessel – Ron Plaschke (CSIRO) 9 A.3.14. Contracted vs in‐housed management of RV’s – Aodhan FitzGerald (MI) 9 A.3.15.
    [Show full text]