IFM-GEOMAR Report No. 50

Total Page:16

File Type:pdf, Size:1020Kb

IFM-GEOMAR Report No. 50 RV SONNE Fahrtbericht / Cruise Report SO239 EcoResponse Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule Field Systems Balboa (Panama) – Manzanillo (Mexico) 11.03. -30.04.2015 GEOMAR REPORT Berichte aus dem GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Nr. 25 (N. Ser.) November 2015 RV SONNE Fahrtbericht / Cruise Report SO239 EcoResponse Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule Field Systems Balboa (Panama) – Manzanillo (Mexico) 11.03. -30.04.2015 Berichte aus dem GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Nr. 25 (N. Ser.) ISSN Nr.: 2193-8113 Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel The GEOMAR Helmholtz Centre for Ocean Research Kiel ist Mitglied der Helmholtz-Gemeinschaft is a member of the Helmholtz Association of Deutscher Forschungszentren e.V. German Research Centres Herausgeber / Editor: Prof. Dr. Pedro Martínez Arbizu and Matthias Haeckel GEOMAR Report ISSN N..r 2193-8113, DOI 10.3289/GEOMAR_REP_NS_25_2015 Helmholtz-Zentrum für Ozeanforschung Kiel / Helmholtz Centre for Ocean Research Kiel GEOMAR Dienstgebäude Westufer / West Shore Building Düsternbrooker Weg 20 D-24105 Kiel Germany Helmholtz-Zentrum für Ozeanforschung Kiel / Helmholtz Centre for Ocean Research Kiel GEOMAR Dienstgebäude Ostufer / East Shore Building Wischhofstr. 1-3 D-24148 Kiel Germany Tel.: +49 431 600-0 Fax: +49 431 600-2805 www.geomar.de RV SONNE SO239 Cruise Report / Fahrtbericht Balboa (Panama) – Manzanillo (Mexico) 11th March 2015 – 30th April 2015 SO239 EcoResponse Assessing the Ecology, Connectivity and Resilience of Polymetallic Nodule field Systems Chief scientist: Prof. Dr. Pedro Martínez Arbizu, Senckenberg am Meer, Deutsches Zentrum für Marine Biodiversitätsforschung, Wilhelmshaven 1 TOC / Inhaltsverzeichnis Inhalt 1. Cruise summary / Zusammenfassung .................................................................................... 4 1.1 German / Deutsch ............................................................................................................. 4 1.2 English / Englisch ............................................................................................................. 4 2. Participants / Teilnehmer ........................................................................................................ 4 2.1 Principal investigators / Leitende Wissenschaftler ........................................................... 4 2.2 Scientific party / wissenschaftliche Fahrtteilnehmer ....................................................... 5 2.3 Crew / Mannschaft ........................................................................................................... 8 3. Narrative of the cruise / Ablauf der Forschungsfahrt ............................................................. 9 4. Aims of the Cruise / Zielsetzung der Forschungsfahrt ......................................................... 15 5. Agenda of the cruise / Programm der Forschungsfahrt ........................................................ 16 6. Settings of the working area / Beschreibung des Arbeitsgebiets ......................................... 17 7. Work details and first results / Beschreibung der Arbeiten im Detail einschließlich erster Ergebnisse ................................................................................................................................ 23 7.1 Description of the Gears ................................................................................................. 23 7.1.1 Ship-based hydroacoustic mapping (EM122) (Greinert) ............................................ 23 7.1.2. AUV Mission Summary (Rothenbeck, Steinführer, Triebe, Wenzlaff) ...................... 25 7.1.3 CTD (Vasiliu, Preuss) .................................................................................................. 28 7.1.4 Deployment of ROV KIEL 6000 during expedition SO239 onboard RV SONNE in the Clarion Clipperton Fracture Zone (CCZ) in the northern tropical Pacific Ocean (ROV- Team GEOMAR, Kiel: Abegg, Bodendorfer, Cuno, Hennke, Huusmann, Pieper, Plöger and Suck) ..................................................................................................................................... 29 7.1.5 Multi-corer (MUC) (Vanreusel, Macheriotou, Khodami, Raschka, Fioretti, Martinez Arbizu) ................................................................................................................................. 33 7.1.6 Box-corer (Menot, Hoffmann) .................................................................................... 35 7.1.7 Epibenthic sledge (Kaiser) .......................................................................................... 36 7.1.8 Gravity corer (Volz, Preuss, Ozegowski) .................................................................... 38 7.1.9 Amphipod/Ostracod Traps (Robert) ............................................................................ 39 7.1.10 DIAS Image Annotation (Schoening) ....................................................................... 40 7.1.11 MAPR measurements (Weiß, Schoening and Greinert) ............................................ 41 7.1.12 BoBo, DOS Lander and thermistor mooring (Greinert, de Stigter, van Haren, Weiß and Schoening) ..................................................................................................................... 42 7.2 First results ......................................................................................................................... 46 7.2.1 Ship-based hydroacoustic mapping (EM122), some results (Greinert) ...................... 46 7.2.2 Water column characteristics (Vasiliu) ........................................................................ 57 7.2.2.1 Hydrographic conditions ...................................................................................... 57 7.2.2.2 Turbidity and Suspended Particulate Matter ........................................................ 60 2 7.2.2.3 Chemistry ............................................................................................................. 61 7.2.2.4 Biology ................................................................................................................. 64 7.2.3 Water column, pore water and sediment geochemistry (Preuss, Volz, Löffler, Ozegowski, Moje) ................................................................................................................ 65 7.2.4 Metazoan meiofauna (Vanreusel, Macheriotou, Khodami, Raschka, Martinez Arbizu) .............................................................................................................................................. 74 7.2.6 Macrofauna (Kaiser, Menot, Błażewicz-Paszkowycz, Bonifacio, Neal, Schnurr, Wawrzyniak-Wydrowska) .................................................................................................... 76 Distribution of samples ..................................................................................................... 87 Distribution of samples ..................................................................................................... 88 7.2.6.1 Preliminary Results .................................................................................................. 89 7.2.7 Scavengers (Robert) .................................................................................................. 103 7.2.8 Kiel6000 ROV dives (Ribeiro, Hilário, Vanreusel, Menot and Martinez Arbizu) .... 104 7.2.8.2 Video transects ....................................................................................................... 112 7.2.8.3 Specimen collection ............................................................................................... 113 7.2.8.4 Push cores ............................................................................................................... 116 7.2.9 Megafauna collection (Hilário, Kersken, Ribeiro) .................................................... 123 7.2.9.1 Objectives ........................................................................................................... 123 7.2.9.2 Sample processing .............................................................................................. 124 7.2.9.3 Preliminary Results ................................................................................................ 126 7.2.10 AUV Image Management, Image Processing, Pattern Recognition & Mosaicking (Schoening) ........................................................................................................................ 129 7.2.11 Birds, turtles and mammals (Robert) ...................................................................... 141 7.2.12 Preliminary MAPR results (Greinert, Weiß, and Schoening) ................................. 143 7.2.13 Lander and thermistor mooring deployments in the German PA1 area (Greinert, de Stigter, van Haren, Weiß and Schoening) ........................................................................... 144 7.2.13.1 Deployments and sampling settings ................................................................. 144 7.2.13.2 Preliminary DOS lander results ........................................................................ 146 7.2.14. AUV Mission Summaries (Rothenbeck, Steinführer, Triebe, Wenzlaff) ............... 149 7.2.15 Impact of deep-sea mining on microbial food webs (Fioretti, Gambi, Dell’Anno and Danovaro) ..........................................................................................................................
Recommended publications
  • Proceedings of the Biological Society of Washington
    PROC. BIOL. SOC. WASH. 105(3), 1992, pp. 575-584 DESCRIPTION OF THE MATURE FEMALE AND EPICARIDIUM LARVA OF CABIROPS MONTEREYENSIS SASSAMAN FROM SOUTHERN CALIFORNIA (CRUSTACEA: ISOPODA: CABIROPIDAE) Clay Sassaman Abstract. —The cryptoniscoid isopod Cabirops montereyensis Sassaman, pre- viously known only from Monterey Bay, California, has been collected at Malibu, California. Diagnostic characters of the cryptoniscus larva are illus- trated with scanning electron microscopy and the mature female and epicari- dium larva are described. The mature female exhibits characteristics typical of most species in the genus, especially those parasitic on pseudionine bopyrids. The epicaridium larva differs from other described Cabiropidae in details of the appendages and in the possession of a prominent anal tube. Cabirops Kossmann, 1884 is a genus of four Macrocystis holdfasts collected at Mal- hyperparasitic isopod crustaceans that are ibu, California, over the last three years. brood parasites of bopyrid isopods which Comparisons of cryptoniscus larvae and are, in turn, branchial parasites of decapod immature females between these collections shrimps and crabs. Cabirops has a complex and those from Monterey Bay indicate that taxonomy stemming from confusion about the southern California specimens represent the relationship between it and Paracabi- a range extension of C montereyensis. The rops Caroli, 1953, which is now considered diagnosis of the cryptoniscus stage is illus- a junior synonym (Restivo 1975), and from trated, and supplemented by descriptions of the number of unnamed species which have several new characters, based on scanning been assigned to this genus. I have reviewed electron microscopy. the nomenclature of the fifteen described Neither the mature female nor the epi- species of Cabirops elsewhere (Sassaman caridium stage of C.
    [Show full text]
  • Polymetallic Nodules Are Essential for Food-Web Integrity of a Prospective Deep-Seabed Mining Area in Pacific Abyssal Plains
    www.nature.com/scientificreports OPEN Polymetallic nodules are essential for food‑web integrity of a prospective deep‑seabed mining area in Pacifc abyssal plains Tanja Stratmann1,2,3*, Karline Soetaert1, Daniel Kersken4,5 & Dick van Oevelen1 Polymetallic nodule felds provide hard substrate for sessile organisms on the abyssal seafoor between 3000 and 6000 m water depth. Deep‑seabed mining targets these mineral‑rich nodules and will likely modify the consumer‑resource (trophic) and substrate‑providing (non‑trophic) interactions within the abyssal food web. However, the importance of nodules and their associated sessile fauna in supporting food‑web integrity remains unclear. Here, we use seafoor imagery and published literature to develop highly‑resolved trophic and non‑trophic interaction webs for the Clarion‑Clipperton Fracture Zone (CCZ, central Pacifc Ocean) and the Peru Basin (PB, South‑East Pacifc Ocean) and to assess how nodule removal may modify these networks. The CCZ interaction web included 1028 compartments connected with 59,793 links and the PB interaction web consisted of 342 compartments and 8044 links. We show that knock‑down efects of nodule removal resulted in a 17.9% (CCZ) to 20.8% (PB) loss of all taxa and 22.8% (PB) to 30.6% (CCZ) loss of network links. Subsequent analysis identifed stalked glass sponges living attached to the nodules as key structural species that supported a high diversity of associated fauna. We conclude that polymetallic nodules are critical for food‑web integrity and that their absence will likely result in reduced local benthic biodiversity. Abyssal plains, the deep seafoor between 3000 and 6000 m water depth, have been relatively untouched by anthropogenic impacts due to their extreme depths and distance from continents 1.
    [Show full text]
  • Translation 3204
    4 of 6 I' rÉ:1°.r - - - Ï''.ec.n::::,- - — TRANSLATION 3204 and Van, else--- de ,-0,- SERIES NO(S) ^4p €'`°°'°^^`m`^' TRANSLATION 3204 5 of 6 serceaesoe^nee SERIES NO.(S) serv,- i°- I' ann., Canada ° '° TRANSLATION 3204 6 of 6 SERIES NO(S) • =,-""r I FISHERIES AND MARINE SERVICE ARCHIVE:3 Translation Series No. 3204 Multidisciplinary investigations of the continental slope in the Gulf of Alaska area by Z.A. Filatova (ed.) Original title: Kompleksnyye issledovaniya materikovogo sklona v raione Zaliva Alyaska From: Trudy Instituta okeanologii im. P.P. ShirshoV (Publications of the P.P. Shirshov Oceanpgraphy Institute), 91 : 1-260, 1973 Translated by the Translation Bureau(HGC) Multilingual Services Division Department of the Secretary of State of Canada Department of the Environment Fisheries and Marine Service Pacific Biological Station Nanaimo, B.C. 1974 ; 494 pages typescriPt "DEPARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU BUREAU DES TRADUCTIONS MULTILINGUAL SERVICES DIVISION DES SERVICES DIVISION MULTILINGUES ceÔ 'TRANSLATED FROM - TRADUCTION DE INTO - EN Russian English Ain HOR - AUTEUR Z. A. Filatova (ed.) ri TL E IN ENGLISH - TITRE ANGLAIS Multidisciplinary investigations of the continental slope in the Gulf of Aâaska ares TI TLE IN FORE I GN LANGuAGE (TRANS LI TERA TE FOREIGN CHARACTERS) TITRE EN LANGUE ÉTRANGÈRE (TRANSCRIRE EN CARACTÈRES ROMAINS) Kompleksnyye issledovaniya materikovogo sklona v raione Zaliva Alyaska. REFERENCE IN FOREI GN LANGUAGE (NAME: OF BOOK OR PUBLICATION) IN FULL. TRANSLI TERATE FOREIGN CHARACTERS, RÉFÉRENCE EN LANGUE ÉTRANGÈRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET, TRANSCRIRE EN CARACTÈRES ROMAINS. Trudy Instituta okeanologii im. P.P.
    [Show full text]
  • Rov Kiel 6000“
    Journal of large-scale research facilities, 3, A117 (2017) http://dx.doi.org/10.17815/jlsrf-3-160 Published: 23.08.2017 Remotely Operated Vehicle “ROV KIEL 6000“ GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel * Facilities Coordinators: - Dr. Friedrich Abegg, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Germany, phone: +49(0) 431 600 2134, email: [email protected] - Dr. Peter Linke, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Germany, phone: +49(0) 431 600 2115, email: [email protected] Abstract: The remotely operated vehicle ROV KIEL 6000 is a deep diving platform rated for water depths of 6000 meters. It is linked to a surface vessel via an umbilical cable transmitting power (copper wires) and data (3 single-mode glass bers). As standard it comes equipped with still and video cameras and two dierent manipulators providing eyes and hands in the deep. Besides this a set of other tools may be added depending on the mission tasks, ranging from simple manipulative tools such as chisels and shovels to electrically connected instruments which can send in-situ data to the ship through the ROVs network, allowing immediate decisions upon manipulation or sampling strategies. 1 Introduction ROV KIEL 6000 was manufactured by FMCTI / Schilling Robotics LLC (CA/USA) and was delivered to GEOMAR, Kiel in 2007. Funding came from the German state of Schleswig-Holstein, whose capital city Kiel provided the name. The ROV was designed and built to specications which aimed at a balance between system weight, capabilities of the supporting research vessels and the scientic demands. It is one of the most versatile ROV systems world-wide, rated for 6000 m water depth, reaching approx.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • Download-The-Data (Accessed on 12 July 2021))
    diversity Article Integrative Taxonomy of New Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region Kareen E. Schnabel 1,* , Qi Kou 2,3 and Peng Xu 4 1 Coasts and Oceans Centre, National Institute of Water & Atmospheric Research, Private Bag 14901 Kilbirnie, Wellington 6241, New Zealand 2 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 3 College of Marine Science, University of Chinese Academy of Sciences, Beijing 100049, China 4 Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; [email protected] * Correspondence: [email protected]; Tel.: +64-4-386-0862 Abstract: The New Zealand fauna of the crustacean infraorder Stenopodidea, the coral and sponge shrimps, is reviewed using both classical taxonomic and molecular tools. In addition to the three species so far recorded in the region, we report Spongicola goyi for the first time, and formally describe three new species of Spongicolidae. Following the morphological review and DNA sequencing of type specimens, we propose the synonymy of Spongiocaris yaldwyni with S. neocaledonensis and review a proposed broad Indo-West Pacific distribution range of Spongicoloides novaezelandiae. New records for the latter at nearly 54◦ South on the Macquarie Ridge provide the southernmost record for stenopodidean shrimp known to date. Citation: Schnabel, K.E.; Kou, Q.; Xu, Keywords: sponge shrimp; coral cleaner shrimp; taxonomy; cytochrome oxidase 1; 16S ribosomal P. Integrative Taxonomy of New RNA; association; southwest Pacific Ocean Zealand Stenopodidea (Crustacea: Decapoda) with New Species and Records for the Region.
    [Show full text]
  • California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida)
    California “Epicaridean” Isopods Superfamilies Bopyroidea and Cryptoniscoidea (Crustacea, Isopoda, Cymothoida) by Timothy D. Stebbins Presented to SCAMIT 13 February 2012 City of San Diego Marine Biology Laboratory Environmental Monitoring & Technical Services Division • Public Utilities Department (Revised 1/18/12) California Epicarideans Suborder Cymothoida Subfamily Phyllodurinae Superfamily Bopyroidea Phyllodurus abdominalis Stimpson, 1857 Subfamily Athelginae Family Bopyridae * Anathelges hyphalus (Markham, 1974) Subfamily Pseudioninae Subfamily Hemiarthrinae Aporobopyrus muguensis Shiino, 1964 Hemiarthrus abdominalis (Krøyer, 1840) Aporobopyrus oviformis Shiino, 1934 Unidentified species † Asymmetrione ambodistorta Markham, 1985 Family Dajidae Discomorphus magnifoliatus Markham, 2008 Holophryxus alaskensis Richardson, 1905 Goleathopseudione bilobatus Román-Contreras, 2008 Family Entoniscidae Munidion pleuroncodis Markham, 1975 Portunion conformis Muscatine, 1956 Orthione griffenis Markham, 2004 Superfamily Cryptoniscoidea Pseudione galacanthae Hansen, 1897 Family Cabiropidae Pseudione giardi Calman, 1898 Cabirops montereyensis Sassaman, 1985 Subfamily Bopyrinae Family Cryptoniscidae Bathygyge grandis Hansen, 1897 Faba setosa Nierstrasz & Brender à Brandis, 1930 Bopyrella calmani (Richardson, 1905) Family Hemioniscidae Probopyria sp. A Stebbins, 2011 Hemioniscus balani Buchholz, 1866 Schizobopyrina striata (Nierstrasz & Brender à Brandis, 1929) Subfamily Argeiinae † Unidentified species of Hemiarthrinae infesting Argeia pugettensis
    [Show full text]
  • Vision-Based Shipwreck Mapping: on Evaluating Features Quality and Open Source State Estimation Packages
    Vision-Based Shipwreck Mapping: on Evaluating Features Quality and Open Source State Estimation Packages A. Quattrini Li, A. Coskun, S. M. Doherty, S. Ghasemlou, A. S. Jagtap, M. Modasshir, S. Rahman, A. Singh, M. Xanthidis, J. M. O’Kane and I. Rekleitis Computer Science and Engineering Department, University of South Carolina Email: [albertoq,yiannisr,jokane]@cse.sc.edu, [acoskun,dohertsm,sherving,ajagtap,modasshm,srahman,akanksha,mariosx]@email.sc.edu Abstract—Historical shipwrecks are important for many rea- sons, including historical, touristic, and environmental. Cur- rently, limited efforts for constructing accurate models are performed by divers that need to take measurements manually using a grid and measuring tape, or using handheld sensors. A commercial product, Google Street View1, contains underwater panoramas from select location around the planet including a few shipwrecks, such as the SS Antilla in Aruba and the Yongala at the Great Barrier Reef. However, these panoramas contain no geometric information and thus there are no 3D representations available of these wrecks. This paper provides, first, an evaluation of visual features quality in datasets that span from indoor to underwater ones. Second, by testing some open-source vision-based state estimation packages on different shipwreck datasets, insights on open chal- Fig. 1. Aqua robot at the Pamir shipwreck, Barbados. lenges for shipwrecks mapping are shown. Some good practices for replicable results are also discussed. demonstrations. However, applying any of these packages on a I. INTRODUCTION new dataset has been proven extremely challenging, because Historical shipwrecks tell an important part of history and of two main factors: software engineering challenges, such at the same time have a special allure for most humans, as as lack of documentation, compilation, dependencies; and exemplified by the plethora of movies and artworks of the algorithmic limitations—e.g., special initialization motions for Titanic.
    [Show full text]
  • Benvenuto, C and SC Weeks. 2020
    --- Not for reuse or distribution --- 8 HERMAPHRODITISM AND GONOCHORISM Chiara Benvenuto and Stephen C. Weeks Abstract This chapter compares two sexual systems: hermaphroditism (each individual can produce gametes of either sex) and gonochorism (each individual produces gametes of only one of the two distinct sexes) in crustaceans. These two main sexual systems contain a variety of alternative modes of reproduction, which are of great interest from applied and theoretical perspectives. The chapter focuses on the description, prevalence, analysis, and interpretation of these sexual systems, centering on their evolutionary transitions. The ecological correlates of each reproduc- tive system are also explored. In particular, the prevalence of “unusual” (non- gonochoristic) re- productive strategies has been identified under low population densities and in unpredictable/ unstable environments, often linked to specific habitats or lifestyles (such as parasitism) and in colonizing species. Finally, population- level consequences of some sexual systems are consid- ered, especially in terms of sex ratios. The chapter aims to provide a broad and extensive overview of the evolution, adaptation, ecological constraints, and implications of the various reproductive modes in this extraordinarily successful group of organisms. INTRODUCTION 1 Historical Overview of the Study of Crustacean Reproduction Crustaceans are a very large and extraordinarily diverse group of mainly aquatic organisms, which play important roles in many ecosystems and are economically important. Thus, it is not surprising that numerous studies focus on their reproductive biology. However, these reviews mainly target specific groups such as decapods (Sagi et al. 1997, Chiba 2007, Mente 2008, Asakura 2009), caridean Reproductive Biology. Edited by Rickey D. Cothran and Martin Thiel.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Atlantic Ridge (5°S - 11°S) (MAR-SÜD V)
    Mid-Atlantic Expedition 2009 FS METEOR Cruise No. 78, Leg 2 Mantle to ocean on the southern Mid- Atlantic Ridge (5°S - 11°S) (MAR-SÜD V) 02.04.2009 Port of Spain – 11.05.2009 Rio de Janeiro SPP 1144: “From Mantle to Ocean: Energy, Material and Life Cycles at Spreading Axes”. SPP 1144 Cruise Report M78/2 June 2009 Content Page 2.1 Participants 3 2.2 Research Program 5 2.3 Narrative of the Cruise 7 2.4 Preliminary Results 13 2.4.1 ROV Kiel 6000 Deployments 13 2.4.2 AUV-Dives 15 2.4.3 Geological Observations and Sampling 21 2.4.4 Physical Oceanography 37 2.4.5 Fluid Chemistry 44 2.4.6 Gases in Hydrothermal Fluids and Plumes 48 2.4.7 Microbial Ecology 52 2.4.8. Hydrothermal Symbioses 56 2.4.9 Volatile Organohalogens 59 2.4.10 Temperature Measurements of Hydrothermal Fluids 64 2.5. Journey Course and Weather 67 2.6 References 69 2.7 Acknowledgments 70 Appendix A 2.1 Stationlist A 1 A 2.2 ROV Station Protocols A 4 A 2.3 Rock Sampling Protocol M78/2: Inside Corner High at 5°S A 56 A 2.4 Fluid Chemistry A 64 A 2.5 Gas Chemistry A 72 A 2.6 Microbiology A 74 A 2.7 Animals Collected During M 78/2 for Symbioses Research A 81 A 2.8 Temperature Measurements of Hydrothermal Fluids A 83 2 / 70 SPP 1144 Cruise Report M78/2 June 2009 2.1 Participants Leg M 78/2 1.
    [Show full text]
  • Algemene Directie Material Resources Divisie Overheidsopdrachten
    Brussel, de … MRMP-N/P 17-… Pagina’s: 31 (… Bijl) Algemene Directie Material Resources Divisie Overheidsopdrachten BESTEK MRMP-N/P Nr 17NP002 betreffende de verwerving van een nieuw oceanografisch onderzoeksschip (Research Vessel) voor de Programmatorische Overheidsdienst Wetenschapsbeleid opgesteld op basis van de Wet van 15 juni 2006 (inzake klassieke sectoren) Correspondent: Mark ARNALSTEEN Algemene Directie Material Resources Fregatkapitein Militair Administrateur Divisie Overheidsopdrachten Tel: +32(0)2/44.15432 Sectie Naval Systems Fax: +32(0)2/44.39427 Ondersectie Programma’s E-mail: [email protected] Kwartier Koningin ELISABETH Eversestraat 1 1140 BRUSSEL BELGIË BESTEK MRMP-N/P Nr 17NP002 Pagina 2 Inhoudstafel 0. Gebruikte afkortingen ............................................................................................................ 5 1. Bijzondere bepalingen betreffende de uitvoering van de opdracht ................................... 6 a. Afwijkingen van de algemene uitvoeringsregels (KB2) ...................................................................... 6 b. Andersluidende bepalingen betreffende de toepassing van het KB1 ................................................ 6 2. De overheidsopdracht ........................................................................................................... 6 a. Toepasselijke wetgeving .................................................................................................................... 6 b. Op deze overheidsopdracht toepasselijke opdrachtdocumenten
    [Show full text]