Species Diversity and Abundance of Shipworms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Short Historical Investigation Into Cross-Cultural Australian Ideas
Coolabah, No.11, 2013, ISSN 1988-5946, Observatori: Centre d’Estudis Australians, Australian Studies Centre, Universitat de Barcelona A short historical investigation into cross-cultural Australian ideas about the marine animal group Teredinidae, their socioecological consequences and some options 1 Mary Gardner Copyright©2013 Mary Gardner. This text may be archived and redistributed both in electronic form and in hard copy, provided that the author and journal are properly cited and no fee is charged. Abstract: How are contemporary multicultural coastal Australians, Aboriginals and settlers alike, to develop wiser ideas and practices towards marine animals as well as each other? To illustrate the importance and complexity of this question, I offer a short historical investigation of some contrasting ideas and practices held by Australian Aboriginal and settler cultures about marine animals of the group Teredinidae. I present two “screenshots”: one from the period 1798-1826 and another from 1970-2012. The first period examines a negative but influential interpretation by Thomas Malthus of a cross cultural encounter featuring Australian Aboriginal consumption of local Teredinidae known as “cobra”. While this cultural tone remains largely unchanged in the second period, the biological understanding of the marine animals has developed greatly. So has awareness of the socioecology of Teredinidae: their estuarine habitats and cultural significance. Their potential role as subjects of community based monitoring is undeveloped but could serve overlapping concerns of environmental justice as well as the restoration and “future proofing” of habitats. Such a new composite of ideas and practices will rely on better integration of biology with community based social innovations. -
Marine Bivalve Molluscs
Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. -
Wood-Eating Bivalves Daniel L
The University of Maine DigitalCommons@UMaine University of Maine Office of Research and Special Collections Sponsored Programs: Grant Reports 1-27-2006 Evolution of Endosymbiosis in (xylotrophic) Wood-Eating Bivalves Daniel L. Distel Principal Investigator; University of Maine, Orono Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports Part of the Marine Biology Commons Recommended Citation Distel, Daniel L., "Evolution of Endosymbiosis in (xylotrophic) Wood-Eating Bivalves" (2006). University of Maine Office of Research and Sponsored Programs: Grant Reports. 133. https://digitalcommons.library.umaine.edu/orsp_reports/133 This Open-Access Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in University of Maine Office of Research and Sponsored Programs: Grant Reports by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Annual Report: 0129117 Annual Report for Period:06/2004 - 06/2005 Submitted on: 01/27/2006 Principal Investigator: Distel, Daniel L. Award ID: 0129117 Organization: University of Maine Title: Evolution of Endosymbiosis in (xylotrophic) Wood-Eating Bivalves Project Participants Senior Personnel Name: Distel, Daniel Worked for more than 160 Hours: Yes Contribution to Project: Post-doc Graduate Student Name: Luyten, Yvette Worked for more than 160 Hours: Yes Contribution to Project: Graduate student participated in lab research with support from this grant. Name: Mamangkey, Gustaf Worked for more than 160 Hours: Yes Contribution to Project: Gustaf Mamangkey is a lecturer at the Tropical Marine Mollusc Programme, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University,Jl. Kampus UNSRAT Bahu, Manado 95115,Indonesia. -
TSUNODA, Kunio; NISHIMOTO, Koichi
Studies on the Shipworms I : The Occurrence and Seasonal Title Settlement of Shipworms. Author(s) TSUNODA, Kunio; NISHIMOTO, Koichi Wood research : bulletin of the Wood Research Institute Kyoto Citation University (1972), 53: 1-8 Issue Date 1972-08-31 URL http://hdl.handle.net/2433/53408 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Studies on the Shipworms I The Occurrence and Seasonal Settlement of Shipworms. Kunio TSUNODA* and Koichi NISHIMOTO* Abstract--The previous investigation on the occurrence of shipworms in December, 1971 indicated the co-existence of three species of shipworms: Bankia bipalmulata LAMARCK, Teredo navalis LINNAEUS and Lyrodus pedicellatus QUATREFAGES. However, the absence of B. bipalmulata was found in this investigation carried out from February, 1971 to January, 1972. Of these three species, T. navalis was the commonest. In this survey of larval settlement on floating wood surfaces, there was no settlement from January to May, and the first settlement of larvae was not observed until June, when water temperature was over 20°C. The explosive settlement was observed in September. After June, boring damage always occurred when wood blocks were submerged in the sea for over 60 days. Introduction The import of logs into Japan has enormously increased in recent years, and this trend will continue for some time. The imported logs are transported by ship into 85 international trading ports along Japanese coasts. For the last three years the annual amount has been not 3 less than 50,000,000 m , which is equivalent to more than 50 percent of Japan's total wood supply. -
Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B. -
UNIVERSITY of KERALA Zoology Core Course
1 UNIVERSITY OF KERALA First Degree Programme in Zoology Choice Based Credit and Semester System Zoology Core Course Syllabus-2015 Admission Onwards 2 FIRST DEGREE PROGRAMME IN ZOOLOGY Scheme of Instruction and Evaluation Course Study Components Instructional Credit Duration Evaluation Total Code Hrs/week of Univ. Credit T P Exam CE ESE Semster EN1111 English I 5 4 3 Hrs 20% 80% 1111 Additional language I 4 3 3 Hrs 20% 80% EN 1121 Foundation course I 4 2 3 Hrs 20% 80% CH1131.4 Complementary course I 2 2 3 Hrs 20% 80% Complementary course I 2 16 I Practical of CH1131.4 BO1131 Complementary course II 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1131 ZO1141 Core Course I 3 3 3 Hrs 20% 80% Core Course Practical of ZO1141 1 EN1211 English II 4 3 3 Hrs 20% 80% EN1212 English III 5 4 3 Hrs 20% 80% 1211 Additional language II 4 3 3 Hrs 20% 80% CH1231.4 Complementary course III 2 2 3 Hrs 20% 80% II Complementary course III 2 Practical of CH1231.4 17 BO1231 Complementary course IV 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1231 ZO1241 Core Course II 3 3 3 Hrs 20% 80% Core Course Practical of ZO1241 1 III EN1311 English IV 5 4 3 Hrs 20% 80% EN1312 Additional language III 5 4 3 Hrs 20% 80% CH1331 Complementary course V 3 3 3 Hrs 20% 80% CH1331.4 Complementary course V 2 Practical of CH1331.4 BO1331 Complementary course VI 3 3 3 Hrs 20% 80% 17 BO1332 Complementary course VI 2 Practical of BO1331 ZO1341 Core Course III 3 3 3 Hrs 20% 80% ZO1341 Core Course Practical of ZO1341 2 IV EN1411 English V 5 4 3 Hrs 20% 80% EN1411 Additional language II 5 4 3 Hrs 20% 80% CH1431.4 Complementary course VII 3 3 3 Hrs 20% 80% CH1432.4 Complementary course 2 4 3 Hrs 20% 80% Practical of CH1131.4, CH1231.4, CH1331.4, CH1431.4. -
Mollusca, Pholadidae, Xylophagainae)
Turner: Xylopholas altenai 97 n. gen. n. sp. A new genus and species of deep water wood-boring bivalve (Mollusca, Pholadidae, Xylophagainae) by Ruth+D. Turner Museum ofComparativeZoology, Harvard University, Cambridge,Mass., U.S.A. The Xylophagainae are marine wood-boring bivalves which are confined than 150 largely to depths greater meters. They are not found the intertidal the sublittoral in zone, occur in only in higher latitudes, and are the sole wood-borers in depths over 200 meters. The greatest known depth for the invasion oftest wood by Teredini- dae is 200 meters (Tipper, 1968). The known depth range for the Xylophagainae extends from two meters below low tide in Millport, Scotland, to 7290 meters in the Banda Trench, off Ceram. Only occasionally are they found in drift wood, and this is usually after storms, the water logged wood having been lifted offthe bottom and carried ashore by strong waves. The discovery of the new genus and species described here is the result of a world-wide study of the Xylophagainae, a subfamily of the Pholadidae characterized by teredinid-like shells and a small, divided mesoplax. They lack apophyses (as do the Jouannetiinae) and do not produce a callum in the adult stage (as in the Phola- in dinae). They are unique among the Pholadidae having a wood- storing caecum. The author is grateful to Dr. Frederick Bayer, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Dr. J0r- gen Knudsen, Universitetets Zoologiske Museum, Copenhagen, Den- mark, and Dr. W. Adam, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium, for the loan of specimens and the opportunity to remove specimens from dredged wood or other plant material in their collections. -
Spatial Variability in Recruitment of an Infaunal Bivalve
Spatial Variability in Recruitment of an Infaunal Bivalve: Experimental Effects of Predator Exclusion on the Softshell Clam (Mya arenaria L.) along Three Tidal Estuaries in Southern Maine, USA Author(s): Brian F. Beal, Chad R. Coffin, Sara F. Randall, Clint A. Goodenow Jr., Kyle E. Pepperman, Bennett W. Ellis, Cody B. Jourdet and George C. Protopopescu Source: Journal of Shellfish Research, 37(1):1-27. Published By: National Shellfisheries Association https://doi.org/10.2983/035.037.0101 URL: http://www.bioone.org/doi/full/10.2983/035.037.0101 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 37, No. 1, 1–27, 2018. SPATIAL VARIABILITY IN RECRUITMENT OF AN INFAUNAL BIVALVE: EXPERIMENTAL EFFECTS OF PREDATOR EXCLUSION ON THE SOFTSHELL CLAM (MYA ARENARIA L.) ALONG THREE TIDAL ESTUARIES IN SOUTHERN MAINE, USA 1,2 3 2 3 BRIAN F. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Bivalvia: Teredinidae) in Drifted Eelgrass
Short Notes 263 The Rhizome-Boring Shipworm Zachsia zenkewitschi (Bivalvia: Teredinidae) in Drifted Eelgrass Takuma Haga Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan The shipworm Zachsia zenkewitschi Bulatoff & free-swimming larval stage. Turner & Yakovlev Rjabtschikoff, 1933 lives inside the rhizomes of the (1983) observed that the larvae swam mostly near eelgrasses Phyllospadix and Zostera (Helobiales; the bottom of a culture dish in their laboratory. Zosteraceae) and has sporadic distribution records They hypothesized that in natural environments the from Primorskii Krai (=Primoriye Region) to larvae can swim only for short distances within the Siberia in the Russian Far East and in Japanese eelgrass beds and that wide dispersal might have waters (Higo et al., 1999). Its detailed distribution been achieved through long-distance transporta- and habitats have been surveyed in detail only tion of the host eelgrass by accidental drifting. locally along the coast of Vladivostok in Primoriye However, this hypothesis has not been verified to (Turner et al., 1983; Fig. 1F). In Japanese waters, date. this species has been recorded in only three cata- This report is the first documentation of Z. logues of local molluscan faunas (Fig. 1; Inaba, zenkewitschi in drifted rhizomes of eelgrass, and 1982; Kano, 1981; Kuroda & Habe, 1981). These describes the soft animal morphology of this spe- catalogues, however, did not provide information cies. on detailed collecting sites and habitats. This rare species was recently rediscovered along the coast Zachsia zenkewitschi in drift eelgrass of Miyagi Prefecture, northeast Japan (Sasaki et al., 2006; Fig. -
Paalwormen Hoewel Hun Naam En Vorm Doet Denken Aan Een Worm, Zijn De Paalworm En De Scheepsworm Tweekleppige Weekdieren, Net Zoals De Mossel of De Kokkel
Niet-inheemse soorten van het Belgisch deel van de Noordzee en aanpalende estuaria Paalwormen Hoewel hun naam en vorm doet denken aan een worm, zijn de paalworm en de scheepsworm tweekleppige weekdieren, net zoals de mossel of de kokkel. Ze boren gangen in hout. Beide soor- ten hebben zich al vroeg verspreid over alle we- reldzeeën, dankzij transport via scheepsrompen en drijfhout. Hierdoor is het moeilijk te achter- halen waar deze soorten oorspronkelijk vandaan komen. Scheeps- en paalwormen baren de zeelui al eeuwenlang zorgen, doordat ze het hout van schepen aantasten. Ze kregen dan ook de bijnaam ‘termieten van de zee’… paalworm © Marco Faasse (www.acteon.nl) Wetenschappelijke naam Teredo navalis Linnaeus, 1758 - paalworm Psiloteredo megotara (Hanley in Forbes & Hanley, 1848) - scheepsworm Beide soorten behoren tot de familie van de ‘paalwormen’ of de ‘Teredo wormen’. Gezien ze heel sterk op elkaar gelijken in biologie en ecologie, zullen ze in deze fiche samen besproken worden. Oorspronkelijke verspreiding Verschillende klassieke auteurs zoals Aristoteles, Ovidius en Plinius maakten in hun geschriften al melding van paalwormen, zonder echter te weten wat hun identiteit of oorsprong was. Ze verwezen daarbij naar plaatsen in het Middellandse Zeegebied [1,2]. Een eventuele vroege aanwezigheid van paalwormen in de Noord-Europese regio kan niet bevestigd worden. Er zijn immers geen overleveringen of geschriften beschikbaar die rapporteren over schade toegebracht aan Vikingschepen door deze weekdieren [1]. De paalworm heeft vandaag een bijna wereldwijde verspreiding, en komt in Europa voor vanaf het Noordpoolgebied tot in de Middellandse Zee. De scheepsworm daarentegen komt enkel voor van het Noordpoolgebied tot in de Middellandse Zee [3]. -
SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.