In Cellulo Phosphorylation Induces Pharmacological Reprogramming of Maurocalcin, a Cell-Penetrating Venom Peptide

Total Page:16

File Type:pdf, Size:1020Kb

In Cellulo Phosphorylation Induces Pharmacological Reprogramming of Maurocalcin, a Cell-Penetrating Venom Peptide In cellulo phosphorylation induces pharmacological reprogramming of maurocalcin, a cell-penetrating venom peptide Michel Ronjata,b,1,2, Wei Fengc,1, Lucie Dardeveta,b, Yao Dongc, Sawsan Al Khourya,b, Franck C. Chatelaind,e, Virginie Viallaa,b,f, Samir Chahbouna,b, Florian Lesaged,e, Hervé Darbong, Isaac N. Pessahc, and Michel De Waarda,b,f,2 aINSERM U836, LabEx Ion Channel, Science and Therapeutics, Grenoble Institute of Neuroscience, 38042 Grenoble, France; bUniversité Grenoble Alpes, 38042 Grenoble, France; cDepartment of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616; dCNRS UMR 7275, LabEx Ion Channel, Science and Therapeutics, Institut de Pharmacologie Moléculaire et Cellulaire, F-06560 Valbonne, France; eUniversité de Nice Sophia Antipolis, F-06560 Nice, France; fSmartox Biotechnologies, 38400 Saint-Martin d’Hères, France; and gArchitecture et Fonction des Macromolécules Biologiques-CNRS UMR 7257, Aix-Marseille Université, 13009 Marseille, France Edited by Andrew R. Marks, Columbia University College of Physicians & Surgeons, New York, NY, and approved February 25, 2016 (received for review August 31, 2015) The venom peptide maurocalcin (MCa) is atypical among toxins red lacks selectivity and cell permeability. On the agonist side, MCa because of its ability to rapidly translocate into cells and potently is a very informative pharmacologic tool to investigate RyR prop- activate the intracellular calcium channel type 1 ryanodine recep- erties because of its nanomolar potency and novel ability to sta- tor (RyR1). Therefore, MCa is potentially subjected to posttransla- bilize long-lived subconductances of the channel. Accordingly, tional modifications within recipient cells. Here, we report that MCa increases specific binding of [3H]-ryanodine to RyR1 with an MCa Thr26 belongs to a consensus PKA phosphorylation site and apparent affinity in the range of 10 to 50 nM (9). This effect results can be phosphorylated by PKA both in vitro and after cell pene- from the ability of MCa to convert RyR1 low-affinity ryanodine tration in cellulo. Unexpectedly, phosphorylation converts MCa binding sites into high-affinity sites, increase RyR1 sensitivity to + from positive to negative RyR1 allosteric modulator. Thr26 phos- activating low Ca2 concentrations (μM), and decrease RyR1 + phorylation leads to charge neutralization of Arg24, a residue sensitivity to inhibiting high Ca2 concentrations (mM), with the crucial for MCa agonist activity. The functional effect of Thr26 two latest effects probably requiring an allosteric mechanism. + phosphorylation is partially mimicked by aspartyl mutation. This MCa binding onto RyR1 also induces Ca2 release from sarco- represents the first case, to our knowledge, of both ex situ post- plasmic reticulum vesicles (8). These effects correlate with the translational modification and pharmacological reprogramming of induction by MCa of long-lasting subconductance open transi- a small natural cystine-rich peptide by target cells. So far, phos- tions of purified RyR1 channels reconstituted in artificial lipid phorylated MCa is the first specific negative allosteric modulator bilayers (7, 17, 18). This positive allosteric activity of MCa is the of RyR1, to our knowledge, and represents a lead compound for consequence of its interaction with a cytoplasmic RyR1 domain further development of phosphatase-resistant analogs. that directly controls the gating of this calcium channel (19). Production of MCa analogs after alanine scanning helped iden- maurocalcin | phosphorylation | pharmacology | toxin | ryanodine receptor tifying critical residues involved in the positive allosteric activity of the peptide (9, 20). The pharmacophore of MCa was re- 24 nimal venoms represent biolibraries that are natural sources stricted to a few basic amino acid residues, among which Arg Afor the discovery of a growing number of peptides with im- portant pharmacological properties. These peptides have been in- Significance strumental in discriminating different subtypes of ion channels and – membrane receptors (1 3). Several of them are now approved by Animal toxin peptides typically exhibit high affinity and selec- the US Food and Administration for the treatment of various hu- tivity for specific subclasses of cell receptors that account for man pathological conditions (4). Maurocalcin (MCa) is a 33-amino their activity. Posttranslational modifications of toxin sequences acid peptide that belongs to the family of the calcin toxins charac- may occur in the venom gland machinery, but there is no ex- terized by their folding forming an inhibitor cystine knot motif ample so far of toxins being subjected to such modifications ex (5, 6). After its initial purification from the venom of the scorpion situ after delivery to target cells. Here, we provide evidence that Scorpio maurus palmatus, MCa was obtained as a synthetic peptide the cell permeant maurocalcin (MCa), found in scorpion venom, that exhibits structural and pharmacological properties identical to undergoes PKA-mediated phosphorylation in cellulo, and that those of the natural peptide (7). Extensive characterization of MCa posttranslational modification leads to its complete pharmaco- identified it as one of the most potent effectors of ryanodine re- logical reprogramming activity toward ryanodine receptor type + ceptor type 1 (RyR1) (8, 9). RyR1 is one of the three isoforms that 1 (RyR1), a key player in Ca2 homeostasis in excitable cells. make up the RyR intracellular calcium channels family. It was first Phosphorylation converts MCa from a potent stabilizer of RyR1 identified in skeletal muscles (10) but is also broadly expressed in channel substates to a negative allosteric modulator that miti- 2+ many other tissues such as pre- and postsynaptic sites within neu- gates RyR1 channel Ca leak. + rons of the brain (11). RyR calcium channels regulate Ca2 release from intracellular stores, and therefore represent crucial players of Author contributions: M.R., I.N.P., and M.D.W. designed research; M.R., W.F., Y.D., S.A.K., V.V., S.C., H.D., and I.N.P. performed research; M.R., W.F., L.D., F.C.C., F.L., H.D., I.N.P., and a number of physiological and toxicological processes, from muscle M.D.W. analyzed data; and M.D.W. wrote the paper. contraction to gene expression (12). As a consequence, silencing of The authors declare no conflict of interest. the gene encoding RyR1 is lethal at birth (13). Despite extensive This article is a PNAS Direct Submission. studies of the RyR biophysical properties, only a few molecules 1M.R. and W.F. contributed equally to this work. specifically acting on these calcium channels have been identified. 2To whom correspondence may be addressed. Email: [email protected] or The only specific inhibitors of RyR1 known so far are ryanodine at [email protected]. high concentration (14), although this compound also exhibits ag- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. onist properties at low doses (15, 16), and dantrolene. Ruthenium 1073/pnas.1517342113/-/DCSupplemental. E2460–E2468 | PNAS | Published online April 11, 2016 www.pnas.org/cgi/doi/10.1073/pnas.1517342113 Downloaded by guest on October 1, 2021 was the most important for activity (9). Despite these extensive the first natural CPP, to our knowledge, emerging from venom PNAS PLUS studies, none of the mutations converted MCa into RyR1 antago- sources and whose cytoplasm delivery and activity could be straight- nist peptide, but mostly lowered affinity or inhibited agonist effect. forwardly examined through the activation of RyR channels (33). It It is highly unusual that a venom peptide targets an intracel- is therefore conceivable that MCa may undergo posttranslational lular receptor. Several reports indicate that MCa binds cell modifications by target cell enzymes on delivery into the cytoplasm. surface glycosaminoglycans (21) and membrane lipids (20), and In this report, we show that MCa is a substrate of PKA in vitro, that it rapidly translocates into cells using mechanisms akin to leading to the phosphorylation of Thr26. We also demonstrate cell-penetrating peptides (CPPs) (22). As a matter of fact, MCa that MCa phosphorylation happens in cellulo after translocation. and CPPs share interesting structural features, such as the pres- Phosphorylation of MCa leads to a fine peptide structural modi- ence of a strong dipole moment characterized by a heavily basic fication responsible for its complete pharmacological reprogram- face opposing a far less charged one (23–25), with the latter being ming, thereby converting MCa into a RyR1 antagonist. We thus also quite hydrophobic. Similar to a CPP, MCa proved to be ef- establish for the first time, to our knowledge, that the pharmaco- ficient in the transport of several types of cargoes ranging from logical properties of a small cell-penetrating toxin peptide can be drugs to peptides, proteins, and nanoparticles (22, 26–32). MCa is dramatically modified by posttranslational modification, opening A PKA consensus phosphorylation site RRXT S 123 MCa GDC1LPHLKLC2KENKDC3C4SKKC5KRRGTNIEKRC6R PHARMACOLOGY B MCa 4164.19 Da 50 b 26 40 MCab P-Thr 30 20 m/z 4170 10 0 16 18 20 22 Elution time (min) C 32P labelling Streptavidin-peroxidase 32 [ P]-MCab MCab Fig. 1. MCa is phosphorylated by PKA. (A) Identification of a consensus phosphorylation site in MCa primary structure. (B) In vitro phosphorylation of MCab by the catalytic subunit of PKA. Shift
Recommended publications
  • Scorpion Toxins Targeted Against the Sarcoplasmic Reticulum Ca2+-Release Channel of Skeletal and Cardiac Muscle
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 12185-12189, December 1992 Physiology Scorpion toxins targeted against the sarcoplasmic reticulum Ca2+-release channel of skeletal and cardiac muscle (ryanodine receptors/Pandinus imperator venom/planar bilayer/ventricular myocytes/Ca2+ indicator) HECTOR H. VALDIVIA*t, MARK S. KIRBYf, W. JONATHAN LEDERER*, AND ROBERTO CORONADO*t *Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53706; and tDepartment of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 Communicated by Michael V. L. Bennett, September 21, 1992 ABSTRACT We report the purification of two peptides, peratoxin inhibitor (IpTxi)] or activated [imperatoxin activa- called "imperatoxin inhibitor" and "imperatoxin activator," tor (IpTxa)] ryanodine receptors of skeletal and cardiac from the venom of the scorpion Pandinus imperator targeted muscle. Part of these results have been communicated in an against ryanodine receptor Ca2+-release channels. Impera- abstract form (8). toxin inhibitor has a Mr of 10,500, inhibits [3Hjryanodine binding to skeletal and cardiac sarcoplasmic reticulum with an EDso of 10 nM, and blocks openings of skeletal and cardiac EXPERIMENTAL PROCEDURES Ca2+-release channels incorporated into planar bilayers. In Purification of Scorpion Toxins. Lyophilized P. imperator whole-cell recordings of cardiac myocytes, imperatoxin inhib- venom was obtained from Latoxan (Rosans, France). Venom itor decreased twitch amplitude and intracellular Ca2+ tran- (50 mg per batch) was extracted in 2-3 ml of deionized water sients, suggesting a selective blockade of Ca2+ release from the and chromatographed on a column (1. 5 x 125 cm) of Sepha- sarcoplasmic reticulum. Imperatoxin activator has a Mr of dex G-50 fine.
    [Show full text]
  • Multiple Actions of Φ-LITX-Lw1a on Ryanodine Receptors Reveal a Functional Link Between Scorpion DDH and ICK Toxins
    Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins Jennifer J. Smitha, Irina Vettera, Richard J. Lewisa, Steve Peigneurb, Jan Tytgatb, Alexander Lamc, Esther M. Gallantc, Nicole A. Beardd, Paul F. Alewooda,1,2, and Angela F. Dulhuntyc,1,2 aChemical and Structural Biology, Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; bLaboratory of Toxicology, University of Leuven, 3000 Leuven, Belgium; cDepartment of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; and dDiscipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, ACT 2601, Australia Edited by Clara Franzini-Armstrong, University of Pennsylvania Medical Center, Philadelphia, PA, and approved April 23, 2013 (received for review August 26, 2012) We recently reported the isolation of a scorpion toxin named U1- mutations, atypical posttranslational modifications of RyRs, liotoxin-Lw1a (U1-LITX-Lw1a) that adopts an unusual 3D fold termed including hyperphosphorylation and S-nitrosylation, have been the disulfide-directed hairpin (DDH) motif, which is the proposed implicated in heart failure and pathologic muscle fatigue (10– evolutionary structural precursor of the three-disulfide-containing 12). Because of their wide distribution, there is mounting evidence inhibitor cystine knot (ICK) motif found widely in animals and plants. to suggest that dysregulation of RyRs also plays a role in a plethora Here we reveal that U1-LITX-Lw1a targets and activates the mam- of other disease states, including chronic pain, neurodegenerative malian ryanodine receptor intracellular calcium release channel (RyR) disorders such as Alzheimer’s disease, and intellectual deficit (13– with high (fM) potency and provides a functional link between DDH 15).
    [Show full text]
  • Maurocalcine-Derivatives As Biotechnological Tools for The
    Maurocalcine-derivatives as biotechnological tools for the penetration of cell-impermeable compounds Narendra Ram, Emilie Jaumain, Michel Ronjat, Fabienne Pirollet, Michel de Waard To cite this version: Narendra Ram, Emilie Jaumain, Michel Ronjat, Fabienne Pirollet, Michel de Waard. Maurocalcine- derivatives as biotechnological tools for the penetration of cell-impermeable compounds: Technological value of a scorpion toxin. de Lima, M.E.; de Castro Pimenta, A.M.; Martin-Eauclaire, M.F.; Bendeta Zengali, R.; Rochat, H. E. Animal Toxins: state of the art: Perspectives in Health and Biotechnology., Editora UFMG Belo Horizonte, Brazil, pp.715-732, 2009. inserm-00515224 HAL Id: inserm-00515224 https://www.hal.inserm.fr/inserm-00515224 Submitted on 5 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Maurocalcine-derivatives as biotechnological tools for the penetration of cell-impermeable compounds by Narendra Ram1,2, Emilie Jaumain1,2, Michel Ronjat1,2, Fabienne Pirollet1,2 & Michel De Waard1,2* 1 INSERM, U836, Team 3: Calcium channels, functions and pathologies, BP 170, Grenoble Cedex 9, F-38042, France 2 Université Joseph Fourier, Institut des Neurosciences, BP 170, Grenoble Cedex 9, F-38042, France Running title: Technological value of a scorpion toxin *To whom correspondence should be sent: Dr.
    [Show full text]
  • Venom Week 2012 4Th International Scientific Symposium on All Things Venomous
    17th World Congress of the International Society on Toxinology Animal, Plant and Microbial Toxins & Venom Week 2012 4th International Scientific Symposium on All Things Venomous Honolulu, Hawaii, USA, July 8 – 13, 2012 1 Table of Contents Section Page Introduction 01 Scientific Organizing Committee 02 Local Organizing Committee / Sponsors / Co-Chairs 02 Welcome Messages 04 Governor’s Proclamation 08 Meeting Program 10 Sunday 13 Monday 15 Tuesday 20 Wednesday 26 Thursday 30 Friday 36 Poster Session I 41 Poster Session II 47 Supplemental program material 54 Additional Abstracts (#298 – #344) 61 International Society on Thrombosis & Haemostasis 99 2 Introduction Welcome to the 17th World Congress of the International Society on Toxinology (IST), held jointly with Venom Week 2012, 4th International Scientific Symposium on All Things Venomous, in Honolulu, Hawaii, USA, July 8 – 13, 2012. This is a supplement to the special issue of Toxicon. It contains the abstracts that were submitted too late for inclusion there, as well as a complete program agenda of the meeting, as well as other materials. At the time of this printing, we had 344 scientific abstracts scheduled for presentation and over 300 attendees from all over the planet. The World Congress of IST is held every three years, most recently in Recife, Brazil in March 2009. The IST World Congress is the primary international meeting bringing together scientists and physicians from around the world to discuss the most recent advances in the structure and function of natural toxins occurring in venomous animals, plants, or microorganisms, in medical, public health, and policy approaches to prevent or treat envenomations, and in the development of new toxin-derived drugs.
    [Show full text]
  • Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide
    Pharmaceuticals 2013, 6, 320-339; doi:10.3390/ph6030320 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Article Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide Céline Tisseyre 1,2,3,†, Eloi Bahembera 1,2,3,†, Lucie Dardevet 1,2,3, Jean-Marc Sabatier 4, Michel Ronjat 1,2,3 and Michel De Waard 1,2,4,5,* 1 Unité Inserm U836, Grenoble Institute of Neuroscience, Université Joseph Fourier, La Tronche, Chemin Fortuné Ferrini, Bâtiment Edmond Safra, 38042 Grenoble Cedex 09, France 2 Labex Ion Channel Science and Therapeutics, Nice, France 3 Université Joseph Fourier, Grenoble, France 4 Inserm U1097, Parc scientifique et technologique de Luminy, 163, avenue de Luminy, 13288 Marseille cedex 09, France 5 Smartox Biotechnology, Biopolis, 5 Avenue du Grand Sablon, 38700 La Tronche, France † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-4-56-52-05-63; Fax: +33-4-56-52-06-37. Received: 23 February 2013; in revised form: 6 March 2013 / Accepted: 7 March 2013 / Published: 18 March 2013 Abstract: Maurocalcine is a highly potent cell-penetrating peptide isolated from the Tunisian scorpion Maurus palmatus. Many cell-penetrating peptide analogues have been derived from the full-length maurocalcine by internal cysteine substitutions and sequence truncation. Herein we have further characterized the cell-penetrating properties of one such peptide, MCaUF1-9, whose sequence matches that of the hydrophobic face of maurocalcine. This peptide shows very favorable cell-penetration efficacy compared to Tat, penetratin or polyarginine.
    [Show full text]
  • Channel Toxin from Parabuthus Transvaalicus
    Eur. J. Biochem. 269, 5369–5376 (2002) Ó FEBS 2002 doi:10.1046/j.1432-1033.2002.03171.x A single charged surface residue modifies the activity of ikitoxin, a beta-type Na+ channel toxin from Parabuthus transvaalicus A. Bora Inceoglu1,*, Yuki Hayashida2, Jozsef Lango3, Andrew T. Ishida2 and Bruce D. Hammock1 1Department of Entomology and Cancer Research Center, 2Section of Neurobiology, Physiology and Behavior, and 3Department of Chemistry and Superfund Analytical Laboratory, University of California, Davis, CA, USA We previously purified and characterized a peptide toxin, from birtoxin by a single residue change from glycine to birtoxin, from the South African scorpion Parabuthus glutamic acid at position 23, consistent with the apparent transvaalicus. Birtoxin is a 58-residue, long chain neurotoxin mass difference of 72 Da. This single-residue difference that has a unique three disulfide-bridged structure. Here we renders ikitoxin much less effective in producing the same report the isolation and characterization of ikitoxin, a pep- behavioral effect as low concentrations of birtoxin. Elec- tide toxin with a single residue difference, and a markedly trophysiological measurements showed that birtoxin and reduced biological activity, from birtoxin. Bioassays on mice ikitoxin can be classified as beta group toxins for voltage- showed that high doses of ikitoxin induce unprovoked gated Na+ channels of central neurons. It is our conclusion jumps, whereas birtoxin induces jumps at a 1000-fold lower that the N-terminal loop preceding the a-helix in scorpion concentration. Both toxins are active against mice when toxins is one of the determinative domains in the interaction administered intracerebroventricularly.
    [Show full text]
  • Modulation of Neuropeptide Release Via Voltage-Dependent and -Independent Signaling in Isolated Neurohypophysial Terminals: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2008-04-28 Modulation of Neuropeptide Release via Voltage-Dependent and -Independent Signaling in Isolated Neurohypophysial Terminals: a Dissertation Cristina M. Velazquez-Marrero University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Biological Factors Commons, Chemical Actions and Uses Commons, Inorganic Chemicals Commons, and the Nervous System Commons Repository Citation Velazquez-Marrero CM. (2008). Modulation of Neuropeptide Release via Voltage-Dependent and -Independent Signaling in Isolated Neurohypophysial Terminals: a Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/tgm2-3725. Retrieved from https://escholarship.umassmed.edu/ gsbs_diss/367 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. MODULATION OF NEUROPEPTIDE RELEASE VIA VOLTAGE-DEPENDENT AND -INDEPENDENT SIGNALING IN ISOLATED NEUROHYPOPHYSIAL TERMINALS A Dissertation Presented By Cristina M. Velázquez-Marrero Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of: DOCTOR OF PHILOSOPHY April 28th, 2008 Neuroscience Copyright Notice ©Cristina M. Velazquez-Marrero All Rights Reserved ► C.M. Velázquez-Marrero, E.E. Custer, V. DeCrescenzo, R. Zhuge, J.V. Walsh, J.R. Lemos (2002). Caffeine stimulates basal neuropeptide release from nerve terminals of the neurohypophysis.
    [Show full text]
  • Are Ryanodine Receptors Important for Diastolic Depolarization in Heart?
    ARE RYANODINE RECEPTORS IMPORTANT FOR DIASTOLIC DEPOLARIZATION IN HEART? A Dissertation submitted in partial fulfillment of the requirement for the Degree of Doctor of Medicine in Physiology (Branch – V) Of The Tamilnadu Dr. M.G.R Medical University, Chennai -600 032 Department of Physiology Christian Medical College, Vellore Tamilnadu April 2017 Ref: …………. Date: …………. CERTIFICATE This is to certify that the thesis entitled “Are ryanodine receptors important for diastolic depolarization in heart?” is a bonafide, original work carried out by Dr.Teena Maria Jose , in partial fulfillment of the rules and regulations for the M.D – Branch V Physiology examination of the Tamilnadu Dr. M.G.R. Medical University, Chennai to be held in April- 2017. Dr. Sathya Subramani, Professor and Head Department of Physiology, Christian Medical College, Vellore – 632 002 Ref: …………. Date: …………. CERTIFICATE This is to certify that the thesis entitled “Are ryanodine receptors important for diastolic depolarization in heart?” is a bonafide, original work carried out by Dr.Teena Maria Jose , in partial fulfillment of the rules and regulations for the M.D – Branch V Physiology examination of the Tamilnadu Dr. M.G.R. Medical University, Chennai to be held in April- 2017. Dr. Anna B Pulimood, Principal, Christian Medical College, Vellore – 632 002 DECLARATION I hereby declare that the investigations that form the subject matter for the thesis entitled “Are ryanodine receptors important for diastolic depolarization in heart?” were carried out by me during my term as a post graduate student in the Department of Physiology, Christian Medical College, Vellore. This thesis has not been submitted in part or full to any other university.
    [Show full text]
  • Redalyc.Tityus Zulianus and Tityus Discrepans Venoms Induced
    Archivos Venezolanos de Farmacología y Terapéutica ISSN: 0798-0264 [email protected] Sociedad Venezolana de Farmacología Clínica y Terapéutica Venezuela Trejo, E.; Borges, A.; González de Alfonzo, R.; Lippo de Becemberg, I.; Alfonzo, M. J. Tityus zulianus and Tityus discrepans venoms induced massive autonomic stimulation in mice Archivos Venezolanos de Farmacología y Terapéutica, vol. 31, núm. 1, enero-marzo, 2012, pp. 1-5 Sociedad Venezolana de Farmacología Clínica y Terapéutica Caracas, Venezuela Available in: http://www.redalyc.org/articulo.oa?id=55923411003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tityus zulianus and Tityus discrepans venoms induced massive autonomic stimulation in mice E. Trejo, A. Borges, R. González de Alfonzo, I. Lippo de Becemberg and M. J. Alfonzo*. Cátedra de Patología General y Fisiopatología and Sección de Biomembranas. Instituto de Medicina Experimental. Facultad de Medicina. Universidad Central de Venezuela. Caracas. Venezuela. E.Trejo, Magister Scientiarum en Farmacología y Doctor en Bioquímica. R. González de Alfonzo, Doctora en Bioquímica, Biología Celular y Molecular. I. Lippo de Becemberg, Doctora en Medicina M. J. Alfonzo, Doctor en Bioquímica, Biología Celular y Molecular *Corresponding Author: Dr. Marcelo J. Alfonzo. Sección de Biomembranas. Instituto de Medicina Experimental. Facultad de Medicina Universidad Central de Venezuela. Ciudad Universitaria. Caracas. Venezuela. Teléfono: 0212-605-3654. fax: 058-212-6628877. Email: [email protected] Running title: Massive autonomic stimulation by Venezuelan scorpion venoms. Título corto: Estimulación autonómica masiva producida por los venenos de escorpiones venezolanos.
    [Show full text]
  • Composition Modulating Botulinum Neurotoxin Effect
    (19) *EP003753568A1* (11) EP 3 753 568 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 23.12.2020 Bulletin 2020/52 A61K 38/17 (2006.01) A61K 31/205 (2006.01) A61K 31/4178 (2006.01) A61K 38/48 (2006.01) (2006.01) (2006.01) (21) Application number: 19181635.4 A61P 9/00 A61P 21/00 A61P 29/00 (2006.01) (22) Date of filing: 21.06.2019 (84) Designated Contracting States: •Cros, Cécile AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 74580 Viry (FR) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • Hulo, Nicolas PL PT RO RS SE SI SK SM TR 1252 Meinier (CH) Designated Extension States: • Machicoane, Mickaël BA ME 1290 Versoix (CH) Designated Validation States: KH MA MD TN (74) Representative: Barbot, Willy Simodoro-ip (71) Applicant: Fastox Pharma SA 82, rue Sylvabelle 1003 Lausanne (CH) 13006 Marseille (FR) (72) Inventors: • Le Doussal, Jean-Marc 1007 Lausanne (CH) (54) COMPOSITION MODULATING BOTULINUM NEUROTOXIN EFFECT (57) The present invention relates to a method for cholinergic neuronal transmission to the botulinum neu- modulating the effect of a botulinum neurotoxin compo- rotoxin composition. The invention also relates to com- sition, that is accelerating the onset of action and /or ex- positions comprising at least one postsynaptic inhibitor tending the duration of action and/or enhancing the in- of cholinergic neuronal transmission and a botulinum tensity of action of a botulinum neurotoxin composition, neurotoxin, and their uses for treating aesthetic or ther- comprising adding at least one postsynaptic inhibitor of apeutic conditions.
    [Show full text]
  • Involvement of Multiple Intracellular Release Channels in Calcium Sparks of Skeletal Muscle
    Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle A. Gonza´ lez*, W. G. Kirsch*, N. Shirokova*, G. Pizarro†, G. Brum†, I. N. Pessah‡, M. D. Stern§, H. Cheng§, and E. Ri´os*¶ *Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Chicago, IL 60612; †Departamento de Biofı´sica, Facultad de Medicina, G. Flores 2125, Montevideo, Uruguay; §Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224; and ‡Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616 Communicated by Clara Franzini-Armstrong, University of Pennsylvania School of Medicine, Philadelphia, PA, February 8, 2000 (received for review June 30, 1999) In many types of muscle, intracellular Ca2؉ release for contraction Materials and Methods ؉ consists of brief Ca2 sparks. Whether these result from the Experiments were carried out at 17°C in cut skeletal muscle opening of one or many channels in the sarcoplasmic reticulum is fibers from Rana pipiens semitendinosus muscle, stretched at not known. Examining massive numbers of sparks from frog 3–3.5 ␮m͞sarcomere, either voltage-clamped in a two-Vaseline -skeletal muscle and evaluating their Ca2؉ release current, we gap chamber or permeabilized and immersed in internal solu provide evidence that they are generated by multiple channels. A tion, on an inverted microscope. Adult frogs anaesthetized in mode is demonstrated in the distribution of spark rise times in the 15% ethanol were killed by pithing. The external solution presence of the channel activator caffeine. This finding contradicts contained 10 mM Ca(CH3SO3)2, 130 mM tetraethylammonium- expectations for single channels evolving reversibly, but not for CH3SO3, 5 mM Tris maleate, 1 mM 3,4 diaminopyridine, and 1 channels in a group, which collectively could give rise to a stereo- ␮M tetrodotoxin.
    [Show full text]
  • Toxins and Signalling Evelyne Benoit, Françoise Goudey-Perriere, P
    Toxins and Signalling Evelyne Benoit, Françoise Goudey-Perriere, P. Marchot, Denis Servent To cite this version: Evelyne Benoit, Françoise Goudey-Perriere, P. Marchot, Denis Servent. Toxins and Signalling. SFET Publications, Châtenay-Malabry, France, pp.204, 2009. hal-00738643 HAL Id: hal-00738643 https://hal.archives-ouvertes.fr/hal-00738643 Submitted on 21 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Collection Rencontres en Toxinologie © E. JOVER et al. TTooxxiinneess eett SSiiggnnaalliissaattiioonn -- TTooxxiinnss aanndd SSiiggnnaalllliinngg © B.J. LAVENTIE et al. Comité d’édition – Editorial committee : Evelyne BENOIT, Françoise GOUDEY-PERRIERE, Pascale MARCHOT, Denis SERVENT Société Française pour l'Etude des Toxines French Society of Toxinology Illustrations de couverture – Cover pictures : En haut – Top : Les effets intracellulaires multiples des toxines botuliques et de la toxine tétanique - The multiple intracellular effects of the BoNTs and TeNT. (Copyright Emmanuel JOVER, Fréderic DOUSSAU, Etienne LONCHAMP, Laetitia WIOLAND, Jean-Luc DUPONT, Jordi MOLGÓ, Michel POPOFF, Bernard POULAIN) En bas - Bottom : Structure tridimensionnelle de l’alpha-toxine staphylocoque - Tridimensional structure of staphylococcal alpha-toxin. (Copyright Benoit-Joseph LAVENTIE, Daniel KELLER, Emmanuel JOVER, Gilles PREVOST) Collection Rencontres en Toxinologie La collection « Rencontres en Toxinologie » est publiée à l’occasion des Colloques annuels « Rencontres en Toxinologie » organisés par la Société Française pour l’Etude des Toxines (SFET).
    [Show full text]