Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi^om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter 6ce, \riiile others may be from aity type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e g., maps, drawings, charts) are reproduced by sectioning the original, b%inning at the upper left-hand comer and continuing fi-om left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & HowellInformation Conqtany 300 NorthZeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 PHARMACOLOGICAL CHARACTERIZATION OF THE CALCIUM CHANNEL MEDIATED PROPERTIES OF 2-(4 •-ISOTHIOCYANATOBENZYL) IMIDAZOLINE ANALOGS IN SMOOTH AND SKELETAL MUSCLES A DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Longping Lei, M.D., M.S. ***** The Ohio State University 1997 Dissertation Committee: Approved by Dr. Dennis R. Feller, Advisor Dr. Dennis B. McKay îdvisor Dr. Norman J. Uretsky College of Pharmacy UMI Number: 9721125 UMI Microform 9721125 Copyright 1997, by UMI Company. Ail rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 ABSTRACT Studies investigated the pharmacological mechanism of 2- (4 '-isothiocyanatobenzyl) imidazoline [IBI] and analogs for interaction with imidazoline preferring receptors (IPRs), a- adrenoceptors (a-ARs) and calcium channels in cardiovascular and skeletal muscle systems. IBI differs from tolazoline by attachment of an electrophilic isothiocyanato (NCS) group. IBI produced an irreversible, progressive and sustained contraction of rat aorta with a maximal contraction greater than that of tolazoline. The IBI-induced contractions were dependent upon calcium channels (inhibited by verapamil and nifedipine) , and independent of a-ARs (not inhibited by phenoxybenzamine ) or IPRs (not inhibited by efaroxan, moxonidine, idazoxan and cirazoline) . In rabbit diaphragm skeletal muscle, IBI produced contractile responses which were inhibited by dantrolene, an inhibitor of calcium channels present in the sarcoplasmic reticulum. In binding assays, IBI was an inhibitor of dihydropyridine (DHP) binding to calcium 1 1 channels of t-tubule membranes in rabbit skeletal muscle. In contrast to the complete displacement by DHP compounds (nifedipine), IBI and NCS derivatives partially displaced specifically bound radioligand and gave Hill slope values which differed from unity. These results indicate that these NCS derivatives interact allosterically with the DHP binding site. In structure activity relationship studies, IBI analogs were tested to examine their mechanisms of contractile response in rat aorta. Only NCS containing derivatives produced phenoxybenz amine-insensit ive, calcium channel dependent contractions similar to that of IBI. The data indicate that the isothiocyanato (NCS) group is responsible for the calcium channel dependent contractile properties of IBI and its analogs in smooth and skeletal muscles. Thus, IBI and analogs may be useful as affinity probes to characterize sites of interaction on L type calcium channels. Xll Dedicated to Ling, Gracia and my family ACKNOWLEIXaœNTS I sincerely appreciate my academic advisor Dr. Dennis Feller, for his invaluable guidance, assistance and understanding throughout the course of this work; and Dr. Dennis McKay and Dr. Norman Uretsky for serving on the dissertation committee and providing me assistance. I also wish to thank Dr. Duane Miller, Dr. Meri Slavica and Dr. De Los Angeles (Department of Pharmaceutical Sciences, College of Pharmacy, the University of Tennessee, Memphis, TN) for synthesizing the compounds used in this dissertation ; to Dr. Pal Vaghy and Dr. David Johnson (Department of Medical Biochemistry at the Ohio State University) for allowing me generous access to their laboratories; to Dr. Yeindong Jiang (Dr. Johnson's laboratory) and Ms. Sherri Mazetis (Dr. Vaghy's laboratory) for co-performing some experiments; and to the faculty and the graduate fellows of Division of Pharmacology for making my studying here an enjoyable and unforgettable one. I am deeply indebted to my family with which I should have spent more time, and from which I have been constantly recharged with unending encouragement and resources during this research period and hereto journeys. V VITA August 25, 1958......... B o m in Hunan, The People's Republic of China 1977-1982...............M.D., Hunan College of Chinese Medicine, Changsha, China 1982-1984...............Resident Physician, Jiahe Hospital, Hunan, China 1984-1987...............M.S., Hunan College of Chinese Medi c ine, Changsha, China 1987-1990...............Physician, Department of Heart & Kidney, China-Japan Friendship Hospital, Beijing, China 1990-1992...............M.S., Division of Pharmacology, College of Pharmacy, The Ohio State University 1992-present............Research Assistant, Division of Pharmacology, College of Pharmacy, The Ohio State University PUBLICATIONS X. Zhang, X. Yao, J.T. Dalton, G. Shams, L. Lei, P. Patil, D. Feller, F. Hsu, C. George and D.D. Miller: Medetomidine analogs as ttj- adrenergic ligands. 2 . design, synthesis and biological activities of conformationally restricted naphthalene derivatives of Medetomidine, Journal of Medicinal Chemistry 39: 3001-3013, 1996. K.J. Romstedt, L. Lei, D.R. Feller, D.T. Witiak, F . Loiodice and V. Tortorella: Differential eudismic ratios in the antagonism of human platelet function by phenoxy- and thiophenoxyacetic acids. II Farmaco 51: 107-14, 1996. VI L. Lei, M. Slavica, L. De Los Angeles, P.N. Patil, D.D. Miller and D.R. Feller: a-Adrenoceptor and imidazoline receptor- independent contractions of rat aorta : role of the 4'- isothiocyanate group on tolazoline (abstract) . The FASEB Journal 9: 3, A398, March 9, 1995. L. Lei, M. Slavica, P. Emsberger, M.E. Graves, P.N. Patil, D.D. Miller and D.R. Feller : Calcium channel-dependent and I^- imidazoline receptor binding properties of 2 -(4'- isothiocyanatobenzyl) imidazoline analogs in vascular and brain tissues. The Annals of the New York Academy of Sciences 763: 283-286, July 12, 1995. M. Slavica, L. Lei, P.N. Patil, A. Kerezy, D.R. Feller and D.D. Miller: Synthesis and biological activities of a new set of irreversibly acting 2-(4 '-isothiocyanatobenzyl) imidazoline analogs in rat thoracic aorta. Journal of Medicinal Chemistry 37: 1874-81, 1994. L. Lei : Some pharmacological activities of 2- (4 ' - isothiocyanatobenzyl) imidazoline in rat aorta, guinea pig ileum and human platelets, thesis, in the pharmacy library, the Ohio State University, 1993 . L. Lei, M. Slavica, K.J. Romstedt, P.N. Patil, D.D. Miller and D.R. Feller: Non-a-adrenergic actions of 2-(4'-isothiocyanato­ benzyl) imidazoline [IBI] analogs in rat aorta (abstract). The Pharmacologist 34: 148, 1992. L. Lei: Case report on treatment of a patient with congestive cardiomyopathy. The Chinese Journal of Chinese Medicine 10: 60, 1988. L. Lei : Anti-arrhythmic effect of Ping Lu on chloroform- induced arrhythmia in rabbits and epinephrine-induced arrhythmia in guinea pig. thesis, the library of Hunan College of Chinese Medicine, Changsha, PRC, 1985. FIELDS OF STUDIES Major fields : Pharmacy Specific field: Pharmacology V I 1 CONTENT Page Abstract............................................... ii Dedication............................................. iv Acknowledgments........................................ v V i t a ................................................... vi List of Tables......................................... x List of Figures......................................... xii Chapter 1. Introduction 1.1 Fundamentals of drug-receptor theory........... 1 1.2 Calcium channels............................... 12 1.3 a-Adrenergic receptor.......................... 30 1.4 Imidazoline preferring receptors................ 37 1.5 2-(4'-Isothiocyanatobenzyl) imidazoline [IBI] Analog ............................................ 55 1.6 Statement of the problems...................... 60 2. Mechanism of 2-(4'-isothiocyanatobenzyl) imidazoline [IBI] action: calcium channel dependent properties of the contractile responses in smooth and skeletal muscles of rat and rabbit 2.1 Introduction.................................. 65 2.2 Materials and methods.......................... 6 6 2.3 Result........................................ 81 2.4 Discussion.................................... 95 2 .5 Summary and conclusions........................ 110 3. Structure activity relationship
Recommended publications
  • Scorpion Toxins Targeted Against the Sarcoplasmic Reticulum Ca2+-Release Channel of Skeletal and Cardiac Muscle
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 12185-12189, December 1992 Physiology Scorpion toxins targeted against the sarcoplasmic reticulum Ca2+-release channel of skeletal and cardiac muscle (ryanodine receptors/Pandinus imperator venom/planar bilayer/ventricular myocytes/Ca2+ indicator) HECTOR H. VALDIVIA*t, MARK S. KIRBYf, W. JONATHAN LEDERER*, AND ROBERTO CORONADO*t *Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53706; and tDepartment of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 Communicated by Michael V. L. Bennett, September 21, 1992 ABSTRACT We report the purification of two peptides, peratoxin inhibitor (IpTxi)] or activated [imperatoxin activa- called "imperatoxin inhibitor" and "imperatoxin activator," tor (IpTxa)] ryanodine receptors of skeletal and cardiac from the venom of the scorpion Pandinus imperator targeted muscle. Part of these results have been communicated in an against ryanodine receptor Ca2+-release channels. Impera- abstract form (8). toxin inhibitor has a Mr of 10,500, inhibits [3Hjryanodine binding to skeletal and cardiac sarcoplasmic reticulum with an EDso of 10 nM, and blocks openings of skeletal and cardiac EXPERIMENTAL PROCEDURES Ca2+-release channels incorporated into planar bilayers. In Purification of Scorpion Toxins. Lyophilized P. imperator whole-cell recordings of cardiac myocytes, imperatoxin inhib- venom was obtained from Latoxan (Rosans, France). Venom itor decreased twitch amplitude and intracellular Ca2+ tran- (50 mg per batch) was extracted in 2-3 ml of deionized water sients, suggesting a selective blockade of Ca2+ release from the and chromatographed on a column (1. 5 x 125 cm) of Sepha- sarcoplasmic reticulum. Imperatoxin activator has a Mr of dex G-50 fine.
    [Show full text]
  • Multiple Actions of Φ-LITX-Lw1a on Ryanodine Receptors Reveal a Functional Link Between Scorpion DDH and ICK Toxins
    Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins Jennifer J. Smitha, Irina Vettera, Richard J. Lewisa, Steve Peigneurb, Jan Tytgatb, Alexander Lamc, Esther M. Gallantc, Nicole A. Beardd, Paul F. Alewooda,1,2, and Angela F. Dulhuntyc,1,2 aChemical and Structural Biology, Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia; bLaboratory of Toxicology, University of Leuven, 3000 Leuven, Belgium; cDepartment of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; and dDiscipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, ACT 2601, Australia Edited by Clara Franzini-Armstrong, University of Pennsylvania Medical Center, Philadelphia, PA, and approved April 23, 2013 (received for review August 26, 2012) We recently reported the isolation of a scorpion toxin named U1- mutations, atypical posttranslational modifications of RyRs, liotoxin-Lw1a (U1-LITX-Lw1a) that adopts an unusual 3D fold termed including hyperphosphorylation and S-nitrosylation, have been the disulfide-directed hairpin (DDH) motif, which is the proposed implicated in heart failure and pathologic muscle fatigue (10– evolutionary structural precursor of the three-disulfide-containing 12). Because of their wide distribution, there is mounting evidence inhibitor cystine knot (ICK) motif found widely in animals and plants. to suggest that dysregulation of RyRs also plays a role in a plethora Here we reveal that U1-LITX-Lw1a targets and activates the mam- of other disease states, including chronic pain, neurodegenerative malian ryanodine receptor intracellular calcium release channel (RyR) disorders such as Alzheimer’s disease, and intellectual deficit (13– with high (fM) potency and provides a functional link between DDH 15).
    [Show full text]
  • Covalent Agonists for Studying G Protein-Coupled Receptor Activation
    Covalent agonists for studying G protein-coupled receptor activation Dietmar Weicherta, Andrew C. Kruseb, Aashish Manglikb, Christine Hillera, Cheng Zhangb, Harald Hübnera, Brian K. Kobilkab,1, and Peter Gmeinera,1 aDepartment of Chemistry and Pharmacy, Friedrich Alexander University, 91052 Erlangen, Germany; and bDepartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Brian K. Kobilka, June 6, 2014 (sent for review April 21, 2014) Structural studies on G protein-coupled receptors (GPCRs) provide Disulfide-based cross-linking approaches (17, 18) offer important insights into the architecture and function of these the advantage that the covalent binding of disulfide-containing important drug targets. However, the crystallization of GPCRs in compounds is chemoselective for cysteine and enforced by the active states is particularly challenging, requiring the formation of affinity of the ligand-pharmacophore rather than by the elec- stable and conformationally homogeneous ligand-receptor com- trophilicity of the cross-linking function (19). We refer to the plexes. Native hormones, neurotransmitters, and synthetic ago- described ligands as covalent rather than irreversible agonists nists that bind with low affinity are ineffective at stabilizing an because cleavage may be promoted by reducing agents and the active state for crystallogenesis. To promote structural studies on disulfide transfer process is a reversible chemical reaction the pharmacologically highly relevant class
    [Show full text]
  • Maurocalcine-Derivatives As Biotechnological Tools for The
    Maurocalcine-derivatives as biotechnological tools for the penetration of cell-impermeable compounds Narendra Ram, Emilie Jaumain, Michel Ronjat, Fabienne Pirollet, Michel de Waard To cite this version: Narendra Ram, Emilie Jaumain, Michel Ronjat, Fabienne Pirollet, Michel de Waard. Maurocalcine- derivatives as biotechnological tools for the penetration of cell-impermeable compounds: Technological value of a scorpion toxin. de Lima, M.E.; de Castro Pimenta, A.M.; Martin-Eauclaire, M.F.; Bendeta Zengali, R.; Rochat, H. E. Animal Toxins: state of the art: Perspectives in Health and Biotechnology., Editora UFMG Belo Horizonte, Brazil, pp.715-732, 2009. inserm-00515224 HAL Id: inserm-00515224 https://www.hal.inserm.fr/inserm-00515224 Submitted on 5 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Maurocalcine-derivatives as biotechnological tools for the penetration of cell-impermeable compounds by Narendra Ram1,2, Emilie Jaumain1,2, Michel Ronjat1,2, Fabienne Pirollet1,2 & Michel De Waard1,2* 1 INSERM, U836, Team 3: Calcium channels, functions and pathologies, BP 170, Grenoble Cedex 9, F-38042, France 2 Université Joseph Fourier, Institut des Neurosciences, BP 170, Grenoble Cedex 9, F-38042, France Running title: Technological value of a scorpion toxin *To whom correspondence should be sent: Dr.
    [Show full text]
  • Venom Week 2012 4Th International Scientific Symposium on All Things Venomous
    17th World Congress of the International Society on Toxinology Animal, Plant and Microbial Toxins & Venom Week 2012 4th International Scientific Symposium on All Things Venomous Honolulu, Hawaii, USA, July 8 – 13, 2012 1 Table of Contents Section Page Introduction 01 Scientific Organizing Committee 02 Local Organizing Committee / Sponsors / Co-Chairs 02 Welcome Messages 04 Governor’s Proclamation 08 Meeting Program 10 Sunday 13 Monday 15 Tuesday 20 Wednesday 26 Thursday 30 Friday 36 Poster Session I 41 Poster Session II 47 Supplemental program material 54 Additional Abstracts (#298 – #344) 61 International Society on Thrombosis & Haemostasis 99 2 Introduction Welcome to the 17th World Congress of the International Society on Toxinology (IST), held jointly with Venom Week 2012, 4th International Scientific Symposium on All Things Venomous, in Honolulu, Hawaii, USA, July 8 – 13, 2012. This is a supplement to the special issue of Toxicon. It contains the abstracts that were submitted too late for inclusion there, as well as a complete program agenda of the meeting, as well as other materials. At the time of this printing, we had 344 scientific abstracts scheduled for presentation and over 300 attendees from all over the planet. The World Congress of IST is held every three years, most recently in Recife, Brazil in March 2009. The IST World Congress is the primary international meeting bringing together scientists and physicians from around the world to discuss the most recent advances in the structure and function of natural toxins occurring in venomous animals, plants, or microorganisms, in medical, public health, and policy approaches to prevent or treat envenomations, and in the development of new toxin-derived drugs.
    [Show full text]
  • Membrane Protein Production for Structural Analysis
    Chapter 1 Membrane Protein Production for Structural Analysis Isabelle Mus-Veteau, Pascal Demange and Francesca Zito 1.1 Introduction Integral membrane proteins (IMPs) account for roughly 30 % of all open reading frames in fully sequenced genomes (Liu and Rost 2001). These proteins are of main importance to living cells. They are involved in fundamental biological processes like ion, water, or solute transport, sensing changes in the cellular environment, signal transduction, and control of cell–cell contacts required to maintain cellular homeostasis and to ensure coordinated cellular activity in all organisms. IMP dys- functions are responsible for numerous pathologies like cancer, cystic fibrosis, epi- lepsy, hyperinsulinism, heart failure, hypertension, and Alzheimer diseases. How- ever, studies on these and other disorders are hampered by a lack of information about the involved IMPs. Thus, knowing the structure of IMPs and understanding their molecular mechanism not only is of fundamental biological interest but also holds great potential for enhancing human health. This is of paramount importance in the pharmaceutical industry, which produces many drugs that bind to IMPs, and recognizes the potential of many recently identified G-protein-coupled receptors (GPCRs), ion channels, and transporters, as targets for future drugs. GPCR, which account for 50 % of all drug targets, is one of the largest and most diverse IMP families encoded by more than 800 genes in the human genome (Fredriksson et al. 2003; Lundstrom 2006). However, whereas high-resolution structures are avail- able for a myriad of soluble proteins (more than 42,000 in the Protein Data Bank, I. Mus-Veteau () Institute for Molecular and Cellular Pharmacology, UMR-CNRS 7275, University of Nice-Sophia Antipolis, Valbonne, France e-mail: [email protected] P.
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide
    Pharmaceuticals 2013, 6, 320-339; doi:10.3390/ph6030320 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Article Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide Céline Tisseyre 1,2,3,†, Eloi Bahembera 1,2,3,†, Lucie Dardevet 1,2,3, Jean-Marc Sabatier 4, Michel Ronjat 1,2,3 and Michel De Waard 1,2,4,5,* 1 Unité Inserm U836, Grenoble Institute of Neuroscience, Université Joseph Fourier, La Tronche, Chemin Fortuné Ferrini, Bâtiment Edmond Safra, 38042 Grenoble Cedex 09, France 2 Labex Ion Channel Science and Therapeutics, Nice, France 3 Université Joseph Fourier, Grenoble, France 4 Inserm U1097, Parc scientifique et technologique de Luminy, 163, avenue de Luminy, 13288 Marseille cedex 09, France 5 Smartox Biotechnology, Biopolis, 5 Avenue du Grand Sablon, 38700 La Tronche, France † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-4-56-52-05-63; Fax: +33-4-56-52-06-37. Received: 23 February 2013; in revised form: 6 March 2013 / Accepted: 7 March 2013 / Published: 18 March 2013 Abstract: Maurocalcine is a highly potent cell-penetrating peptide isolated from the Tunisian scorpion Maurus palmatus. Many cell-penetrating peptide analogues have been derived from the full-length maurocalcine by internal cysteine substitutions and sequence truncation. Herein we have further characterized the cell-penetrating properties of one such peptide, MCaUF1-9, whose sequence matches that of the hydrophobic face of maurocalcine. This peptide shows very favorable cell-penetration efficacy compared to Tat, penetratin or polyarginine.
    [Show full text]
  • Channel Toxin from Parabuthus Transvaalicus
    Eur. J. Biochem. 269, 5369–5376 (2002) Ó FEBS 2002 doi:10.1046/j.1432-1033.2002.03171.x A single charged surface residue modifies the activity of ikitoxin, a beta-type Na+ channel toxin from Parabuthus transvaalicus A. Bora Inceoglu1,*, Yuki Hayashida2, Jozsef Lango3, Andrew T. Ishida2 and Bruce D. Hammock1 1Department of Entomology and Cancer Research Center, 2Section of Neurobiology, Physiology and Behavior, and 3Department of Chemistry and Superfund Analytical Laboratory, University of California, Davis, CA, USA We previously purified and characterized a peptide toxin, from birtoxin by a single residue change from glycine to birtoxin, from the South African scorpion Parabuthus glutamic acid at position 23, consistent with the apparent transvaalicus. Birtoxin is a 58-residue, long chain neurotoxin mass difference of 72 Da. This single-residue difference that has a unique three disulfide-bridged structure. Here we renders ikitoxin much less effective in producing the same report the isolation and characterization of ikitoxin, a pep- behavioral effect as low concentrations of birtoxin. Elec- tide toxin with a single residue difference, and a markedly trophysiological measurements showed that birtoxin and reduced biological activity, from birtoxin. Bioassays on mice ikitoxin can be classified as beta group toxins for voltage- showed that high doses of ikitoxin induce unprovoked gated Na+ channels of central neurons. It is our conclusion jumps, whereas birtoxin induces jumps at a 1000-fold lower that the N-terminal loop preceding the a-helix in scorpion concentration. Both toxins are active against mice when toxins is one of the determinative domains in the interaction administered intracerebroventricularly.
    [Show full text]
  • Nanodiscs in Membrane Biochemistry and Biophysics
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Chem Rev Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 March 22. Published in final edited form as: Chem Rev. 2017 March 22; 117(6): 4669–4713. doi:10.1021/acs.chemrev.6b00690. NANODISCS IN MEMBRANE BIOCHEMISTRY AND BIOPHYSICS Ilia G. Denisov and Stephen G. Sligar Department of Biochemistry and Department of Chemistry, University of Illinois, Urbana, IL, 61801 Abstract Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system which provides control over size, composition and specific functional modifications on nanometer scale. In this review we attempted to combine a comprehensive list of various applications of Nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by Nanodiscs for structural and mechanistic studies of membrane proteins. Table of Content Figure An Introduction to Nanodiscs Membrane proteins are represented by a tremendous variety of sizes, structures and functions, including complex supra-molecular
    [Show full text]
  • Modulation of Neuropeptide Release Via Voltage-Dependent and -Independent Signaling in Isolated Neurohypophysial Terminals: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2008-04-28 Modulation of Neuropeptide Release via Voltage-Dependent and -Independent Signaling in Isolated Neurohypophysial Terminals: a Dissertation Cristina M. Velazquez-Marrero University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Biological Factors Commons, Chemical Actions and Uses Commons, Inorganic Chemicals Commons, and the Nervous System Commons Repository Citation Velazquez-Marrero CM. (2008). Modulation of Neuropeptide Release via Voltage-Dependent and -Independent Signaling in Isolated Neurohypophysial Terminals: a Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/tgm2-3725. Retrieved from https://escholarship.umassmed.edu/ gsbs_diss/367 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. MODULATION OF NEUROPEPTIDE RELEASE VIA VOLTAGE-DEPENDENT AND -INDEPENDENT SIGNALING IN ISOLATED NEUROHYPOPHYSIAL TERMINALS A Dissertation Presented By Cristina M. Velázquez-Marrero Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of: DOCTOR OF PHILOSOPHY April 28th, 2008 Neuroscience Copyright Notice ©Cristina M. Velazquez-Marrero All Rights Reserved ► C.M. Velázquez-Marrero, E.E. Custer, V. DeCrescenzo, R. Zhuge, J.V. Walsh, J.R. Lemos (2002). Caffeine stimulates basal neuropeptide release from nerve terminals of the neurohypophysis.
    [Show full text]
  • Antagonist Functional Selectivity: 5-Ht2a
    JPET Fast Forward. Published on July 7, 2011 as DOI: 10.1124/jpet.111.183780 JPETThis Fast article Forward. has not been Published copyedited and on formatted. July 7, The 2011 final as version DOI:10.1124/jpet.111.183780 may differ from this version. JPET#183780 ANTAGONIST FUNCTIONAL SELECTIVITY: 5-HT2A SEROTONIN RECEPTOR ANTAGONISTS DIFFERENTIALLY REGULATE 5-HT2A RECEPTOR PROTEIN LEVEL IN VIVO Prem N. Yadav, Wesley K. Kroeze, Martilias S. Farrell and Bryan L. Roth Downloaded from Departments of Pharmacology (.PN.Y.,W.K.K., M.S.F., B.L.R.,), Medicinal Chemistry jpet.aspetjournals.org (B.L.R.) and Psychiatry (B.L.R.), and Program in Neurosciences and NIMH Psychoactive Drug Screening Program(B.L.R.), University of North Carolina - Chapel Hill Medical School, Chapel Hill, NC 27759 at ASPET Journals on September 29, 2021 1 Copyright 2011 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on July 7, 2011 as DOI: 10.1124/jpet.111.183780 This article has not been copyedited and formatted. The final version may differ from this version. JPET#183780 Running title: Functional Selectivity of 5-HT2A receptor antagonists Corresponding Author: Bryan L. Roth MD, PhD Department of Pharmacology UNC Chapel Hill Medical School 4072 Genetic Medicine Building 120 Mason Farm Road Chapel Hill, NC 27599 Fax: 919-843-5788 Downloaded from Tel: 919-966-7535 (Office) Email: [email protected] ; Number of text pages: 26 jpet.aspetjournals.org Number of tables: 0 Number of figures: 5 Number of references: 39 at ASPET Journals on September 29, 2021 Nnumber of words: Abstract: 157 Introduction: 666, Discussion : 485 Abbreviations: 5-HT2A (serotonin 2A); PCP (phencyclidine)", GPCR (G Protein Coupled Receptor) Recommended section: Neuropharmacology 2 JPET Fast Forward.
    [Show full text]