Tbe Pbolcid Spiders of Costa Rica (Araneae: Pbolcidae)

Total Page:16

File Type:pdf, Size:1020Kb

Tbe Pbolcid Spiders of Costa Rica (Araneae: Pbolcidae) Rev. Biol. Trop., 45(4): 1583-1 634, 1997 Tbe pbolcid spiders of Costa Rica (Araneae: Pbolcidae) Bernhard A. Huber Escuela de Biología, Universidad de Costa Rica, CiudadUniversitaria, Costa Rica Mailing address: Dept. ofEntomology, American Museum of Natural History, Central Park West at 79� Street,New York, NY 10024, USA. Received 30-IV-1997. Corrected 29-VIII-1997. Accepted 18-IX-1997. Abstract: Recent studies on the pholcid fauna of Central America have elevated the number of known Costa Rican species from 11 to 28 in only two years. The present paper summarizes the scattered literature and adds two new species as well as three undescribed species, bringing the total number. to 33 species representing seven genera. An illustrated key is presented. An annotated list surnmarizesthe information available about taxonomy, morphology and · natural history of all known Costa Rican pholcids. The two new species are Anopsicus tico n.sp. from the Central Valley, and Physocyclus guanacaste n.sp. from the Santa Rosa National Park, Guanacaste. The male of Metagonia hondura Huber, 1997 is de�cribed and illustrated for fue fIrst time. Old pholcid records.from Costa Rica are discussed, and types of unsuffIciently well described species are redescribed, including all previously known Costa Rican Anopsicus species (A. chiriqui Gertsch, 1982; A. concinnus Gertsch, 1982; A fa cetus Gertsch, 1982; A. turrialba Gertsch, 1982) as well as Metagonia osa Gertsch, 1986 and M. selva Gertsch, 1986. New localities are given for twelv.e species; of these, four are new for Costa Rica: Anopsicus chiriqui Gertsch, 1982; 'Coryssocneinis' viridescens Kraus, 1955; Physocyclus globosus (TacZanowski, 1873); and Smeringopus pallidus (Blackwall, 1858). The genera Coryssocnemis Simon, 1893 and Smeringopus Simon, 1890 are new for Costa Rica. It is argued that carefully directed· collecting in certain areas and habitatS will probably lead to a further considerable increase in known species. Key words: Araneae, Pholcidae, taxonomy, Costa Rica. When Reimoser (1939) published the in other publications (Huber 1996b, 1997b, arachnol()gical results of the 1930 Austrian 1998b), and (3) describes two new species and expedition to Costa Rica, he included four presents illustrations of three undescribed pholcid species: Physocyclus dugesi, P. 'rotun­ species, resulting in a total of 33 pholcid dus, Modisimus inornatus, and Metagonia cau­ species known from Costa Rica. data. Four decades later, Zuñiga's (1980) anno­ tated list of Costa Rican spiders still contained MATERlALS AND METHODS the same four species and no new entries. Gertsch's revisions then added three Anopsicús· This work is primarily based on the pholcid species (1982) and four Metagonia species collections of the. Instituto National de (1986), bringing the total number to eleven. Biodiversidad, Costa Rica (INBIO), the The present paper (1) discusses aH previous Escuela de Biología of the Universidad de records, showing that three of Reimoser's Costa Rica (UCR), and the author's collection. species were probably misidentified and do not These are probably the best coHections of occur in Costa Rica, (2) it briefly characterizes Costa Rican pholcids, but Chave not made an several Costa Rican pholcids recently described effort to extensively borrow material from 1584 REVISTA DE BIOLOGIA TROPICAL North American and European collections, fact be common and widespread. It lives in hid­ other than types of previously described Costa den places, under all sorts of objects, and Rican pholcids and of species that appeared builds no web or only a few finethreads close closely related to the new material, from the to the substrate (Huber 1996b). Smeringopus following institutions: The Natural History pallidus is a large pholcid that lives in much Museum, London (BMNH), Museum of the same habitat as P. globosus, but is appar­ Comparative Zoology, Cambridge (MCZ), ently much less common. Physocyclus dugesi American Museum of Natural History, New has been recorded from several localities by York (AMNH), Museum National d'Histoire Reimoser (1939) ; all new records (see below) Naturelle, Paris(MNHN) . are from the Central Valley in or near San José, Drawings were made with a compound but 1 have never found the species. Nothing is microscope with camera lucida. Measurements known about its habitat, but the records suggest (all in mm) were taken with ocular micrometers it may be anthropophilic. The new species in a compound or a dissecting microscope. Physocyclus guanacaste was collected within Measurement error was about +/- 0.07 mm for the administration buildings of the Santa Rosa leg measurements, +/- 0.03 mm for other mea­ National Park, and is so far only known from surements. Averages are given for N�5. that site. Prosoma length was defined as the distance AH other species were collected in natural between frontal face of eye region and posteri­ habitats, usually in forests. Here they inhabit a or border of carapace medially, but it varies variety of microhabitats: sorne live under widely with the angle at which the prosoma is stones or in the leaf litter on the ground, either viewed. The term carapace is used to refer to without webs or with fine 'two-dimensional' the dorsal part of the prosoma. The most accu­ webs (aH Anopsicus spp.) or in srnall dorne­ rate indicators of size are probably prosoma shaped webs (sorne Modisimus spp.). Sorne width and tibia length. Total size is simply the live close to the ground, in dome shaped webs sum of prosoma length and opisthosoma between buttresses of trees, or in corners length, regardless of the petiolus, and is given between the ground and fallen logs or other as an approximate indication of Oyeran size. objects (several dark Modísimus spp.; probably The tibia index ("tibind") is the length of the 'Coryssocnemis' viridescens). Sorne live higher tibia divided by its width at the middle, and is up in the vegetation, either in dome shaped so a measure of the 'slenderness' of the legs. sheet webs which are usually in contact wíth The error for this index is about +/- 2. the underside of one or more leaves that pro­ Diagnoses are only given for the genera in vide a sheIter (sorne light Modisimus spp.) or which species are (re )described, and these only on the underside of preferably large lea ves of a intend to cover the Costa Rican species and can variety of plant farnílies, to which they attach a thus not be used for the entire genus. The few barely visible threads (aH Metagonia spp.). names of two collectors are abbreviated as fol­ Information about other aspects of natural lows: Carlos E. Valerio (C.E.V.) and Bernhard history has been accumulating: on web con­ A. Huber (B.A.H.). struction and web structure in a Modisimus species and Physocyclus globosus (Briceño 1985; Eberhard 1992a, b; Eberhard & Briceño NATURAL HISTORY 1983), on courtship, copulation and other intraspecifíc interactions (Eberhard 1992b; Five of the 33 known Costa Rican pholcid Eberhard & Briceño 1983, 1985; Huber & species are anthropophilic . Of these, Eberhard 1997; Huber 1996b, 1997b, 1998c), Physocyclus globosus can be found in almost on population fluctuation (Huber unpubl. data), every building, e�pecially in bathrooms, in and on genital rnorphology and mechanics in loose three dimensional webs, preferably in the several species (Huber & Eberhard 1997; corners between ceiling and walls (cf. Eberhard Huber 1997b, 1998a, c). 1992b). Modisimus culicinus i8 a very small spider, and has in Costa Rica been found only at four localities, but it is easily confounded with juvenile Physocyclus globosus andmay in Huber: ThePholcids of Costa Rica 1585 SPECIES THAT WERE ERRONEOUSLy SPECIES THAT HAVE NOT BEEN REPORTED FROM COSTA RICA, AND FOUND IN COSTA RICA BUT MAY BE NAMES THATARE SYNONYMS PRESENT Modisimus inornatus O. P.-Cambridge has The following five species have not been been described and recorded from the Mexican found in Costa Rica, but their distributions sug­ states Tabasco, San Luis Potosí and gest they might occur there. Pholcus phalan­ Tamaulipas (O. P.-Cambridge 1895, 1896, gioides (Fuesslin), Artema atlanta Wa1ckenaer, 1899; Gertsch & Davis 1937, 1942), and later and Micropholcus fauroti (Simon) are anthro­ recorded from "La Palma between Irazu and pophilic cosmopolitan species, and have been Barba" in Costa Rica (Reimoser 1939). This found in other American countries. American species has been redescribed recentIy (Huber records of P. phalangioides inc1ude the USA, 1998b). It is not present in the collections of Brazil, Argentine and Chile; those of A. atlanta Costa Rican pho1cids 1 studied. "La Palma" include the USA, several Antilles, Mexico, (Alto Palma) is only about 2 km from the type Panama and several South American countries; locality of Modisimus guatuso Huber, the most those of M. fauroti inc1ude the USA, Mexico, common Modisimus in Costa Rica (Huber Puerto Rico and Cuba. Anopsicus zeteki 1998b). At this locality, no other dark (Gertsch) is a Panamanian species that has been Modisimus has been found, making it probable recorded from the Canal Zone (Gertsch 1982; that Reimoser's record of M. inornatus is based Nentwig 1993), and from David, Prov. Chiriquí on a misidentification. (Huber 1996b), which is about 300 km from Metagonia caudata O. P.-Cambridge is also the Canal Zone but only about 50 km from the a Mexican species. Gertsch (1986) syn­ border with Costa Rica. As is true of most onymized the Panamanian records other Anopsicus species, it lives in the ground, (Petrunkevitch 1911; Banks 1929) with the under stones and in the leaf litter, and may newly described M. panama, but did not com­ therefore have gone unnoticed. FinaIly, ment on Reimoser's (1939) record from Modisimus david Hub�r has been found both in Turrialba, Costa Rica. Metagonia caudata is Panama (David), and in Nicaragua (San Juan not present in the studied collections, but at del Sur) (Huber 1996b), and almost certainly least two other medium-sized to large occurs between these localities in Costa Rica.
Recommended publications
  • Non-Insect Arthropod Types in the ZFMK Collection, Bonn (Acari, Araneae, Scorpiones, Pantopoda, Amphipoda)
    03_huber.qxd 01.12.2010 9:31 Uhr Seite 217 Bonn zoological Bulletin Volume 58 pp. 217–226 Bonn, November 2010 Non-insect arthropod types in the ZFMK collection, Bonn (Acari, Araneae, Scorpiones, Pantopoda, Amphipoda) Bernhard A. Huber & Stefanie Lankhorst Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany; E-mail: [email protected] Abstract. The type specimens of Acari, Araneae, Scorpiones, Pantopoda, and Amphipoda housed in the Alexander Koenig Zoological Research Museum, Bonn, are listed. 183 names are recorded; of these, 64 (35%) are represented by name bearing (i.e., primary) types. Specific and subspecific names are listed alphabetically, followed by the original genus name, bibliographic citation, present combination (as far as known to the authors), and emended label data. Key Words. Type specimens, Acari, Araneae, Scorpiones, Pantopoda, Amphipoda, Bonn. INTRODUCTION The ZFMK in Bonn has a relatively small collection of Abbreviations. HT: holotype, PT: paratype, ST: syntype, non-insect arthropods, with an emphasis on arachnids LT: lectotype, PLT: paralectotype; n, pn, dn, tn: (proto-, (mostly mites, spiders, and scorpions), sea spiders (Pan- deuto-, trito-) nymph, hy: hypopus, L: larva topoda) and amphipods. Other arachnid and crustacean or- ders are represented, but not by type material. A small part of the material goes back to the founder of the museum, ACARI Alexander Koenig, and was collected around 1910. Most Acari were deposited at the museum by F. S. Lukoschus aequatorialis [Orycteroxenus] Lukoschus, Gerrits & (mostly Astigmata: Glyciphagidae, Atopomelidae, etc.), Fain, 1977b. PT, 2 slides. CONGO REP.: Mt de Braz- Pantopoda by F. Krapp (Mediterranean, Weddell Seas), za (near Brazzaville), host: Crocidura aequatorialis, and Amphipoda by G.
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • Revista Mexicana De Biodiversidad
    Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 91 (2020): e913316 Taxonomy and systematics On the daddy long-legs spiders of the genus Physocyclus (Araneae: Pholcidae) from Mexico: description of a new species from the Baja California Peninsula Sobre las arañas patonas del género Physocyclus (Araneae: Pholcidae) de México: descripción de una especie nueva de la península de Baja California Samuel Nolasco a, b, Alejandro Valdez-Mondragón c, d, * a Laboratorio de Aracnología, Laboratorio Regional de Biodiversidad y Cultivo de Tejidos Vegetales, Instituto de Biología, Universidad Nacional Autónoma de México, sede Tlaxcala, Ex-Fábrica San Manuel, San Miguel Contla, 90640 Santa Cruz Tlaxcala, Tlaxcala, Mexico b Posgrado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Carretera Federal Tlaxcala- Puebla, Km. 1.5, 90062 Tlaxcala, Tlaxcala, Mexico c Conacyt Research Fellow, Laboratorio de Aracnología, Laboratorio Regional de Biodiversidad y Cultivo de Tejidos Vegetales, Instituto de Biología, Universidad Nacional Autónoma de México, sede Tlaxcala, Ex-Fábrica San Manuel, San Miguel Contla, 90640 Santa Cruz Tlaxcala, Tlaxcala, Mexico d Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 04510 México City, Mexico *Corresponding author: [email protected] (A. Valdez-Mondragón) Received: 4 Dicember 2019; accepted: 10 March 2020 http://zoobank.org/urn:lsid:zoobank.org:pub:23829591-817F-4AFE-BF3D-A3012229D9E2 Abstract A new species of daddy long-legs spiders of the genus Physocyclus Simon, 1893 of the globosus species group is described from the Baja California Peninsula desert, in the state of Baja California Sur, Mexico. The species is described based on adult males and females: Physocyclus xerophilus sp.
    [Show full text]
  • Inferring Global Species Richness from Megatransect Data and Undetected Species Estimates
    Contributions to Zoology 88 (2019) 42-53 CTOZ brill.com/ctoz Inferring global species richness from megatransect data and undetected species estimates Bernhard A. Huber Alexander Koenig Research Museum of Zoology, Adenauerallee 160, 53113 Bonn, Germany [email protected] Anne Chao Institute of Statistics, National Tsing Hua University, Hsin-Chu, 30043, Taiwan Abstract Ratio-like approaches for estimating global species richness have been criticised for their unjustified ex- trapolation from regional to global patterns. Here we explore the use of cumulative percentages of ‘new’ (i.e., not formally described) species over large geographic areas (‘megatransects’) as a means to overcome this problem. In addition, we take into account undetected species and illustrate these combined methods by applying them to a family of spiders (Pholcidae) that currently contains some 1,700 described species. The raw global cumulative percentage of new species (‘new’ as of the end of 2008, when 1,001 species were formally described) is 75.1%, and is relatively constant across large biogeographic regions. Undetected spe- cies are estimated using the Chao2 estimator based on species incidence data (date by species and locality by species matrices). The estimated percentage of new species based on the date by species matrices is 76.0% with an estimated standard error (s.e.) of 2.6%. This leads to an estimated global species richness of about 4,200 with a 95% confidence interval of (3,300, 5,000). The corresponding values based on locality by species matrices are 84.2% (s.e. 3.0%) and 6,300 with a 95% confidence interval of (4,000, 8,600).
    [Show full text]
  • Records of the Hawaii Biological Survey for 1996
    Records of the Hawaii Biological Survey for 1996. Bishop Museum Occasional Papers 49, 71 p. (1997) RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1996 Part 2: Notes1 This is the second of 2 parts to the Records of the Hawaii Biological Survey for 1996 and contains the notes on Hawaiian species of protists, fungi, plants, and animals includ- ing new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 48]. Foraminifera of Hawaii: Literature Survey THOMAS A. BURCH & BEATRICE L. BURCH (Research Associates in Zoology, Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA) The result of a compilation of a checklist of Foraminifera of the Hawaiian Islands is a list of 755 taxa reported in the literature below. The entire list is planned to be published as a Bishop Museum Technical Report. This list also includes other names that have been applied to Hawaiian foraminiferans. Loeblich & Tappan (1994) and Jones (1994) dis- agree about which names should be used; therefore, each is cross referenced to the other. Literature Cited Bagg, R.M., Jr. 1980. Foraminifera collected near the Hawaiian Islands by the Steamer Albatross in 1902. Proc. U.S. Natl. Mus. 34(1603): 113–73. Barker, R.W. 1960. Taxonomic notes on the species figured by H. B. Brady in his report on the Foraminifera dredged by HMS Challenger during the years 1873–1876. Soc. Econ. Paleontol. Mineral. Spec. Publ. 9, 239 p. Belford, D.J.
    [Show full text]
  • Howard Associate Professor of Natural History and Curator Of
    INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM).
    [Show full text]
  • Miranda ZA 2018.Pdf
    Zoologischer Anzeiger 273 (2018) 33–55 Contents lists available at ScienceDirect Zoologischer Anzeiger jou rnal homepage: www.elsevier.com/locate/jcz Review of Trichodamon Mello-Leitão 1935 and phylogenetic ଝ placement of the genus in Phrynichidae (Arachnida, Amblypygi) a,b,c,∗ a Gustavo Silva de Miranda , Adriano Brilhante Kury , a,d Alessandro Ponce de Leão Giupponi a Laboratório de Aracnologia, Museu Nacional do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista s/n, São Cristóvão, Rio de Janeiro-RJ, CEP 20940-040, Brazil b Entomology Department, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave NW, Washington, DC, 20560, USA c Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark (Zoological Museum), University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark d Servic¸ o de Referência Nacional em Vetores das Riquetsioses (LIRN), Colec¸ ão de Artrópodes Vetores Ápteros de Importância em Saúde das Comunidades (CAVAISC), IOC-FIOCRUZ, Manguinhos, 21040360, Rio de Janeiro, RJ, Brazil a r t i c l e i n f o a b s t r a c t Article history: Amblypygi Thorell, 1883 has five families, of which Phrynichidae is one of the most diverse and with a Received 18 October 2017 wide geographic distribution. The genera of this family inhabit mostly Africa, India and Southeast Asia, Received in revised form 27 February 2018 with one genus known from the Neotropics, Trichodamon Mello-Leitão, 1935. Trichodamon has two valid Accepted 28 February 2018 species, T. princeps Mello-Leitão, 1935 and T. froesi Mello-Leitão, 1940 which are found in Brazil, in the Available online 10 March 2018 states of Bahia, Goiás, Minas Gerais and Rio Grande do Norte.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • AMCS Bulletin 5 Reprint a REPORT on CAVE SPIDERS FROM
    !"#$%&'(()*+,%-%.)/0+,* A REPORT ON CAVE SPIDERS FROM MEXICO AND CENTRAL AMERICA 1 Willis J. Gertsch2 Curator Emeritus, American Museum of Natural History, New York About one hundred species of spiders have so far can caves. been reported from cave habitats in Mexico and in- The obligate cavernicoles are always of special tensive collecting surveys will eventually enlarge this interest because of deep commitment to cave exist- list several times. In an earlier paper Gertsch (1971) ence. Six additional species from Mexico and Central cited 86 species, most of them new, and the present America enlarge this total to 19 from the 13 Mexican report further enlarges the Mexican fauna by addition taxa noted in the earlier paper. Two additional fami- of 20 species of which 16 are herein described for the lies, Telemidae and Ochyroceratidae, are now repre- first time. In addition, eight new species are reported sented as listed below. from caves in Guatemala, Belize (British Honduras), Family Dipluridae and Panama of Central America, the larger area con- Euagrus anops, new species sidered in this paper. Additional records with full Cueva de la Porra, San Luis POtOSI: Mexico. collecting data are presented for some species noted Family Theraphosidae on earlier lists, and I look forward to future considera- Schizopelma reddelli, new species tion of spider families not mentioned here. Cueva del Nacimiento del RIO San Antonio, Spiders are important predators of crawling and Oaxaca, Mexico. flying invertebrates and penetrate into all parts of Family Pholcidae caves where prey is present. The regional cave fauna is Metagonia martha, new species derived from local taxa and comprises distinctive ele- Cueva del Nacimiento del RIO San Antonio, ments.
    [Show full text]
  • Legislative Assembly Department of Archives, Investigations and Processing
    Exhibit C-1l Page 1 of 311 File No. 11.202 LEGISLATIVE ASSEMBLY DEPARTMENT OF ARCHIVES, INVESTIGATIONS AND PROCESSING Filed by: Representative Chavarría Aguilar Matter: Creation of the Las Baulas de Guanacaste National Marine Park Bill published in Item No. ______ in Gazette No. 126 of July 4, 1991 Delivered to the Special Committee on the Environment Date: July 4, 1991 AFFIRMATIVE Date:_____________________________ UNANIMOUS NEGATIVE Date:_____________________________ AFFIRMATIVE Date: May 14, 1992 RULING MAJORITY NEGATIVE Date:_____________________________ AFFIRMATIVE Date:_____________________________ MINORITY NEGATIVE Date:_____________________________ Report – final draft: Date:_____________________________ June 12, 1995 Approved Second Debate Full Third Meeting #5 of June 21, 1995 Again to the Committee ________________________________________________________ VETO No. ____ Publ. Item No. _____ in Gazette No. _____ _____ , _______________________ Removed by Executive Authority on ______ ____, _____________________________________ Authorized on ______ ____, _____________________________________ RE-SEAL No. ______ ____, _____________________________________ Published in Item No. _____ in Gazette No. _____ _____ , _______________________ ORDER No. 7524 of July 3, 1995 Authorized on July 10, 1995 Published in Item No. _____ in Gazette No. 154 of August 16, 1995 Filed on May 13, 1991 Archived on August 21, 1995 Exhibit C-1l Page 2 of 311 1 BILL CREATION OF LAS BAULAS DE GUANACASTE NATIONAL MARINE PARK File No. 11.202 LEGISLATIVE ASSEMBLY: One of the three areas in the world where the Leatherback Sea Turtle (Dermochelys coriacea) nests and reproduces is located in our country. Included in this area are Playa Grande and Playa Langosta, located in the Northern Pacific, in the cove where Cabo Velas and Tamarindo Bay are located, in the canton of Santa Cruz, in the province of Guanacaste.
    [Show full text]
  • Selection for Imperfection: a Review of Asymmetric Genitalia 2 in Araneomorph Spiders (Araneae: Araneomorphae)
    bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Selection for imperfection: A review of asymmetric genitalia 2 in araneomorph spiders (Araneae: Araneomorphae). 3 4 5 6 F. ANDRES RIVERA-QUIROZ*1, 3, MENNO SCHILTHUIZEN2, 3, BOOPA 7 PETCHARAD4 and JEREMY A. MILLER1 8 1 Department Biodiversity Discovery group, Naturalis Biodiversity Center, 9 Darwinweg 2, 2333CR Leiden, The Netherlands 10 2 Endless Forms Group, Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, 11 The Netherlands 12 3 Institute for Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333BE 13 Leiden, The Netherlands. 14 4 Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 15 12121 Thailand. 16 17 18 19 Running Title: Asymmetric genitalia in spiders 20 21 *Corresponding author 22 E-mail: [email protected] (AR) 23 bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 Abstract 25 26 Bilateral asymmetry in the genitalia is a rare but widely dispersed phenomenon in the 27 animal tree of life. In arthropods, occurrences vary greatly from one group to another 28 and there seems to be no common explanation for all the independent origins.
    [Show full text]