Corylus Colurna L. and Corylus Avellana L.) Using Multiplexed Nuclear Microsatellite Markers

Total Page:16

File Type:pdf, Size:1020Kb

Corylus Colurna L. and Corylus Avellana L.) Using Multiplexed Nuclear Microsatellite Markers Ann. For. Res. 62(2): 173-182, 2019 ANNALS OF FOREST RESEARCH DOI: 10.15287/afr.2019.1709 www.afrjournal.org Molecular differentiation of Turkish and Common hazels (Corylus colurna L. and Corylus avellana L.) using multiplexed nuclear microsatellite markers Barbara Fussi1§, Darius Kavaliauskas1, Muhidin Šeho1 Fussi B., Kavaliauskas D., Šeho M.. Molecular differentiation of Turkish and Com- mon hazels (Corylus colurna L. and Corylus avellana L.) using multiplexed nucle- ar microsatellite markers. Ann. For. Res. 62(2): 173-182. Abstract. Corylus colurna is considered as important tree species under climate change for dry and warm conditions in Central Europe and was overused because of its valuable wood. Therefore Turkish hazel is now present only in small isolated populations and is protected under IUCN. Genetic conservation of this tree species plays a key role in future sustainable forest development. Turkish hazel co-occurs with Common hazel (C. avellana) in its whole distribution area and may form hy- brids. To differentiate between the pure species and their hybrids, cross-species amplifying markers are required. In this study we have evaluated existing simple sequence repeat (SSR) markers using altogether 128 samples of C. avellana and C. colurna. Fifteen nuclear SSRs have generated easy to-score alleles in the two species and 13 of them were highly polymorphic. For all 15 markers the mean al- lele number, average observed heterozygosity, genetic diversity and polymorphism information index were high. The two most polymorphic SSRs were L1.10 and CaT-B501 with 19 and 16 alleles, respectively. Structure analysis proved the dif- ferentiation of the two species C. avellana and C. colurna. No hybridization was detected in the analysed populations. Results also indicated that C. colurna from Balkan Peninsula and Asia Minor belong to separate groups. Our study presents highly polymorphic, easy to score, ready to use SSR-multiplexes, which can be applied in population genetics and gene conservation studies. Keywords: SSR, multiplex PCR, polymorphism, species differentiation, molecular markers, hazelnut Authors. 1Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, 83317 Teisendorf, Germany. §Corresponding author: Barbara Fussi ([email protected]) Manuscript received November 21, 2018; revised December 20, 2019; accepted December 28, 2019; online first December 31, 2019. Introduction egy to increase the stability of forest stands is given through establishing mixed forests. By Climate change affects all forest ecosystems supplementing the existing spectrum of tree and goods that forests provide. A suitable strat- species in Central Europe, the risk can be min- 173 Ann. For. Res. 62(2): 173-182, 2019 Research article imized. Therefore we examine tree species two hazelnuts (C. colurna L. and C. avellana from the Mediterranean region for its drought L.) hybrids can be formed rarely (Alexandrov resistance and their suitability to be cultivat- 1995; Erdogan & Mehlenbacher 2000, Jahn ed in Germany. Turkish hazel is considered as 1930). Jahn (1930) described some differenc- a valuable tree species under climate change es between three possible hybrids between C. with high adaption potential to drought and colurna and C. avellana in botanical gardens frost (Šeho et al. 2019). Turkish hazel (C. in Hann. Münden, Göttingen and Jena (Ger- colurna L.) and Common hazel (C. avellana L.) many). However, he was not absolutely certain belong to the family of birch plants (Betulace- that these trees are natural hybrids. ae), with the subfamily Corylaceae which has In Germany, Common hazel is intensively four genera. The genus Corylus has 12 species traded and planted, and thus is of central inter- distributed in the temperate zones of Eurasia est from a nature conservancy point of view. and North America (Mitchell 1979, Fitschen Leinemann et al. (2013) studied Common ha- 1994, Alteheld 1996, Erdogan & Mehlenbach- zel using chloroplast markers (cpSSRs), iso- er 2000a). The genus is diploid (2n=2x=22), zymes and AFLPs with the aim to assess the and contains monoecious and wind-pollinated within and between population variation of 20 shrubs and trees (Bassil et al. 2013). Within natural populations from Central Europe. Sig- section Corylus, three subsections are tra- nificant differences between populations were ditionally recognized. C. colurna L. and C. found. Like other plant species, the distribution avellana belong to different subsections (Sub- of Common hazel is strongly affected by post- section Colurnae and Phyllochlamys, respec- glacial recolonization (Huntley & Birks 1983, tively) (Erdogan & Mehlenbacher 2000). Huntley 1990, Palmé & Vendramin 2002). A C. colurna is naturally distributed on the clear geographical structure was found on the Balkan Peninsula, Asia Minor, the Caucasus European scale separating Italy and the Bal- and Afghanistan (Temel et al. 2017, Šeho & kans from the rest of Europe (Palmé & Ven- Huber 2018, Šeho et al. 2019). By supple- dramin 2002). Together with pollen data the menting the existing spectrum of broad-leaved possible origin of Central European Common tree species with Turkish hazel in Central Eu- hazel would be France expanding into most rope, the risks raised by changing climate can of Europe and a local expansion in Italy and be minimized. To recommend suitable prove- the Balkans. C. avellana and C. colurna share nances for Central Europe research on genetic one haplotype indicating common ancestry or and phenotypic diversity between and within hybridization between the two species. For C. C. colurna populations is necessary. Turkish colurna there is a knowledge gap about poten- hazel can reach an age of 400 years, DBH of tial refugia or recolonization routes after the 60 cm (in some cases up to 170 cm) and height last glacial maximum. of 30 m depending on the growth conditions For further cultivation of Turkish hazel in (Alexandrov 1995, Alteheld 1996, Schmidt Central Europe it is important that the inva- 2003, Richter 2013, Šeho & Huber 2018, Šeho siveness of this tree species through hybrid- et al. 2019). In contrast, Common hazel is ization will be evaluated. Artificial crossing growing as a shrub. These two hazel species experiments between C. colurna x C. avellana have different morphology of leaves and fruits. L. yielded in the formation of few fruit clus- Turkish hazel has 17-20 mm long nuts ripen- ters with C. avellana as the male parent, but ing in 5 to 6 pods surrounded by deeply di- failed to set full seeds. The reciprocal cross, C. vided lobes. Nuts are smaller than those of C. avellana x C. colurna, set very few nuts only avellana. Leaves of Common hazel are slight- in one of three breeding years (Erdogan & Me- ly smaller and lighter green and the bark is less hlenbacher 2000). Percentage of seed germina- grey than that of Turkish hazel. Between these tion was higher when C. avellana was pollen 174 Fussi et al. Molecular differentiation of Turkish and Common hazels ... donor and C. colurna female crossing partner. of nuclear microsatellite loci across species/ Seedling vigor, recorded as stem diameter, taxa or genera depends on various factors was highly variable among the interspecific such as species generation time, type of breed- crosses. In general, the cultivated hazelnut C. ing system, genome size, etc. (Barbara et al. avellana, and the tree hazel species C. colurna 2007, Ellis & Burke 2007). Lower success and C. chinensis yielded very vigorous inter- rate of SSR transferability was observed in specific hybrid seedlings (Erdogan & Mehlen- selfing species and species with high genome bacher 2000). However, the crossability of C. size such as tree species and has therefor to be colurna and C. avellana was under discussion evaluated case-by-case (Barbara et al. 2007). in the 1960ies (Kasapligil 1963, 1964). Gel- Compared to “anonymous” SSRs EST-SSRs latly (1966) reported some hybrids and named are easier to be transferred between species es- them trazels, derived from open-pollination of pecially among plants (Ellis & Burke 2007 and C. colurna trees, morphologically indicating references therein). The transferability of SSR true hybrids (varieties called ‘Morrisoka’ and markers allows their usage in related species ‘Faroka’). Erdogan & Mehlenbacher (2000) for fingerprinting, mapping, and marker-assist- indicate that crossability between these two ed breeding (Ellis & Burke 2007). Examples species is complicated but possible. In their include the high transferability rate of SSRs study C. colurna x C. avellana resulted in in several tree species from apple (Malus do- cluster set every year, but with high proportion mestica) to European pear (Pyrus communis) of empty seeds and only few viable seedlings. (Pierantoni et al. 2004), from peach (Prunus Breeders need to perform large numbers of persica) to related Prunus species (Cipriani pollinations to obtain a few hybrid seedlings et al. 1999), and within oaks (from Quercus (Erdogan & Mehlenbacher 2000). Bassil et al. petraea to Quercus robur, Steinkellner et al. (2013) reported about hybridization support- 1997). ed by nuclear and chloroplast microsatellite The goal of this study was to establish high data, where C. colurna - C. avellana hybrids quality sets of molecular markers (i.e. ready formed a distinct group, while accessions of C. to use multiplexes of nSSRs) for both species colurna were placed in one cluster with two C. C. colurna and C. avellana and use them to avellana cultivars from southern Italy (‘Tonda investigate
Recommended publications
  • Microsatellite Markers in Hazelnut: Isolation, Characterization, and Cross-Species Amplifi Cation
    J. AMER. SOC. HORT. SCI. 130(4):543–549. 2005. Microsatellite Markers in Hazelnut: Isolation, Characterization, and Cross-species Amplifi cation Nahla V. Bassil1 USDA–ARS, NCGR, 33447 Peoria Road, Corvallis, OR 97333 R. Botta Università degli Studi di Torino, Dipartimento di Colture Arboree, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy S.A. Mehlenbacher Oregon State University, Department of Horticulture, 4017 Agricultural and Life Sciences Building, Corvallis, OR 97331 ADDITIONAL INDEX WORDS. Corylus avellana, simple sequence repeats, SSRs, DNA fi ngerprinting, genetic diversity ABSTRACT. Three microsatellite-enriched libraries of the european hazelnut (Corylus avellana L.) were constructed: library A for CA repeats, library B for GA repeats, and library C for GAA repeats. Twenty-fi ve primer pairs amplifi ed easy-to-score single loci and were used to investigate polymorphism among 20 C. avellana genotypes and to evaluate cross-species amplifi cation in seven Corylus L. species. Microsatellite alleles were estimated by fl uorescent capillary electrophoresis fragment sizing. The number of alleles per locus ranged from 2 to 12 (average = 7.16) in C. avellana and from 5 to 22 overall (average = 13.32). With the exception of CAC-B110, di-nucleotide SSRs were characterized by a relatively large number of alleles per locus (≥5), high average observed and expected heterozygosity (Ho and He > 0.6), and a high mean polymorphic information content (PIC ≥ 0.6) in C. avellana. In contrast, tri-nucleotide microsatellites were more homozygous (Ho = 0.4 on average) and less informative than di-nucleotide simple sequence repeats (SSRs) as indicated by a lower mean number of alleles per locus (4.5), He (0.59), and PIC (0.54).
    [Show full text]
  • Empidonax Traillii Extimus) Breeding Habitat and a Simulation of Potential Effects of Tamarisk Leaf Beetles (Diorhabda Spp.), Southwestern United States
    A Satellite Model of Southwestern Willow Flycatcher (Empidonax traillii extimus) Breeding Habitat and a Simulation of Potential Effects of Tamarisk Leaf Beetles (Diorhabda spp.), Southwestern United States Open-File Report 2016–1120 U.S. Department of the Interior U.S. Geological Survey A Satellite Model of Southwestern Willow Flycatcher (Empidonax traillii extimus) Breeding Habitat and a Simulation of Potential Effects of Tamarisk Leaf Beetles (Diorhabda spp.), Southwestern United States By James R. Hatten Open-File Report 2016–1120 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit http://www.http://www.store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Hatten, J.R., 2016, A satellite model of Southwestern Willow Flycatcher (Empidonax traillii extimus) breeding habitat and a simulation of potential effects of tamarisk leaf beetles (Diorhabda spp.), Southwestern United States: U.S.
    [Show full text]
  • Evaluating Seasonal Variablity As an Aid to Cover-Type Mapping From
    PEER.REVIEWED ARIICTE EvaluatingSeasonal Variability as an Aid to Gover-TypeMapping from Landsat Thematic MapperData in the Noftheast JamesR. Schrieverand RussellG. Congalton Abstract rate classifications for the Northeast (Nelson et ol., 1g94i Hopkins ef 01.,19BB). However, despite these advances, spe- Classification of forest cover types in the Northeast is a diffi- cult task. The conplexity and variability in species contposi- cific hardwood forest types have not been reliably classified tion makes various cover types arduous to define and in the Northeast. Developments within the remote sensing identify. This project entployed recent advances in spatial community have shown promise for classification of forest and spectral properties of satellite data, and the speed and cover types throughout the world, These developments indi- potN/er of computers to evaluate seasonol varictbility os an aid cate that, by combining supervised and unsupervised classifi- cation techniques, increases in the accuracy of forest to cover-type mapping from Landsat Thematic Mapper (ru) classifications can be expected (Fleming, 1975; Lyon, 1978; dato in New Hampshire. Dato fron May (bud break), Sep- the su- tember (leaf on), and October (senescence) were used to ex- Chuvieco and Congaiton, 19BBJ.By combining both plore whether different lea.f phenology would improve our pervised and unsupervised processes,a set of spectrally and informationally unique training statistics can be generated. ability to generate forest-cover-type maps. The study area covers three counties in the southeastern corner ol New' This approach resr-rltsin improved classification accuracv (Green Hampshire. A modified supervised/unsupervised approach due to the improved grouping of training statistics was used to classify the cover types.
    [Show full text]
  • Department of Entomology Newsletter for Alumni and Friends (2009) Iowa State University, Department of Entomology
    Department of Entomology Newsletter Entomology 1-2009 Department of Entomology Newsletter For Alumni and Friends (2009) Iowa State University, Department of Entomology Follow this and additional works at: http://lib.dr.iastate.edu/entnewsletter Part of the Entomology Commons Recommended Citation Iowa State University, Department of Entomology, "Department of Entomology Newsletter For Alumni and Friends (2009)" (2009). Department of Entomology Newsletter. 7. http://lib.dr.iastate.edu/entnewsletter/7 This Book is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Department of Entomology Newsletter by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. January 2009 Newsletter For Alumni and Friends Gassmann Hired as New Corn Entomologist I joined the Department of Entomol- ogy at Iowa State University in Janu- ary 2008. This was not the easiest time of year to leave sunny Tucson, Arizona where I had been working as an Assis- tant Research Scientist in the University of Arizona’s Department of Entomol- ogy. Despite the cold, however, I am delighted to be in Iowa again. I was born and raised in Dubuque County, where my family has deep roots. Vis- its to the farms of relatives and family friends filled much of my early years and gave me a strong affinity toward Iowa agriculture. I am very pleased to have returned to Iowa and am impressed by the wealth of research opportuni- Back row, left to right: Steve Thompson (MS student), Pat Weber ties available in my home state.
    [Show full text]
  • Assessment of Genetic Diversity and Population Genetic Structure of Corylus Mandshurica in China Using SSR Markers
    RESEARCH ARTICLE Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers Jian-Wei Zong1,2, Tian-Tian Zhao1*, Qing-Hua Ma1, Li-Song Liang1, Gui-Xi Wang1* 1 State Key Laboratory of Tree Genetic and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China, 2 College of Resource and Environmental Science, Pingdingshan University, Pingdingshan, Henan Province, China * [email protected] (TTZ); [email protected] (GXW) Abstract Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 OPEN ACCESS C. mandshurica individuals among 12 populations in China. The SSR markers expressed a Citation: Zong J-W, Zhao T-T, Ma Q-H, Liang L-S, relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, Wang G-X (2015) Assessment of Genetic Diversity and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), Corylus and Population Genetic Structure of genetic variation within the populations (87.85%) were remarkably higher than among popu- mandshurica in China Using SSR Markers. PLoS Nm ONE 10(9): e0137528. doi:10.1371/journal. lations (12.15%). The average gene flow ( = 1.8080) significantly impacts the genetic pone.0137528 structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) C mandshurica Editor: Xiaoming Pang, Beijing Forestry University, among wild . may be caused by wind-pollinated flowers, highly nutritious CHINA seeds and self-incompatible mating system.
    [Show full text]
  • The Effects of Winter Moth Defoliation on Forest Growth and Production Inferred from Satellite Imagery and Dendrochronology
    The effects of winter moth defoliation on forest growth and production inferred from satellite imagery and dendrochronology Erin Gleeson, Rhodes College 2000 North Parkway, TN 38112 Co-authors: Christopher Neill and Greg Fiske Woods Hole Research Center 149 Woods Hole Road, Falmouth, MA 02540 Gleeson 1 Abstract Forest disturbances are events that can cause change in the structure and composition of a forest ecosystem. Insect outbreaks may be a consequence of climate change, and could create unexpected dynamics in nature. Recently, and invasive pest from Europe, called the winter moth, has invaded Massachusetts and most of New England. The winter moth causes widespread defoliation by stripping the leaves off of all deciduous trees. I attempted to use remote sensing satellite data from MODIS, to classify sites that had experienced heavy defoliation and sites that had experienced little to no defoliation. Then, by looking at radial increment growth in tree cores, I created estimates of forest biomass growth, which I used as a model to try and study the effects of winter moth defoliation on greater areas of land. I found that defoliation from the winter moth has a large effect on tree ring width and overall tree growth because of how time period (pre and post winter moth) at each treatment affected ring width increment. The winter moth also reduced carbon storage in southeastern Massachusetts by around 51%. Clearly there are serious implications for an insect outbreak like this one, and measures, such as biological control by releasing natural parasitic enemies of the winter moth are being utilized. Climate change and a shift towards warmer global temperatures are predicted to increase the spread and severity of winter moth defoliation, and it is important that we think about future studies, and how we can control the reintroduction and spread of invasive insects that cause so much harm to ecosystem services and native ecosystem dynamics.
    [Show full text]
  • Comparison of Satellite-Based Estimates of Aboveground Biomass in Coppice Oak Forests Using Parametric, Semiparametric, and Nonparametric Modeling Methods
    Comparison of satellite-based estimates of aboveground biomass in coppice oak forests using parametric, semiparametric, and nonparametric modeling methods Amir Safari Hormoz Sohrabi Scott Powell Amir Safari, Hormoz Sohrabi, Scott Powell, “Comparison of satellite-based estimates of aboveground biomass in coppice oak forests using parametric, semiparametric, and nonparametric modeling methods,” J. Appl. Remote Sens. 12(4), 046026 (2018), doi: 10.1117/1.JRS.12.046026. Comparison of satellite-based estimates of aboveground biomass in coppice oak forests using parametric, semiparametric, and nonparametric modeling methods Amir Safari,a Hormoz Sohrabi,a,* and Scott Powellb aUniversity of Tarbiat Modares, Department of Forestry, Faculty of Natural Resources, Tehran, Iran bMontana State University, Department of Land Resources and Environmental Sciences, Bozeman, Montana, United States Abstract. Accurate estimates of forest biomass are essential for several purposes, ranging from carbon accounting and ecological applications to sustainable forest management. There are, however, critical steps for mapping aboveground forest biomass (AGB) based on optical satellite data with an acceptable degree of accuracy, such as selecting the proper statistical modeling method and deriving spectral information from imagery, at known field locations. We compare nine modeling techniques including parametric, semiparametric, and nonparametric methods for remotely estimating AGB based on various spectral variables derived from Landsat 8 Operational Land Imager (OLI).
    [Show full text]
  • A Classification of Palaearctic Habitats
    You have either reached a page that is unavailable for viewing or reached your viewing Ii mit for this book. You have either reached a page that is unavailable for viewing or reached your viewing Ii mit for this book. You have either reached a page that is unavailable for viewing or reached your viewing Ii mit for this book. Council of Europe Conseil de I' Europe * * * * * * * * *** * A classification of Palaearctic habitats Nature and environment, No. 78 A classification of Palaearctic habitats by Pierre Devillers and Jean Devillers-Terschuren lnstitut royal des sciences naturelles de Belgique Convention on the Conservation of European Wildlife and Natural Habitats Steering Committee Nature and environment, No. 78 Council of Europe Publishing T h i..& one '\11111\1\lllllll\llll\l\lll 83SO-ZEP-05HE Council of Europe Publishing F-67075 Strasbourg Cedex ISBN 92-871-2989-4 © Council of Europe, 1996 Reprinted 1997, October 1998 Printed at the Council of Europe - 7 - CONTENTS I. INTRODUCTION . 9 II. THE P ALAEARCTIC HABITATS TYPOLOGY . 11 III. A GLOBAL SYSTEM OF HABITAT CLASSIFICATION ... .. ... 19 IV. A DRAFT CLASSIFICATION OF PALAEARCTIC HABITATS ... .. 35 V. ACKNOWLEOCEMENTS . 156 VI. REFERENCES . 157 You have either reached a page that is unavailable for viewing or reached your viewing Ii mit for this book. - 10 - species that relate the most to human awareness and subconscious. It is perfectly legitimate that more efforts are expended in favour of the large mammals which populate the tales of childhood or of the birds, butterflies or dragonflies which generate a capital of sympathy and identification than in favour of more obscure invertebrates or bacteria.
    [Show full text]
  • Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, 3–36
    Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management Edited by V. A. DYCK J. HENDRICHS and A.S. ROBINSON Joint FAO/IAEA Programme Vienna, Austria A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-4050-4 (HB) ISBN-13 978-1-4020-4050-4 (HB) ISBN-10 1-4020-4051-2 ( e-book) ISBN-13 978-1-4020-4051-1 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springeronline.com Printed on acid-free paper Photo Credits: A.S. Robinson and M.J.B. Vreysen provided some of the photos used on the front and back covers. All Rights Reserved © 2005 IAEA All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention on Intellectual Property as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non- commercial reproductions and translations are welcomed and considered on a case-by-case basis. Inquiries should be addressed to the Publishing Section, IAEA, Wagramer Strasse 5, A-1400 Vienna, Austria. Printed in the Netherlands. PREFACE It is a challenge to bring together all relevant information about the sterile insect technique (SIT) and its application in area-wide integrated pest management (AW- IPM) programmes; this book is the first attempt to do this in a thematic way.
    [Show full text]
  • Satellite Telemetry of Corncrake
    Satellite telemetry of Corncrake Co-financed by the EU and European Regional Development Fund. Investing in your future. This project was financed by Cross-border Cooperation Operational Programme Objective 3 Czech Republic – Free State of Bavaria 2007–2013 1 Content Study and protection of an enigmatic bird from agricultural landscapes . 3 Introducing the studied species . 3. What we know about Corncrakes . 4. What is satellite telemetry? . 6. Project objectives . 8. Monitoring and tagging methods . 8. How we used satellite transmitters to follow Corncrakes in the field . 10. Project results . 13. Behaviour in breeding areas . 13. Basic data for all tagged birds . 15. Experiences in Corncrake protection . 15. Migration . 19. Conclusions . 21 Animal species typical for biotopes of Corncrakes . 21. Final remarks . 22. Acknowledgements . 23. Cryptic coloration and slow movements make Corncrakes almost invisible in vegetation. Study and protection of an enigmatic bird from agricultural landscapes This joint Czech–German research project was launched with financial support from the European Regi- onal Development Fund: OBJECTIVE 3 “Investing in your future” 2007–2013. The project was administ- ered jointly by the Zoological and Botanical Garden of Pilsen and by LBV Cham, and it would not have been possible without the enthusiastic efforts of many ornithologists and other friends of nature. The study was carried out in the national protected landscape areas (NPLA) of Český les and Šumava in Pilsen Region, NPLA Slavkovský les in the Karlovy Vary Region (all in the Czech Republic), and also in the Cham District in Bavaria. Introducing the studied species The Corncrake (Crex crex) is a medium-sized member of the Rallidae family.
    [Show full text]
  • Mapping the Birch and Grass Pollen Seasons in the UK Using Satellite Sensor Time-Series
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Worcester Research and Publications Mapping the birch and grass pollen seasons in the UK using satellite sensor time-series Nabaz R. Khwarahm*1,2, Jadunandan Dash2, C. A. Skjøth3 , R. M.Newnham4 , B. Adams- Groom3 , K. Head5 , Eric Caulton6, Peter M. Atkinson7,8,9 1University of Sulaimani, College of Science Education, Biology Department, Sulaimani, Kurdistan Regional Government (KRG) 2Global Environmental Change and Earth Observation Research Group, Geography and Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK * [email protected]; [email protected] 3National Pollen and Aerobiology Research Unit, University of Worcester, Henwick Grove, Worcester, WR2 6AJ, UK 4School of Geography, Environment & Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand 5School of Geography, Earth & Environmental Sciences, University of Plymouth, Plymouth, UK 6Centre Director & Hon. University Research Fellow, Scottish Centre for Pollen Studies, Edinburgh Napier University, School of Life Science, Edinburgh, UK 7Faculty of Science and Technology, Engineering Building, Lancaster University, Lancaster LA1 4YR, UK 8Faculty of Geosciences, University of Utrecht, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands 9School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, BT7 1NN, Northern Ireland, UK 0 Abstract Grass and birch pollen are two major causes of seasonal allergic rhinitis (hay fever) in the UK and parts of Europe affecting around 15-20% of the population. Current prediction of these allergens in the UK is based on (i) measurements of pollen concentrations at a limited number of monitoring stations across the country and (ii) general information about the phenological status of the vegetation.
    [Show full text]
  • Butterflies and Moths of Pacific Northwest Forests and Woodlands: Rare, Endangered, and Management- Sensitive Species
    he Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private TForestry, USDA Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ United States Depart- US Forest US Forest Service ment of Agriculture Service Forest Health Technology Enterprise Team Cover design Chuck Benedict. Photo, Taylor’s Checkerspot, Euphydryas editha taylori. Photo by Dana Ross. See page 38. For copies of this publication, contact: Dr. Jeffrey C. Miller Richard Reardon Oregon State University FHTET, USDA Forest Service Department of Rangeland Ecology 180 Canfield Street and Management Morgantown, WV 26505 202 Strand Agriculture Hall 304-285-1566 Corvallis, Washington, USA [email protected] 97331-2218 FAX 541-737-0504 Phone 541-737-5508 [email protected] The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program informa- tion (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Inde- pendence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD).
    [Show full text]