The Effects of Winter Moth Defoliation on Forest Growth and Production Inferred from Satellite Imagery and Dendrochronology

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Winter Moth Defoliation on Forest Growth and Production Inferred from Satellite Imagery and Dendrochronology The effects of winter moth defoliation on forest growth and production inferred from satellite imagery and dendrochronology Erin Gleeson, Rhodes College 2000 North Parkway, TN 38112 Co-authors: Christopher Neill and Greg Fiske Woods Hole Research Center 149 Woods Hole Road, Falmouth, MA 02540 Gleeson 1 Abstract Forest disturbances are events that can cause change in the structure and composition of a forest ecosystem. Insect outbreaks may be a consequence of climate change, and could create unexpected dynamics in nature. Recently, and invasive pest from Europe, called the winter moth, has invaded Massachusetts and most of New England. The winter moth causes widespread defoliation by stripping the leaves off of all deciduous trees. I attempted to use remote sensing satellite data from MODIS, to classify sites that had experienced heavy defoliation and sites that had experienced little to no defoliation. Then, by looking at radial increment growth in tree cores, I created estimates of forest biomass growth, which I used as a model to try and study the effects of winter moth defoliation on greater areas of land. I found that defoliation from the winter moth has a large effect on tree ring width and overall tree growth because of how time period (pre and post winter moth) at each treatment affected ring width increment. The winter moth also reduced carbon storage in southeastern Massachusetts by around 51%. Clearly there are serious implications for an insect outbreak like this one, and measures, such as biological control by releasing natural parasitic enemies of the winter moth are being utilized. Climate change and a shift towards warmer global temperatures are predicted to increase the spread and severity of winter moth defoliation, and it is important that we think about future studies, and how we can control the reintroduction and spread of invasive insects that cause so much harm to ecosystem services and native ecosystem dynamics. Introduction Forest disturbances are widespread and cause pronounced changes in different ecosystems. Disturbances take many forms, and often have consequences on the ecosystem services that forests provide. Ecological disturbances may reduce tree growth, and in turn affect Gleeson 2 carbon storing capabilities of the forest. Typically, disturbance events result in a net reduction in ecosystem carbon stocks. They alter how fixed carbon is allocated, whether it is directly released into the atmosphere, or stored in woody biomass, and they influence species composition and ecosystem structure (Williams et al 2016). Carbon sequestration is a crucial ecosystem service that our forests provide. Forests are carbon sinks, and increases in woody biomass directly increases the amount of carbon that is sequestered by the forest. Nutrient cycling in these systems may also be impacted by defoliation from the winter moth. Lovett et al. (2006) suggests that insect infestations such as winter and gypsy moth defoliations produce an increase in stream water nitrate concentrations. This influx of nitrogen in highly defoliated areas most likely comes from increased water drainage and leaching from damaged foliage (Lovett et al. 2006). Healthy hardwood trees usually recover and produce new leaves after winter moth outbreaks, however, after multiple years of defoliation and added stress, like drought, the winter moth can contribute to widespread mortality of trees. Multiple factors including natural disturbances, like fire, as well as human caused insect introductions, can decrease the amount of biomass in a forest and turn it into an atmospheric carbon source (Jacquet et al. 2012). On a large scale, these growing carbon sources have the potential to perpetuate global warming and climate change by increasing carbon dioxide concentrations in the atmosphere. The recurrent introduction of invasive insects is one of the most serious ecological threats to United States forests. These invasive pests are an undesirable repercussion of international trade and travel, and they are responsible for widespread ecological and economic damage (Lovett et al. 2016). Global warming and insect outbreaks can create a positive feedback loop, where warmer average temperatures trigger large-scale outbreaks of insect defoliators, which in turn increases overall tree mortality (Jacquet et al. 2012). It is Gleeson 3 imperative that we examine the impact of defoliation on overall tree growth, so that we can address the potential long term effects of these invasive insect outbreaks on global climate change and overall forest health. Northeastern terrestrial forests have been host to many different invasive species. One of these exotic pests, the winter moth (Operophtera brumata), is native to Europe, and was identified in Massachusetts around 2003, however, there is speculation that the winter moth has been present since the 1990s (Simmons et al. 2014). Specifically, the winter moth invaded Falmouth, MA in 2007 (Hibbard and Elkinton 2015). The winter moth caterpillar is known for defoliating native deciduous trees such as oak, and maple in the early summer months between late May and mid-June. Their larvae feed on the expanding buds and later on the foliage for approximately six weeks, effectively removing the photosynthetic tissue that is critical for plant maintenance and growth (Hibbard and Elkinton 2015). Then, the adult moths emerge from the soil during the winter months of November and December for mating purposes. Other than Massachusetts, the winter moth has invaded most of New England, Nova Scotia, and even Washington state and Oregon. Dendrochronology, the analysis of annual tree rings, is an effective tool for studying invasive insect outbreaks. Trees that are defoliated by the winter moth have to expend more energy to re-grow the leaves that they lost, so the radial growth observed in a tree core should be smaller in years with high winter moth infestation. Defoliation from winter moths is damaging to these forests because it decreases radial growth and basal area of the trees, which can be used as a predictor for tree mortality, and tree production and carbon sequestration decline. Increases in tree mortality may also alter the species composition of deciduous forests by creating gaps in the canopy that allow early successional species like grasses and shrubs to establish and grow Gleeson 4 (Simmons et al. 2014). Measuring tree diameter increment is a proxy used for whole tree growth, and is self-scaling because while large trees produce more biomass than small trees, a specific diameter increment represents more absolute biomass in a large tree than in a small tree (Bowman et al. 2013). Reducing radial tree growth could cause a measurable reduction in carbon storage, because trees store carbon, and sequester it as they grow (Nowak et al. 2012). Kulman (1971), states that the effects of winter moth defoliation on tree growth can be detected with a “horizontal sequencing mode” of observing the differences in thickness of the tree rings in a tree core. Defoliation not only has an effect on radial tree growth, but also overall tree productivity. Outbreaks from defoliating insects are known as ephemeral forest disturbances that are short lived, and often allow the forest recovers quickly within the same growing season (De Beurs and Townsend 2008). Defoliation causes a decrease in leaf area index (LAI), which, in turn, decreases the amount of chlorophyll, the tree’s photosynthesizing machinery. Because changes in LAI and leaf chlorophyll together make up the measure of vegetation canopy “greenness,” that can be seen clearly from satellite imagery, and “greenness” is commonly used to monitor the Earth’s vegetation cover from space (Jiang et al. 2008). Remote sensing techniques are a useful way to map the occurrence of defoliation, and also the level of severity (De Beurs and Townsend 2008). MODIS, or moderate resolution imaging spectroradiometer, is an instrument aboard the Terra and Aqua satellites. The Terra and Aqua satellites where MODIS is present, view the Earth’s surface every one to two days. MODIS is used in research devoted to understanding global processes, and develop models to assist in predicting global (National Aeronautics and Space Administration 2016). MODIS data has course special resolution which is more effective in mapping large-scale vegetation changes, and the data is available and updated daily (De Beurs and Townsend 2008). Gleeson 5 . In this study I attempt to answer three questions: 1) Can we use remote sensing techniques to estimate areas of the forest have been severely affected by defoliation from the winter moth? 2) What can remote sensing and dendrochronology (tree ring dating) tell us about how defoliation from the winter moth affects woody biomass growth? 3) How does defoliation from the winter moth affect overall carbon storage in northeastern forests? I was interesting in using these techniques to investigate local insect forest disturbances in Massachusetts. In this study, I attempted to test MODIS satellite data by comparing tree growth from two different changes in the enhanced vegetation index (EVI) since 2000, to see if there was any evidence of winter moth defoliation, other than what was observed based on the changes in foliar biomass. Then I want to find the effects that winter moth defoliation would have on the total amount of carbon stored in large areas of land to get a better idea of the severity of the outbreak and what the implications are for future northeastern forests that could eventually be affected by the winter moth. Materials and Methods Sampling Sites I identified treatments using MODIS satellite imagery to determine areas of Barnstable county that had experienced heavy defoliation or little to no defoliation. Then, based on these two treatments, I found twelve different sampling sites, six of these sites had experienced heavy defoliation from the winter moth since 2000, while the other six had experienced little to no defoliation from the winter moth since 2000. I paired the appropriate treatment level to each of the twelve sites by using a Mann-Kendall trend statistic, which assigned a numerical value to Gleeson 6 each randomly generated point across Barnstable County.
Recommended publications
  • Microsatellite Markers in Hazelnut: Isolation, Characterization, and Cross-Species Amplifi Cation
    J. AMER. SOC. HORT. SCI. 130(4):543–549. 2005. Microsatellite Markers in Hazelnut: Isolation, Characterization, and Cross-species Amplifi cation Nahla V. Bassil1 USDA–ARS, NCGR, 33447 Peoria Road, Corvallis, OR 97333 R. Botta Università degli Studi di Torino, Dipartimento di Colture Arboree, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy S.A. Mehlenbacher Oregon State University, Department of Horticulture, 4017 Agricultural and Life Sciences Building, Corvallis, OR 97331 ADDITIONAL INDEX WORDS. Corylus avellana, simple sequence repeats, SSRs, DNA fi ngerprinting, genetic diversity ABSTRACT. Three microsatellite-enriched libraries of the european hazelnut (Corylus avellana L.) were constructed: library A for CA repeats, library B for GA repeats, and library C for GAA repeats. Twenty-fi ve primer pairs amplifi ed easy-to-score single loci and were used to investigate polymorphism among 20 C. avellana genotypes and to evaluate cross-species amplifi cation in seven Corylus L. species. Microsatellite alleles were estimated by fl uorescent capillary electrophoresis fragment sizing. The number of alleles per locus ranged from 2 to 12 (average = 7.16) in C. avellana and from 5 to 22 overall (average = 13.32). With the exception of CAC-B110, di-nucleotide SSRs were characterized by a relatively large number of alleles per locus (≥5), high average observed and expected heterozygosity (Ho and He > 0.6), and a high mean polymorphic information content (PIC ≥ 0.6) in C. avellana. In contrast, tri-nucleotide microsatellites were more homozygous (Ho = 0.4 on average) and less informative than di-nucleotide simple sequence repeats (SSRs) as indicated by a lower mean number of alleles per locus (4.5), He (0.59), and PIC (0.54).
    [Show full text]
  • Softwood Insect Pests
    Forest & Shade Tree Insect & Disease Conditions for Maine A Summary of the 2011 Situation Forest Health & Monitoring Division Maine Forest Service Summary Report No. 23 MAINE DEPARTMENT OF CONSERVATION March 2012 Augusta, Maine Forest Insect & Disease—Advice and Technical Assistance Maine Department of Conservation, Maine Forest Service Insect and Disease Laboratory 168 State House Station, 50 Hospital Street, Augusta, Maine 04333-0168 phone (207) 287-2431 fax (207) 287-2432 http://www.maine.gov/doc/mfs/idmhome.htm The Maine Forest Service/Forest Health and Monitoring (FH&M) Division maintains a diagnostic laboratory staffed with forest entomologists and a forest pathologist. The staff can provide practical information on a wide variety of forest and shade tree problems for Maine residents. Our technical reference library and insect collection enables the staff to accurately identify most causal agents. Our website is a portal to not only our material and notices of current forest pest issues but also provides links to other resources. A stock of information sheets and brochures is available on many of the more common insect and disease problems. We can also provide you with a variety of useful publications on topics related to forest insects and diseases. Submitting Samples - Samples brought or sent in for diagnosis should be accompanied by as much information as possible including: host plant, type of damage (i.e., canker, defoliation, wilting, wood borer, etc.), date, location, and site description along with your name, mailing address and day-time telephone number or e-mail address. Forms are available (on our Web site and on the following page) for this purpose.
    [Show full text]
  • The Winter Moth ( Operophtera Brumata) and Its Natural Enemies in Orkney
    Spatial ecology of an insect host-parasitoid-virus interaction: the winter moth ( Operophtera brumata) and its natural enemies in Orkney Simon Harold Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Faculty of Biological Sciences September 2009 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement ©2009 The University of Leeds and Simon Harold ii Acknowledgements I gratefully acknowledge the support of my supervisors Steve Sait and Rosie Hails for their continued advice and support throughout the duration of the project. I particularly thank Steve for his patience, enthusiasm, and good humour over the four years—and especially for getting work back to me so quickly, more often than not because I had sent it at the eleventh hour. I would also like to express my gratitude to the Earth and Biosphere Institute (EBI) at the University of Leeds for funding this project in the first instance. Steve Carver also helped secure funding. The molecular work was additionally funded by both a NERC short-term grant, and funding from UKPOPNET, to whom I am also grateful. None of the fieldwork, and indeed the scope and scale of the project, would have been possible if not for the stellar cast of fieldworkers that made the journey to Orkney. They were (in order of appearance): Steve Sait, Rosie Hails, Jackie Osbourne, Bill Tyne, Cathy Fiedler, Ed Jones, Mike Boots, Sandra Brand, Shaun Dowman, Rachael Simister, Alan Reynolds, Kim Hutchings, James Rosindell, Rob Brown, Catherine Bourne, Audrey Zannesse, Leo Graves and Steven White.
    [Show full text]
  • Empidonax Traillii Extimus) Breeding Habitat and a Simulation of Potential Effects of Tamarisk Leaf Beetles (Diorhabda Spp.), Southwestern United States
    A Satellite Model of Southwestern Willow Flycatcher (Empidonax traillii extimus) Breeding Habitat and a Simulation of Potential Effects of Tamarisk Leaf Beetles (Diorhabda spp.), Southwestern United States Open-File Report 2016–1120 U.S. Department of the Interior U.S. Geological Survey A Satellite Model of Southwestern Willow Flycatcher (Empidonax traillii extimus) Breeding Habitat and a Simulation of Potential Effects of Tamarisk Leaf Beetles (Diorhabda spp.), Southwestern United States By James R. Hatten Open-File Report 2016–1120 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit http://www.http://www.store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Hatten, J.R., 2016, A satellite model of Southwestern Willow Flycatcher (Empidonax traillii extimus) breeding habitat and a simulation of potential effects of tamarisk leaf beetles (Diorhabda spp.), Southwestern United States: U.S.
    [Show full text]
  • Evaluating Seasonal Variablity As an Aid to Cover-Type Mapping From
    PEER.REVIEWED ARIICTE EvaluatingSeasonal Variability as an Aid to Gover-TypeMapping from Landsat Thematic MapperData in the Noftheast JamesR. Schrieverand RussellG. Congalton Abstract rate classifications for the Northeast (Nelson et ol., 1g94i Hopkins ef 01.,19BB). However, despite these advances, spe- Classification of forest cover types in the Northeast is a diffi- cult task. The conplexity and variability in species contposi- cific hardwood forest types have not been reliably classified tion makes various cover types arduous to define and in the Northeast. Developments within the remote sensing identify. This project entployed recent advances in spatial community have shown promise for classification of forest and spectral properties of satellite data, and the speed and cover types throughout the world, These developments indi- potN/er of computers to evaluate seasonol varictbility os an aid cate that, by combining supervised and unsupervised classifi- cation techniques, increases in the accuracy of forest to cover-type mapping from Landsat Thematic Mapper (ru) classifications can be expected (Fleming, 1975; Lyon, 1978; dato in New Hampshire. Dato fron May (bud break), Sep- the su- tember (leaf on), and October (senescence) were used to ex- Chuvieco and Congaiton, 19BBJ.By combining both plore whether different lea.f phenology would improve our pervised and unsupervised processes,a set of spectrally and informationally unique training statistics can be generated. ability to generate forest-cover-type maps. The study area covers three counties in the southeastern corner ol New' This approach resr-rltsin improved classification accuracv (Green Hampshire. A modified supervised/unsupervised approach due to the improved grouping of training statistics was used to classify the cover types.
    [Show full text]
  • Department of Entomology Newsletter for Alumni and Friends (2009) Iowa State University, Department of Entomology
    Department of Entomology Newsletter Entomology 1-2009 Department of Entomology Newsletter For Alumni and Friends (2009) Iowa State University, Department of Entomology Follow this and additional works at: http://lib.dr.iastate.edu/entnewsletter Part of the Entomology Commons Recommended Citation Iowa State University, Department of Entomology, "Department of Entomology Newsletter For Alumni and Friends (2009)" (2009). Department of Entomology Newsletter. 7. http://lib.dr.iastate.edu/entnewsletter/7 This Book is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Department of Entomology Newsletter by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. January 2009 Newsletter For Alumni and Friends Gassmann Hired as New Corn Entomologist I joined the Department of Entomol- ogy at Iowa State University in Janu- ary 2008. This was not the easiest time of year to leave sunny Tucson, Arizona where I had been working as an Assis- tant Research Scientist in the University of Arizona’s Department of Entomol- ogy. Despite the cold, however, I am delighted to be in Iowa again. I was born and raised in Dubuque County, where my family has deep roots. Vis- its to the farms of relatives and family friends filled much of my early years and gave me a strong affinity toward Iowa agriculture. I am very pleased to have returned to Iowa and am impressed by the wealth of research opportuni- Back row, left to right: Steve Thompson (MS student), Pat Weber ties available in my home state.
    [Show full text]
  • Influence of Habitat and Bat Activity on Moth Community Composition and Seasonal Phenology Across Habitat Types
    INFLUENCE OF HABITAT AND BAT ACTIVITY ON MOTH COMMUNITY COMPOSITION AND SEASONAL PHENOLOGY ACROSS HABITAT TYPES BY MATTHEW SAFFORD THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Advisor: Assistant Professor Alexandra Harmon-Threatt, Chair and Director of Research ABSTRACT Understanding the factors that influence moth diversity and abundance is important for monitoring moth biodiversity and developing conservation strategies. Studies of moth habitat use have primarily focused on access to host plants used by specific moth species. How vegetation structure influences moth communities within and between habitats and mediates the activity of insectivorous bats is understudied. Previous research into the impact of bat activity on moths has primarily focused on interactions in a single habitat type or a single moth species of interest, leaving a large knowledge gap on how habitat structure and bat activity influence the composition of moth communities across habitat types. I conducted monthly surveys at sites in two habitat types, restoration prairie and forest. Moths were collected using black light bucket traps and identified to species. Bat echolocation calls were recorded using ultrasonic detectors and classified into phonic groups to understand how moth community responds to the presence of these predators. Plant diversity and habitat structure variables, including tree diameter at breast height, ground cover, and vegetation height were measured during summer surveys to document how differences in habitat structure between and within habitats influences moth diversity. I found that moth communities vary significantly between habitat types.
    [Show full text]
  • Landscape Message: May 24, 2019 | Umass Center for Agriculture, Food and the Environment
    5/24/2019 Landscape Message: May 24, 2019 | UMass Center for Agriculture, Food and the Environment Apply Give Search (/) LNUF Home (/landscape) About (/landscape/about) Newsletters & Updates (/landscape/newsletters-updates) Publications & Resources (/landscape/publications-resources) Services (/landscape/services) Education & Events (/landscape/upcoming-events) Make a Gift (https://securelb.imodules.com/s/1640/alumni/index.aspx? sid=1640&gid=2&pgid=443&cid=1121&dids=2540) (/landscape) Search the Center for Agriculture, Food and the Environment Search this site Search Landscape Message: May 24, 2019 May 24, 2019 Issue: 9 UMass Extension's Landscape Message is an educational newsletter intended to inform and guide Massachusetts Green Industry professionals in the management of our collective landscape. Detailed reports from scouts and Extension specialists on growing conditions, pest activity, and cultural practices for the management of woody ornamentals, trees, and turf are regular features. The following issue has been updated to provide timely management information and the latest regional news and environmental data. The Landscape Message will be updated weekly in May and June. The next message will be posted on May 31. To receive immediate notication when the next Landscape Message update is posted, be sure to join our e-mail list (/landscape/email-list). To read individual sections of the message, click on the section headings below to expand the content: Scouting Information by Region ag.umass.edu/landscape/landscape-message-may-24-2019 1/18 5/24/2019 Landscape Message: May 24, 2019 | UMass Center for Agriculture, Food and the Environment Environmental Data The following data was collected on or about May 22, 2019.
    [Show full text]
  • Local Outbreaks of Operophtera Brumata and Operophtera Fagata Cannot Be Explained by Low Vulnerability to Pupal Predation
    Postprint version. Original publication in: Agricultural and Forest Entomology (2010) 12(1): 81-87 doi: 10.1111/j.1461-9563.2009.00455.x Local outbreaks of Operophtera brumata and Operophtera fagata cannot be explained by low vulnerability to pupal predation Annette Heisswolf, Miia Käär, Tero Klemola, Kai Ruohomäki Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland Abstract. One of the unresolved questions in studies on population dynamics of for- est Lepidoptera is why some populations at times reach outbreak densities, whereas oth- ers never do. Resolving this question is especially challenging if populations of the same species in different areas or of closely-related species in the same area are considered. The present study focused on three closely-related geometrid moth species, autumnal Epirrita autumnata, winter Operophtera brumata and northern winter moths Operophtera fagata, in southern Finland. There, winter and northern winter moth populations can reach outbreak densities, whereas autumnal moth densities stay relatively low. We tested the hypothesis that a lower vulnerability to pupal predation may explain the observed differences in population dynamics. The results obtained do not support this hypothesis because pupal predation probabilities were not significantly different between the two genera within or without the Operophtera outbreak area or in years with or without a current Operophtera outbreak. Overall, pupal predation was even higher in winter and northern winter moths than in autumnal moths. Differences in larval predation and parasitism, as well as in the repro- ductive capacities of the species, might be other candidates. Keywords. Epirrita autumnata; forest Lepidoptera; Operophtera brumata; Operoph- tera fagata; outbreak; population dynamics; pupal predation.
    [Show full text]
  • The Gypsy Moth Dr
    FACT SHEET The Gypsy Moth Dr. Kirby C. Stafford III Department of Entomology The Connecticut Agricultural Experiment Station Introduction: However, the fungus cannot prevent all outbreaks, due largely during drought The gypsy moth, Lymantria dispar, was conditions, and hot spots in some areas introduced into the US (Medford, MA) continue to be reported. There was an around 1869 by Etienne Leopold Trouvelot. outbreak in 2005-2006 and a more severe Some larvae escaped and small outbreaks outbreak again in 2015-2016 (see page 7). became evident in the area around 1882. Populations increased rapidly and by 1889, the Massachusetts State Board of Life Cycle: Agriculture began a campaign to eradicate There is one generation of the gypsy the moth. It was first detected in Connecticut moth each year. Caterpillars hatch from in Stonington in 1905 and had spread to all buff-colored egg masses in late April to 169 towns by 1952. In 1981, 1.5 million early May. An egg mass may contain 100 to acres were defoliated in Connecticut (Fig. more than 1000 eggs and may be laid in 1). During an outbreak in 1989, CAES several layers. scientists discovered that the entomopathogenic fungus Entomophaga maimaiga was killing the caterpillars. Since then, the fungus has been the most important agent suppressing gypsy moth activity. 1600000 1400000 1200000 1000000 800000 600000 400000 Acres defoliation bygypsy moth defoliation Acres 200000 0 1960 1970 1980 1990 2000 2010 2020 Year Figure 1. Number of acres defoliated by the gypsy moth in Connecticut, 1969-2016. Figure 2. Gypsy moth egg masses on a tree and a close-up of single egg mass (inset).
    [Show full text]
  • Assessment of Genetic Diversity and Population Genetic Structure of Corylus Mandshurica in China Using SSR Markers
    RESEARCH ARTICLE Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers Jian-Wei Zong1,2, Tian-Tian Zhao1*, Qing-Hua Ma1, Li-Song Liang1, Gui-Xi Wang1* 1 State Key Laboratory of Tree Genetic and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China, 2 College of Resource and Environmental Science, Pingdingshan University, Pingdingshan, Henan Province, China * [email protected] (TTZ); [email protected] (GXW) Abstract Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 OPEN ACCESS C. mandshurica individuals among 12 populations in China. The SSR markers expressed a Citation: Zong J-W, Zhao T-T, Ma Q-H, Liang L-S, relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, Wang G-X (2015) Assessment of Genetic Diversity and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), Corylus and Population Genetic Structure of genetic variation within the populations (87.85%) were remarkably higher than among popu- mandshurica in China Using SSR Markers. PLoS Nm ONE 10(9): e0137528. doi:10.1371/journal. lations (12.15%). The average gene flow ( = 1.8080) significantly impacts the genetic pone.0137528 structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) C mandshurica Editor: Xiaoming Pang, Beijing Forestry University, among wild . may be caused by wind-pollinated flowers, highly nutritious CHINA seeds and self-incompatible mating system.
    [Show full text]
  • Identification of Winter Moth (Operophtera Brumata) Refugia in North Africa and the Italian Peninsula During the Last Glacial Maximum
    Received: 1 October 2019 | Accepted: 14 October 2019 DOI: 10.1002/ece3.5830 ORIGINAL RESEARCH Identification of winter moth (Operophtera brumata) refugia in North Africa and the Italian Peninsula during the last glacial maximum Jeremy C. Andersen1 | Nathan P. Havill2 | Yaussra Mannai3 | Olfa Ezzine4 | Samir Dhahri3 | Mohamed Lahbib Ben Jamâa3 | Adalgisa Caccone5 | Joseph S. Elkinton1 1Department of Environmental Conservation, University of Massachusetts Abstract Amherst, Amherst, MA, USA Numerous studies have shown that the genetic diversity of species inhabiting 2 Northern Research Station, USDA Forest temperate regions has been shaped by changes in their distributions during the Service, Hamden, CT, USA 3LR161INRGREF01 Laboratory of Quaternary climatic oscillations. For some species, the genetic distinctness of iso- Management and Valorization of Forest lated populations is maintained during secondary contact, while for others, admix- Resources, National Institute for Research in Rural Engineering Water and Forest ture is frequently observed. For the winter moth (Operophtera brumata), an important (INRGREF), University of Carthage, Ariana, defoliator of oak forests across Europe and northern Africa, we previously deter- Tunisia mined that contemporary populations correspond to genetic diversity obtained dur- 4LR161INRGREF03 Laboratory of Forest Ecology, National Institute for Research ing the last glacial maximum (LGM) through the use of refugia in the Iberian and in Rural Engineering Water and Forest Aegean peninsulas, and to a lesser
    [Show full text]