The Gypsy Moth Dr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Range Expansion of Lymantria Dispar Dispar (L.) (Lepidoptera: Erebidae) Along Its North‐Western Margin in North America Despite Low Predicted Climatic Suitability
Received: 22 December 2017 | Revised: 9 August 2018 | Accepted: 11 September 2018 DOI: 10.1111/jbi.13474 RESEARCH PAPER Range expansion of Lymantria dispar dispar (L.) (Lepidoptera: Erebidae) along its north‐western margin in North America despite low predicted climatic suitability Marissa A. Streifel1,2 | Patrick C. Tobin3 | Aubree M. Kees1 | Brian H. Aukema1 1Department of Entomology, University of Minnesota, St. Paul, Minnesota Abstract 2Minnesota Department of Agriculture, Aim: The European gypsy moth, Lymantria dispar dispar (L.), (Lepidoptera: Erebidae) St. Paul, Minnesota is an invasive defoliator that has been expanding its range in North America follow- 3School of Environmental and Forest Sciences, University of Washington, Seattle, ing its introduction in 1869. Here, we investigate recent range expansion into a Washington region previously predicted to be climatically unsuitable. We examine whether win- Correspondence ter severity is correlated with summer trap captures of male moths at the landscape Brian Aukema, Department of Entomology, scale, and quantify overwintering egg survivorship along a northern boundary of the University of Minnesota, St. Paul, MN. Email: [email protected] invasion edge. Location: Northern Minnesota, USA. Funding information USDA APHIS, Grant/Award Number: Methods: Several winter severity metrics were defined using daily temperature data A-83114 13255; National Science from 17 weather stations across the study area. These metrics were used to explore Foundation, Grant/Award Number: – ‐ 1556111; United States Department of associations with male gypsy moth monitoring data (2004 2014). Laboratory reared Agriculture Animal Plant Health Inspection egg masses were deployed to field locations each fall for 2 years in a 2 × 2 factorial Service, Grant/Award Number: 15-8130- / × / 0577-CA; USDA Forest Service, Grant/ design (north south aspect below above snow line) to reflect microclimate varia- Award Number: 14-JV-11242303-128 tion. -
Softwood Insect Pests
Forest & Shade Tree Insect & Disease Conditions for Maine A Summary of the 2011 Situation Forest Health & Monitoring Division Maine Forest Service Summary Report No. 23 MAINE DEPARTMENT OF CONSERVATION March 2012 Augusta, Maine Forest Insect & Disease—Advice and Technical Assistance Maine Department of Conservation, Maine Forest Service Insect and Disease Laboratory 168 State House Station, 50 Hospital Street, Augusta, Maine 04333-0168 phone (207) 287-2431 fax (207) 287-2432 http://www.maine.gov/doc/mfs/idmhome.htm The Maine Forest Service/Forest Health and Monitoring (FH&M) Division maintains a diagnostic laboratory staffed with forest entomologists and a forest pathologist. The staff can provide practical information on a wide variety of forest and shade tree problems for Maine residents. Our technical reference library and insect collection enables the staff to accurately identify most causal agents. Our website is a portal to not only our material and notices of current forest pest issues but also provides links to other resources. A stock of information sheets and brochures is available on many of the more common insect and disease problems. We can also provide you with a variety of useful publications on topics related to forest insects and diseases. Submitting Samples - Samples brought or sent in for diagnosis should be accompanied by as much information as possible including: host plant, type of damage (i.e., canker, defoliation, wilting, wood borer, etc.), date, location, and site description along with your name, mailing address and day-time telephone number or e-mail address. Forms are available (on our Web site and on the following page) for this purpose. -
The Winter Moth ( Operophtera Brumata) and Its Natural Enemies in Orkney
Spatial ecology of an insect host-parasitoid-virus interaction: the winter moth ( Operophtera brumata) and its natural enemies in Orkney Simon Harold Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Faculty of Biological Sciences September 2009 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement ©2009 The University of Leeds and Simon Harold ii Acknowledgements I gratefully acknowledge the support of my supervisors Steve Sait and Rosie Hails for their continued advice and support throughout the duration of the project. I particularly thank Steve for his patience, enthusiasm, and good humour over the four years—and especially for getting work back to me so quickly, more often than not because I had sent it at the eleventh hour. I would also like to express my gratitude to the Earth and Biosphere Institute (EBI) at the University of Leeds for funding this project in the first instance. Steve Carver also helped secure funding. The molecular work was additionally funded by both a NERC short-term grant, and funding from UKPOPNET, to whom I am also grateful. None of the fieldwork, and indeed the scope and scale of the project, would have been possible if not for the stellar cast of fieldworkers that made the journey to Orkney. They were (in order of appearance): Steve Sait, Rosie Hails, Jackie Osbourne, Bill Tyne, Cathy Fiedler, Ed Jones, Mike Boots, Sandra Brand, Shaun Dowman, Rachael Simister, Alan Reynolds, Kim Hutchings, James Rosindell, Rob Brown, Catherine Bourne, Audrey Zannesse, Leo Graves and Steven White. -
Influence of Habitat and Bat Activity on Moth Community Composition and Seasonal Phenology Across Habitat Types
INFLUENCE OF HABITAT AND BAT ACTIVITY ON MOTH COMMUNITY COMPOSITION AND SEASONAL PHENOLOGY ACROSS HABITAT TYPES BY MATTHEW SAFFORD THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Advisor: Assistant Professor Alexandra Harmon-Threatt, Chair and Director of Research ABSTRACT Understanding the factors that influence moth diversity and abundance is important for monitoring moth biodiversity and developing conservation strategies. Studies of moth habitat use have primarily focused on access to host plants used by specific moth species. How vegetation structure influences moth communities within and between habitats and mediates the activity of insectivorous bats is understudied. Previous research into the impact of bat activity on moths has primarily focused on interactions in a single habitat type or a single moth species of interest, leaving a large knowledge gap on how habitat structure and bat activity influence the composition of moth communities across habitat types. I conducted monthly surveys at sites in two habitat types, restoration prairie and forest. Moths were collected using black light bucket traps and identified to species. Bat echolocation calls were recorded using ultrasonic detectors and classified into phonic groups to understand how moth community responds to the presence of these predators. Plant diversity and habitat structure variables, including tree diameter at breast height, ground cover, and vegetation height were measured during summer surveys to document how differences in habitat structure between and within habitats influences moth diversity. I found that moth communities vary significantly between habitat types. -
Lepidoptera: Noctuoidea: Erebidae) and Its Phylogenetic Implications
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 558–570, 2016 http://www.eje.cz doi: 10.14411/eje.2016.076 ORIGINAL ARTICLE Characterization of the complete mitochondrial genome of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications YU SUN, SEN TIAN, CEN QIAN, YU-XUAN SUN, MUHAMMAD N. ABBAS, SAIMA KAUSAR, LEI WANG, GUOQING WEI, BAO-JIAN ZHU * and CHAO-LIANG LIU * College of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China; e-mails: [email protected] (Y. Sun), [email protected] (S. Tian), [email protected] (C. Qian), [email protected] (Y.-X. Sun), [email protected] (M.-N. Abbas), [email protected] (S. Kausar), [email protected] (L. Wang), [email protected] (G.-Q. Wei), [email protected] (B.-J. Zhu), [email protected] (C.-L. Liu) Key words. Lepidoptera, Noctuoidea, Erebidae, Spilarctia robusta, phylogenetic analyses, mitogenome, evolution, gene rearrangement Abstract. The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was se- quenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome. -
Landscape Message: May 24, 2019 | Umass Center for Agriculture, Food and the Environment
5/24/2019 Landscape Message: May 24, 2019 | UMass Center for Agriculture, Food and the Environment Apply Give Search (/) LNUF Home (/landscape) About (/landscape/about) Newsletters & Updates (/landscape/newsletters-updates) Publications & Resources (/landscape/publications-resources) Services (/landscape/services) Education & Events (/landscape/upcoming-events) Make a Gift (https://securelb.imodules.com/s/1640/alumni/index.aspx? sid=1640&gid=2&pgid=443&cid=1121&dids=2540) (/landscape) Search the Center for Agriculture, Food and the Environment Search this site Search Landscape Message: May 24, 2019 May 24, 2019 Issue: 9 UMass Extension's Landscape Message is an educational newsletter intended to inform and guide Massachusetts Green Industry professionals in the management of our collective landscape. Detailed reports from scouts and Extension specialists on growing conditions, pest activity, and cultural practices for the management of woody ornamentals, trees, and turf are regular features. The following issue has been updated to provide timely management information and the latest regional news and environmental data. The Landscape Message will be updated weekly in May and June. The next message will be posted on May 31. To receive immediate notication when the next Landscape Message update is posted, be sure to join our e-mail list (/landscape/email-list). To read individual sections of the message, click on the section headings below to expand the content: Scouting Information by Region ag.umass.edu/landscape/landscape-message-may-24-2019 1/18 5/24/2019 Landscape Message: May 24, 2019 | UMass Center for Agriculture, Food and the Environment Environmental Data The following data was collected on or about May 22, 2019. -
Local Outbreaks of Operophtera Brumata and Operophtera Fagata Cannot Be Explained by Low Vulnerability to Pupal Predation
Postprint version. Original publication in: Agricultural and Forest Entomology (2010) 12(1): 81-87 doi: 10.1111/j.1461-9563.2009.00455.x Local outbreaks of Operophtera brumata and Operophtera fagata cannot be explained by low vulnerability to pupal predation Annette Heisswolf, Miia Käär, Tero Klemola, Kai Ruohomäki Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland Abstract. One of the unresolved questions in studies on population dynamics of for- est Lepidoptera is why some populations at times reach outbreak densities, whereas oth- ers never do. Resolving this question is especially challenging if populations of the same species in different areas or of closely-related species in the same area are considered. The present study focused on three closely-related geometrid moth species, autumnal Epirrita autumnata, winter Operophtera brumata and northern winter moths Operophtera fagata, in southern Finland. There, winter and northern winter moth populations can reach outbreak densities, whereas autumnal moth densities stay relatively low. We tested the hypothesis that a lower vulnerability to pupal predation may explain the observed differences in population dynamics. The results obtained do not support this hypothesis because pupal predation probabilities were not significantly different between the two genera within or without the Operophtera outbreak area or in years with or without a current Operophtera outbreak. Overall, pupal predation was even higher in winter and northern winter moths than in autumnal moths. Differences in larval predation and parasitism, as well as in the repro- ductive capacities of the species, might be other candidates. Keywords. Epirrita autumnata; forest Lepidoptera; Operophtera brumata; Operoph- tera fagata; outbreak; population dynamics; pupal predation. -
Identification of Winter Moth (Operophtera Brumata) Refugia in North Africa and the Italian Peninsula During the Last Glacial Maximum
Received: 1 October 2019 | Accepted: 14 October 2019 DOI: 10.1002/ece3.5830 ORIGINAL RESEARCH Identification of winter moth (Operophtera brumata) refugia in North Africa and the Italian Peninsula during the last glacial maximum Jeremy C. Andersen1 | Nathan P. Havill2 | Yaussra Mannai3 | Olfa Ezzine4 | Samir Dhahri3 | Mohamed Lahbib Ben Jamâa3 | Adalgisa Caccone5 | Joseph S. Elkinton1 1Department of Environmental Conservation, University of Massachusetts Abstract Amherst, Amherst, MA, USA Numerous studies have shown that the genetic diversity of species inhabiting 2 Northern Research Station, USDA Forest temperate regions has been shaped by changes in their distributions during the Service, Hamden, CT, USA 3LR161INRGREF01 Laboratory of Quaternary climatic oscillations. For some species, the genetic distinctness of iso- Management and Valorization of Forest lated populations is maintained during secondary contact, while for others, admix- Resources, National Institute for Research in Rural Engineering Water and Forest ture is frequently observed. For the winter moth (Operophtera brumata), an important (INRGREF), University of Carthage, Ariana, defoliator of oak forests across Europe and northern Africa, we previously deter- Tunisia mined that contemporary populations correspond to genetic diversity obtained dur- 4LR161INRGREF03 Laboratory of Forest Ecology, National Institute for Research ing the last glacial maximum (LGM) through the use of refugia in the Iberian and in Rural Engineering Water and Forest Aegean peninsulas, and to a lesser -
The Relationship Between the Winter Moth (Operophtera Brumata) and Its Host Plants in Coastal Maine Kaitlyn M
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-2015 The Relationship Between the Winter Moth (Operophtera brumata) and Its Host Plants in Coastal Maine Kaitlyn M. O'Donnell University of Maine - Main, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Biology Commons, and the Other Forestry and Forest Sciences Commons Recommended Citation O'Donnell, Kaitlyn M., "The Relationship Between the Winter Moth (Operophtera brumata) and Its Host Plants in Coastal Maine" (2015). Electronic Theses and Dissertations. 2338. https://digitalcommons.library.umaine.edu/etd/2338 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE RELATIONSHIP BETWEEN THE WINTER MOTH (OPEROPTHERA BRUMATA) AND ITS HOST PLANTS IN COASTAL MAINE By Kaitlyn O’Donnell B.S. Saint Michael’s College, 2011 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Entomology) The Graduate School The University of Maine August 2015 Advisory Committee: Eleanor Groden, Professor of Entomology, School of Biology and Ecology, Advisor Francis Drummond, Professor of Insect Ecology and Wild Blueberry Pest Management Specialist, School of Biology and Ecology and the University of Maine Cooperative Extension Joseph Elkinton, Professor of Environmental Conservation, University of Massachusetts Charlene Donahue, Forest Entomologist, Maine Forest Service THESIS ACCEPTANCE STATEMENT On behalf of the Graduate Committee for Kaitlyn O’Donnell I affirm that this manuscript is the final and accepted thesis. -
Spatial Synchrony Propagates Through a Forest Food Web Via Consumer-Resource Interactions
Ecology, 90(11), 2009, pp. 2974-2983 © 2009 by the Ecological Society of America Spatial synchrony propagates through a forest food web via consumer-resource interactions KYLE J. HAYNEs, 1•6 ANDREW M. LIEBHOLD, 2 ToDD M. FEARER, 3 Gu1MING WANG,4 GARY W. NoRMAN, 5 AND DEREK M. JoHNSON 1 'Department of Biology, University of Louisiana, P.O. Box 42451, Lafayette, Louisiana 70504 USA 2 USDA Forest Service, Northern Research Station, 180 Canfield Street, Morgantown, West Virginia 26505 USA 3 Arkansas Forest Resources Center, School of Forest Resources, University of Arkansas, P.O. Box 3468, Monticello, Arkansas 71656 USA 4Department of Wildlife and Fisheries, Mississippi State University, Box 9690, Mississippi State, Mississippi 39762 USA 5 Virginia Department of Game and Inland Fisheries, P.O. Box 996, Verona, Virginia 24482 USA Abstract. In many study systems, populations fluctuate synchronously across large regions. Several mechanisms have been advanced to explain this, but their importance in nature is often uncertain. Theoretical studies suggest that spatial synchrony initiated in one species through Moran effects may propagate among trophically linked species, but evidence for this in nature is lacking. By applying the nonparametric spatial correlation function to time series data, we discover that densities of the gypsy moth, the moth's chief predator (the white footed mouse), and the mouse's winter food source (red oak acorns) fluctuate synchronously over similar distances ( ~ 1000 km) and with similar levels of synchrony. In addition, we investigate the importance of consumer-resource interactions in propagating synchrony among species using an empirically informed simulation model of interactions between acorns, the white-footed mouse, the gypsy moth, and a viral pathogen of the gypsy moth. -
10 Winter Moth (Operophtera Brumata)
Brighton & Hove City Council Arboricultural Information Note No. 10 Winter Moth (Operophtera brumata) Winter moth is aptly named: the adults emerge from November to mid-January. It is one of several moths that are active during the autumn to spring period. In many of these ‘cold weather’ moths, the two sexes are quite different. Males have fully developed wings (above) and a typical moth-like appearance, but the females (left) are either wingless or have greatly reduced wings, making them incapable of flight. Winter moths emerge on mild evenings from pupae in the soil. While the drab, greyish-brown males can fly about, the females have to crawl up the trunks and along the branches of trees until they reach the twiggy shoots where they mate and lay their eggs. These eggs hatch in spring when the trees come into leaf. Many deciduous trees and shrubs, including oak, hornbeam, lime, sycamore, mountain ash, birch, rose, apple, plum, pear and cherry are host plants. The caterpillars are up to 20mm long and pale green with stripes along their bodies. Winter moth caterpillars can be so abundant on oak trees that, in combination with other moth caterpillars, they cause severe defoliation in spring. The trees survive, producing new leaves in early summer as caterpillars are fully fed by late May or early June, when they move down into the soil to pupate. Protecting trees Winter moths can damage garden trees, especially fruit trees. Fruit growers can protect these by placing sticky grease bands on the trunks in late October. This forms a barrier against the crawling females and reduces the number of eggs laid on the twigs. -
The Effects of Winter Moth Defoliation on Forest Growth and Production Inferred from Satellite Imagery and Dendrochronology
The effects of winter moth defoliation on forest growth and production inferred from satellite imagery and dendrochronology Erin Gleeson, Rhodes College 2000 North Parkway, TN 38112 Co-authors: Christopher Neill and Greg Fiske Woods Hole Research Center 149 Woods Hole Road, Falmouth, MA 02540 Gleeson 1 Abstract Forest disturbances are events that can cause change in the structure and composition of a forest ecosystem. Insect outbreaks may be a consequence of climate change, and could create unexpected dynamics in nature. Recently, and invasive pest from Europe, called the winter moth, has invaded Massachusetts and most of New England. The winter moth causes widespread defoliation by stripping the leaves off of all deciduous trees. I attempted to use remote sensing satellite data from MODIS, to classify sites that had experienced heavy defoliation and sites that had experienced little to no defoliation. Then, by looking at radial increment growth in tree cores, I created estimates of forest biomass growth, which I used as a model to try and study the effects of winter moth defoliation on greater areas of land. I found that defoliation from the winter moth has a large effect on tree ring width and overall tree growth because of how time period (pre and post winter moth) at each treatment affected ring width increment. The winter moth also reduced carbon storage in southeastern Massachusetts by around 51%. Clearly there are serious implications for an insect outbreak like this one, and measures, such as biological control by releasing natural parasitic enemies of the winter moth are being utilized. Climate change and a shift towards warmer global temperatures are predicted to increase the spread and severity of winter moth defoliation, and it is important that we think about future studies, and how we can control the reintroduction and spread of invasive insects that cause so much harm to ecosystem services and native ecosystem dynamics.