The Formation and Early Evolution of Very Low-Mass Stars and Brown Dwarfs Held at ESO Headquarters, Garching, Germany, 11–14 October 2011

Total Page:16

File Type:pdf, Size:1020Kb

The Formation and Early Evolution of Very Low-Mass Stars and Brown Dwarfs Held at ESO Headquarters, Garching, Germany, 11–14 October 2011 Astronomical News and spectroscopic surveys identifying the at the ELTs, together with encouraging emphasised the power of emerging coun- first galaxies, rare quasars, supernovae some explicitly high-risk projects. It was tries and public outreach for investments and gamma-ray bursts. noted that is very important to retain a in astronomical research and that diver- broad range of facilities, including sity in facilities and astronomical capabili- A lively discussion arose on data policy 4-metre- and 8-metre-class telescopes, ties should be retained together with and data mining for surveys and ELTs. to be used as survey facilities, to pro- large-scale projects. Ellis reminded us Most participants agreed that proprietary mote small projects, and to train young that we cannot plan the future in detail time should be at the minimum level but astronomers. All the long-term flagship and so optimism, versatility and creativity sufficient to guarantee intellectual owner- projects should try to involve more stu- remain the key attributes for success. ship and a satisfactory progress of the dents and young researchers, allowing surveys and the ELTs. Others proposed them to attend science working com- All the presentations and the conference to have the data public from the begin- mittees, and communicating the outcome picture are available at the conference ning. In order to facilitate data mining, it of the major high-level decisional meet- website: http://www.eso.org/sci/meetings/ was proposed that all data provided by ings to them. Furthermore, it was pro- 2011/feedgiant. the surveys and the ELTs should be Vir- posed that at least one young astrono- tual Observatory compliant from the out- mer should be included in each of the set. Another interesting discussion was ELT science committees. More resources References about ELTs sharing their development should be allocated to provide for longer Diolaiti, E. 2010, The Messenger, 140, 28 efforts through common documentation, term contracts to leave young astrono- Marchis, F., Spencer, J. R. & Lopes, M. C. 2005, in complementary instrumentation capa- mers more time to develop new and cre- Io after Galileo, eds. R. M. C. Lopes and J. R. bilities, sharing information on site moni- ative ideas. Spencer, Springer, p.287 toring and sharing observing time. Thatte, N. 2010, The Messenger, 140, 26 Richard Ellis, in summarising the confer- The third part of the discussion dealt with ence, highlighted the opportunity to Links how to retain diversity and how to involve establish a better coordination of facili- 1 young people in the era of flagship pro- ties, instrumentations and programmes More about the World Café format at: http://www. theworldcafe.com/ jects. Astronomers agreed that a large and that we should further strengthen fraction of open time should be available these collaborations in the future. He also Report on the ESO/MPE/MPA/ExcellenceCluster/LMU Joint Astronomy Workshop The Formation and Early Evolution of Very Low-mass Stars and Brown Dwarfs held at ESO Headquarters, Garching, Germany, 11–14 October 2011 Monika Petr-Gotzens1 sions. In this report we provide a tion of VLM stars and BDs. We report Leonardo Testi1 brief summary of some of the areas on the ESO/MPE/MPA/LMU/Excellence- discussed at the workshop. Cluster joint workshop dedicated to recent theoretical and observational 1 ESO advances made in the field of study of the Very low-mass (VLM) stars (< 0.4 MA) formation and early evolution of brown and brown dwarfs (BDs) are faint objects dwarfs and very low-mass stars. The topics discussed at the workshop with low effective temperatures which are ranged from the structure and frag- difficult to detect due to their low lumi- It was demonstrated in several talks < mentation of molecular clouds to the nosities (~ 0.01 LA). On the other hand, that, with the help of new and powerful formation of individual very low-mass these objects are the major constituents ground- and space-based facilities objects, their multiplicity, physical of the stellar population of any galaxy and (e.g., VISTA and Herschel respectively), structure, mass distribution and early outnumber higher-mass stars by factors we are starting to discover young VLM evolution. Each topic was introduced of hundreds to thousands. Current wide stars and BDs and their precursors in by two reviews on the status of our area surveys in nearby molecular clouds, numbers large enough to allow statistical theoretical and observational under- from optical to far-infrared wavelengths, analyses of their properties. In addition, standing of the field, followed by pres- provide exciting new information on the detailed studies of individual objects and entations of new results and discus- process of the formation and early evolu- small samples are now effectively being The Messenger 146 – December 2011 41 Astronomical News Petr-Gotzens M., Testi L., Workshop on “Very Low-mass Stars and Brown Dwarfs” carried out with large optical/infrared telescopes and millimetre arrays (e.g., VLT/X-shooter and ALMA). On the theo- retical side, the latest modelling results were discussed and confronted with the observations. Approximately 120 par- ticipants came together in Garching (see Figure 1) for lively discussions in five sessions on the dedicated topics sum- marised below. Structure of molecular clouds: Formation and properties of cores Substantial progress in understanding the formation of pre-stellar cores has been made thanks to the Gould Belt sur- vey of nearby molecular clouds per- formed with the Herschel Space Obser- vatory. The emerging picture is of the important role of filaments as the prime places for pre-stellar core formation (review talks by P. Myers and P. Andre). The typical structure of a filament, based on the analysis of more than 100 fila- ments in different molecular clouds, is that of a narrow, steep density profile with Figure 1. Group picture of the workshop participants tends to inhibit disc fragmentation. This a characteristic width of roughly 0.1 par- in the entrance hall of ESO Headquarters. problem could be overcome if radiative secs. Observational evidence was pre- feedback is episodic, with long periods of sented for the formation of a pre-stellar luminosity Class 0 sources with quiescence. The detection and physical < core from velocity-coherent gas flows L ~ 0.8 LA appear under-abundant characterisation of very low luminosity along the filament directions (talk by A. in a large survey of protostars in the objects (VeLLOs) remains an observational Hacar). It was further argued that pre- Orion star-forming region (talk by W. challenge, but a few candidates were stellar cores are formed from the frag- Fischer). presented (in talks by M. Dunham and T. mentation of the densest parts of the fila- Huard). Progress in this respect is ments and that filament fragmentation expected to be made soon with ALMA, forms the basis of the (sub)stellar initial From cores to stellar systems: Fragmen- which provides excellent sensitivities mass function by setting the mass distri- tation, properties and multiplicity of pro- at submillimetre wavelengths and at high bution of pre-stellar cores. It was also tostars spatial resolution. shown that Herschel observations of the Perseus and Serpens clouds suggest In this session several models for the for- The observed properties of low-mass that the spatial density distribution of pre- mation of VLM stars and BDs were re­­ protostars/proto brown dwarfs are clearly stellar cores is scale-free, a result con- viewed and discussed by M. Bate, A. a key to understanding their formation. sistent with the spatial density distribution Boss, S. Basu and D. Stamatellos. New Protostellar/brown dwarf multiplicity was of young stellar objects in nearby molec- numerical simulations, including radia- discussed by several speakers (G. ular clouds (talk by E. Bressert). These tive feedback from protostars, show Duchene, A. Kraus, P. Viana Almeida and findings support the ideas of the existence reduced core fragmentation and produce R. Parker). It has been established of a column density threshold for the much fewer BDs than in previous simu- over the last couple of years that the bi­­ formation of cores and stars and that the lations. Very low-mass stars and BDs nary frequency declines with primary global properties of the outcome of the may also be formed in fragmenting mas- mass, a trend that continues down into star formation process in nearby clouds sive circumstellar discs involving sub- the substellar regime. For the youngest is closely linked to the fragmentation pro- sequent ejections from these discs. Ejec- objects, it seems that there is a lack of cess of molecular clouds. tions are frequent events and may 100–500 AU separation Class I binaries happen even at early evolutionary stages, (not specific to a particular primary mass However, the unambiguous identification leading to ejected low-mass clumps. range), while a high fraction is observed of the precursors of BDs and VLM stars However, it was pointed out that massive at larger separations. Also, Class 0 ob­­ remains elusive: very low luminosity pre- discs around Class 0 sources are not jects show a low binary frequency at sep- stellar cores remain undetected; and low observed and that radiative feedback arations < 2000 astronomical units (AU). 42 The Messenger 146 – December 2011 Revealing and understanding the low- The circum(sub)stellar environment: Sensitive surveys seem to suggest that mass end of the stellar initial mass func- Discs, outflows and accretion processes circumstellar discs around VLM stars tion and BDs are at least as common as in T The large body of evidence for a “T Tauri- Tauri stars, and their properties appear The third session was introduced by a like” phase in the early evolution of to be similar (talks by S.
Recommended publications
  • The Formation of Brown Dwarfs 459
    Whitworth et al.: The Formation of Brown Dwarfs 459 The Formation of Brown Dwarfs: Theory Anthony Whitworth Cardiff University Matthew R. Bate University of Exeter Åke Nordlund University of Copenhagen Bo Reipurth University of Hawaii Hans Zinnecker Astrophysikalisches Institut, Potsdam We review five mechanisms for forming brown dwarfs: (1) turbulent fragmentation of molec- ular clouds, producing very-low-mass prestellar cores by shock compression; (2) collapse and fragmentation of more massive prestellar cores; (3) disk fragmentation; (4) premature ejection of protostellar embryos from their natal cores; and (5) photoerosion of pre-existing cores over- run by HII regions. These mechanisms are not mutually exclusive. Their relative importance probably depends on environment, and should be judged by their ability to reproduce the brown dwarf IMF, the distribution and kinematics of newly formed brown dwarfs, the binary statis- tics of brown dwarfs, the ability of brown dwarfs to retain disks, and hence their ability to sustain accretion and outflows. This will require more sophisticated numerical modeling than is presently possible, in particular more realistic initial conditions and more realistic treatments of radiation transport, angular momentum transport, and magnetic fields. We discuss the mini- mum mass for brown dwarfs, and how brown dwarfs should be distinguished from planets. 1. INTRODUCTION form a smooth continuum with those of low-mass H-burn- ing stars. Understanding how brown dwarfs form is there- The existence of brown dwarfs was first proposed on the- fore the key to understanding what determines the minimum oretical grounds by Kumar (1963) and Hayashi and Nakano mass for star formation. In section 3 we review the basic (1963).
    [Show full text]
  • AST301 the Lives of the Stars
    AST301 The Lives of the Stars A Tale of Two Forces: Pressure vs Gravity I. The Sun as a Star What we know about the Sun •Angular Diameter: q = 32 arcmin (from observations) •Solar Constant: f = 1.4 x 106 erg/sec/cm2 (from observations) •Distance: d = 1.5 x 108 km (1 AU). (from Kepler's Third Law and the trigonometric parallax of Venus) •Luminosity: L = 4 x 1033 erg/s. (from the inverse-square law: L = 4p d2 f) •Radius: R = 7 x 105 km. (from geometry: R = p d) •Mass: M = 2 x 1033 gm. (from Newton's version of Kepler's Third Law, M = (4p2/G) d3/P2) •Temperature: T = 5800 K. (from the black body law: L = 4pR2 σ T4) •Composition: about 74% Hydrogen, 24% Helium, and 2% everything else (by mass). (from spectroscopy) What Makes the Sun Shine? Inside the Sun Far Side Gary Larson Possible Sources of Sunlight • Chemical combustion – A Sun made of C+O: 4000 years • Gravitational Contraction – Convert gravitational potential energy – T = U/L = GM82R8/L8 ~ 107 years • Accretion – Limitless, but M8 increases 3% / 106 years • Nuclear Fusion – Good for ~1010 years How Fusion Works E=mc2 • 4 H ⇒ He4 + energy • The mass of 4 H atoms exceeds the mass of a He atom by 0.7%. • Every second, the Sun converts 6x108 tons of H into 5.96x108 tons of He. • The Sun loses 4x106 tons of mass every second. • At this rate, the Sun can maintain its present luminosity for about 1011 years. • 1010 or 1011 years ??? Nuclear Fusion Proton-Proton (PP I) reaction Releases 26.7 MeV 10 < Tcore < 14 MK How Fusion Works Source: Wikipedia Beyond PP I PP II: dominates for 14 < Tcore < 23 MK • 3He + 4He ⇒ 7Be + g 7 - 7 • Be + e ⇒ Li + ne + g • 7Li +p+ ⇒ 24He + g • 16% of L8 PP III: dominates for Tcore > 23 MK • 3He + 4He ⇒ 7Be + g • 7Be + p+ ⇒ 8B + g 8 8 + • B ⇒ Be + e + ne • 8Be ⇒ 24He • 0.02% of L8 Nuclear Timescale • 1010 years • Sun has brightened by 30% in 4.5 Gyr • Photons take 105 – 106 yrs to diffuse out – Gamma-rays thermalize to optical photons How do we know? • The p-p reaction also produces neutrinos.
    [Show full text]
  • Stellar Evolution
    Stellar Astrophysics: Stellar Evolution 1 Stellar Evolution Update date: December 14, 2010 With the understanding of the basic physical processes in stars, we now proceed to study their evolution. In particular, we will focus on discussing how such processes are related to key characteristics seen in the HRD. 1 Star Formation From the virial theorem, 2E = −Ω, we have Z M 3kT M GMr = dMr (1) µmA 0 r for the hydrostatic equilibrium of a gas sphere with a total mass M. Assuming that the density is constant, the right side of the equation is 3=5(GM 2=R). If the left side is smaller than the right side, the cloud would collapse. For the given chemical composition, ρ and T , this criterion gives the minimum mass (called Jeans mass) of the cloud to undergo a gravitational collapse: 3 1=2 5kT 3=2 M > MJ ≡ : (2) 4πρ GµmA 5 For typical temperatures and densities of large molecular clouds, MJ ∼ 10 M with −1=2 a collapse time scale of tff ≈ (Gρ) . Such mass clouds may be formed in spiral density waves and other density perturbations (e.g., caused by the expansion of a supernova remnant or superbubble). What exactly happens during the collapse depends very much on the temperature evolution of the cloud. Initially, the cooling processes (due to molecular and dust radiation) are very efficient. If the cooling time scale tcool is much shorter than tff , −1=2 the collapse is approximately isothermal. As MJ / ρ decreases, inhomogeneities with mass larger than the actual MJ will collapse by themselves with their local tff , different from the initial tff of the whole cloud.
    [Show full text]
  • (NASA/Chandra X-Ray Image) Type Ia Supernova Remnant – Thermonuclear Explosion of a White Dwarf
    Stellar Evolution Card Set Description and Links 1. Tycho’s SNR (NASA/Chandra X-ray image) Type Ia supernova remnant – thermonuclear explosion of a white dwarf http://chandra.harvard.edu/photo/2011/tycho2/ 2. Protostar formation (NASA/JPL/Caltech/Spitzer/R. Hurt illustration) A young star/protostar forming within a cloud of gas and dust http://www.spitzer.caltech.edu/images/1852-ssc2007-14d-Planet-Forming-Disk- Around-a-Baby-Star 3. The Crab Nebula (NASA/Chandra X-ray/Hubble optical/Spitzer IR composite image) A type II supernova remnant with a millisecond pulsar stellar core http://chandra.harvard.edu/photo/2009/crab/ 4. Cygnus X-1 (NASA/Chandra/M Weiss illustration) A stellar mass black hole in an X-ray binary system with a main sequence companion star http://chandra.harvard.edu/photo/2011/cygx1/ 5. White dwarf with red giant companion star (ESO/M. Kornmesser illustration/video) A white dwarf accreting material from a red giant companion could result in a Type Ia supernova http://www.eso.org/public/videos/eso0943b/ 6. Eight Burst Nebula (NASA/Hubble optical image) A planetary nebula with a white dwarf and companion star binary system in its center http://apod.nasa.gov/apod/ap150607.html 7. The Carina Nebula star-formation complex (NASA/Hubble optical image) A massive and active star formation region with newly forming protostars and stars http://www.spacetelescope.org/images/heic0707b/ 8. NGC 6826 (Chandra X-ray/Hubble optical composite image) A planetary nebula with a white dwarf stellar core in its center http://chandra.harvard.edu/photo/2012/pne/ 9.
    [Show full text]
  • Supernova Explosions and Remnants Stellar Structure
    Supernova Explosions and Remnants stellar structure For a 25 solar mass star, the duration of each stage is stellar corpses: the core When the central iron core continues to grow and approaches Mch , two processes begin: nuclear photodisintegration and neutronization. Nuclear photodisintegration: The temperature is high enough for energetic photons to be abundant and get absorbed in the endothermic reaction: with an energy consumption of 124 MeV. The Helium nuclei are further unbound: consuming 28.3 MeV(the binding energy of a He nucleus). The total energy of the star is reduced per nucleon by With about 10 57 protons in a Chandrasekhar mass, this corresponds to a total energy loss of stellar corpses: the core Neutronization: The large densities in the core lead to a large increase in the rates of processes such as This neutronization depletes the core of electrons and their supporting degeneracy pressure, as well as energy, which is carried off by neutrinos. The two processes lead, in principle, to an almost total loss of thermal pressure support and to an unrestrained collapse of the core of a star on a free-fall timescale: In practice, at these high densities, the mean free path for neutrino scattering becomes of order the core radius. This slows down the energy loss, and hence the collapse time to a few seconds. core collapse supernovae As the collapse proceeds and the density and the temperature increase, the reaction becomes common, and is infrequently offset by leading to a equilibrium ratio of densities Thus most nucleons become neutrons review article type Ia supernovae.
    [Show full text]
  • Stellar Evolution: Evolution Off the Main Sequence
    Evolution of a Low-Mass Star Stellar Evolution: (< 8 M , focus on 1 M case) Evolution off the Main Sequence sun sun - All H converted to He in core. - Core too cool for He burning. Contracts. Main Sequence Lifetimes Heats up. Most massive (O and B stars): millions of years - H burns in shell around core: "H-shell burning phase". Stars like the Sun (G stars): billions of years - Tremendous energy produced. Star must Low mass stars (K and M stars): a trillion years! expand. While on Main Sequence, stellar core has H -> He fusion, by p-p - Star now a "Red Giant". Diameter ~ 1 AU! chain in stars like Sun or less massive. In more massive stars, 9 Red Giant “CNO cycle” becomes more important. - Phase lasts ~ 10 years for 1 MSun star. - Example: Arcturus Red Giant Star on H-R Diagram Eventually: Core Helium Fusion - Core shrinks and heats up to 108 K, helium can now burn into carbon. "Triple-alpha process" 4He + 4He -> 8Be + energy 8Be + 4He -> 12C + energy - First occurs in a runaway process: "the helium flash". Energy from fusion goes into re-expanding and cooling the core. Takes only a few seconds! This slows fusion, so star gets dimmer again. - Then stable He -> C burning. Still have H -> He shell burning surrounding it. - Now star on "Horizontal Branch" of H-R diagram. Lasts ~108 years for 1 MSun star. More massive less massive Helium Runs out in Core Horizontal branch star structure -All He -> C. Not hot enough -for C fusion. - Core shrinks and heats up.
    [Show full text]
  • Asteroseismology
    Asteroseismology Gerald Handler Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland Email: [email protected] Abstract Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen. Introduction: variable and pulsating stars Nearly all the physical processes that determine the structure and evolution of stars occur in their (deep) interiors. The production of nuclear energy that powers stars takes place in their cores for most of their lifetime. The effects of the physical processes that modify the simplest models of stellar evolution, such as mixing and diffusion, also predominantly take place in the inside of stars. The light that we receive from the stars is the main information that astronomers can use to study the universe. However, the light of the stars is radiated away from their surfaces, carrying no memory of its origin in the deep interior. Therefore it would seem that there is no way that the analysis of starlight tells us about the physics going on in the unobservable stellar interiors. However, there are stars that reveal more about themselves than others. Variable stars are objects for which one can observe time-dependent light output, on a time scale shorter arXiv:1205.6407v1 [astro-ph.SR] 29 May 2012 than that of evolutionary changes.
    [Show full text]
  • Multi-Periodic Pulsations of a Stripped Red Giant Star in an Eclipsing Binary
    1 Multi-periodic pulsations of a stripped red giant star in an eclipsing binary Pierre F. L. Maxted1, Aldo M. Serenelli2, Andrea Miglio3, Thomas R. Marsh4, Ulrich Heber5, Vikram S. Dhillon6, Stuart Littlefair6, Chris Copperwheat7, Barry Smalley1, Elmé Breedt4, Veronika Schaffenroth5,8 1 Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG, UK. 2 Instituto de Ciencias del Espacio (CSIC-IEEC), Facultad de Ciencias, Campus UAB, 08193, Bellaterra, Spain. 3 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. 4 Department of Physics, University of Warwick, Coventry, CV4 7AL, UK. 5 Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg, Sternwartstr. 7, 96049, Bamberg, Germany. 6 Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK. 7Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, Wirral, CH41 1LD, UK. 8Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse. 25/8, 6020 Innsbruck, Austria. Low mass white dwarfs are the remnants of disrupted red giant stars in binary millisecond pulsars1 and other exotic binary star systems2–4. Some low mass white dwarfs cool rapidly, while others stay bright for millions of years due to stable 2 fusion in thick surface hydrogen layers5. This dichotomy is not well understood so their potential use as independent clocks to test the spin-down ages of pulsars6,7 or as probes of the extreme environments in which low mass white dwarfs form8–10 cannot be fully exploited. Here we present precise mass and radius measurements for the precursor to a low mass white dwarf.
    [Show full text]
  • MHD Simulation of Inner 0.5 AU of FU Ori, Zhu Et Al
    Star Formation and the Origins of Planetary Systems Lecture 6: Pre-main sequence stars MHD simulation of inner 0.5 AU of FU Ori, Zhu et al. (2020) Background reading: (Crete II) Hartmann (2008) book, Chapters: 4.1-4.2, 8.4-8.8, all of 9, all of 11 !1 Summary Lecture 5 ▪Census of high-mass YSOs in Milky Way now possible due to new observational facilities ▪Spitzer, Herschel, masers, radio ▪Earliest pre-stellar core phase still elusive ▪Two theories for massive star formation ▪Scaled-up version low-mass: turbulent core accretion ▪Competitive accretion ▪Scenario (under debate) ▪IRDC → HMPO→ hot core→UC HII ▪Long lifetime and range of morphologies UC HII regions due to combination of effects ▪No optically visible pre-main sequence phase !2 Summary Image Credit: Cormac Purcell •Hyper-compact HII regions (eg Observed as cold, dense cores Kurtz et al. 2005) •Infrared-dark clouds •Ultra-compact HII regions - well •“mm-only” cores studied (see Churchwell and co.) Q: What is wrong with this picture? A: It has all of these stages separately, whereas in reality one finds observationally a hot core next to an ultra compact H II region. SPF course progress: where are we now? Date Who Lecture 18 Feb. EvD Motivation, history, & observational facilities (Star formation) 20 Feb. EvD Pre-stellar cores, cloud collapse 25 Feb. EvD SEDs, embedded protostars Has links to core courses: 27 Feb. EvD Outflows & jets • ISM • Stellar structure & evolution 3 Mar. EvD High mass star formation 10 Mar. MM Pre-main sequence star types, stellar birthline 12 Mar.
    [Show full text]
  • Brown Dwarfs 3
    BROWN DWARFS B. R. OPPENHEIMER, S. R. KULKARNI Palomar Observatory, California Institute of Technology and J. R. STAUFFER Harvard–Smithsonian Center for Astrophysics After a discussion of the physical processes in brown dwarfs, we present a complete, precise definition of brown dwarfs and of planets inspired by the internal physics of objects between 0.1 and 0.001 M⊙. We discuss observa- tional techniques for characterizing low-luminosity objects as brown dwarfs, including the use of the lithium test and cooling curves. A brief history of the search for brown dwarfs leads to a detailed review of known isolated brown dwarfs with emphasis on those in the Pleiades star cluster. We also discuss brown dwarf companions to nearby stars, paying particular attention to Gliese 229B, the only known cool brown dwarf. I. WHAT IS A BROWN DWARF? A main sequence star is to a candle as a brown dwarf is to a hot poker recently removed from the fire. Stars and brown dwarfs, although they form in the same manner, out of the fragmentation and gravita- tional collapse of an interstellar gas cloud, are fundamentally different because a star has a long-lived internal source of energy: the fusion of hydrogen into helium. Thus, like a candle, a star will burn constantly until its fuel source is exhausted. A brown dwarf’s core temperature is insufficient to sustain the fusion reactions common to all main sequence stars. Thus brown dwarfs cool as they age. Cooling is perhaps the single most important salient feature of brown dwarfs, but an understanding of their definition and their observational properties requires a review of basic stellar physics.
    [Show full text]
  • Topics in Core-Collapse Supernova Theory: the Formation of Black Holes and the Transport of Neutrinos
    Topics in Core-Collapse Supernova Theory: The Formation of Black Holes and the Transport of Neutrinos Thesis by Evan Patrick O'Connor In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2012 (Defended May 21, 2012) ii c 2012 Evan Patrick O'Connor All Rights Reserved iii Acknowledgements First and foremost, I have the pleasure of acknowledging and thanking my advisor, Christian Ott, for his commitment and contribution to my research over the last four years. Christian, your attention to detail, desire for perfection, exceptional physical insight, and unwavering stance against the phrase direct black hole formation are qualities I admire and strive to reproduce in my own research. From our very first meeting, Christian has been an staunch advocate for open science, a philosophy that he has instilled in me throughout my time at Caltech and one that I plan on maintaining in my future career. I also thank the love of my life. Erin, there are so many reasons to be thankful to you. You are the best part of each and every day. On the science front, thank you for all our neutrino discussions, enlightening me on so many different aspects of neutrinos, and keeping my theoretical meanderings grounded in experimental reality. I am indebted to you for all your support, encouragement, per- sistence, and love throughout the writing of this thesis and I look forward to repaying that debt soon. Thank you to my family, as always, your constant encouragement and support in everything I do is greatly appreciated.
    [Show full text]
  • The Sun: Its Structure and Energy Generation
    Sun, Stars and Planets J C Pickering 2014 Part 1: The Sun: its structure and energy generation Lecture 1. Basic properties of the Sun – an introduction 1.1 Setting the scene… 1.2 Definition of a star 1.3 Properties of the Sun 1.4 How are these properties quantified? 1.1 Setting the scene Earth- Sun distance = 1 AU (Astronomical Unit), or 8 minutes for light to reach us Distances: (in light years) Nearest star Proxima Centauri 4.2 Sirius 8.6 Orion Nebula 1500 Galactic Centre 28,000 Galactic Diameter 100,000 Andromeda galaxy 2,300,000 (biggest galaxy in our Local Group of 30 galaxies 6 million lys across) Virgo Cluster 50,000,000 (2000 galaxies, nearest other galactic cluster, and centre of our Local Supercluster – diameter 100,000,000) Most Distant Observed Object ~13,000,000,000 Number of stars and galaxies… Galaxies contain anything from between 100,000 up to 3,000,000,000,000 (3 thousand billion) stars! Our Galaxy contains 100 billion stars. Number of galaxies estimated in observable Universe – 200 - 300 billion… So, it is vital we understand the physics of stars! How do we go about describing the internal structure of stars and their evolution? Evolution of stars is very slow; for a typical ordinary star like our Sun a small change in the Sun’s properties would make the Earth uninhabitable for us, but we have been on Earth for hundreds of thousands of years. Geologists believe the Earth’s crust has been solid for several thousand million years, and that the Sun’s luminosity cannot have changed significantly during this time span.
    [Show full text]