Chapter 17--Star Stuff

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 17--Star Stuff 2396_AWL_Bennett_Ch17 6/25/03 3:46 PM Page 544 17 Star Stuff LEARNING GOALS 17.1 Lives in the Balance • What prevents carbon from fusing to heavier • What kind of pressure opposes the inward pull elements in low-mass stars? of gravity during most of a star’s life? 17.4 Life as a High-Mass Star • What basic stellar property determines how a star • In what ways do high-mass stars differ from low- will live and die? Why? mass stars? • How do we categorize stars by mass? • How do high-mass stars produce elements heavier 17.2 Star Birth than carbon? • Where are stars born? • What causes a supernova? • What is a protostar? • Do supernovae explode near Earth? • What are the “prebirth” stages of a star’s life? 17.5 The Lives of Close Binary Stars • What is a brown dwarf ? • Why are the life stories of close binary stars different 17.3 Life as a Low-Mass Star from those of single, isolated stars? • What are the major phases in the life of a • What is the Algol paradox? low-mass star? • How did past red giant stars contribute to the existence of life on Earth? 544 2396_AWL_Bennett_Ch17 6/25/03 3:46 PM Page 545 I can hear the sizzle of newborn stars, A star can maintain its internal thermal pressure only and know anything of meaning, of the if it continually generates new thermal energy to replace fierce magic emerging here. I am witness the energy it radiates into space. This energy can come from to flexible eternity, the evolving past, two sources: nuclear fusion of light elements into heavier and know I will live forever, as dust or ones and the process of gravitational contraction, which breath in the face of stars, in the converts gravitational potential energy into thermal energy shifting pattern of winds. [Section 15.1]. These energy-production processes operate only tem- Joy Harjo, Secrets from the Center of the World porarily, although in this case “temporarily” means mil- lions or billions of years. In contrast, gravity acts eternally. Moreover, any time gravity succeeds in shrinking a star’s e inhale oxygen with every breath. core, the strength of gravity grows. (The force of gravity Iron-bearing hemoglobin carries this inside an object grows stronger if it either gains mass or shrinks in radius [Section 5.3].) Because a star cannot gen- oxygen through the bloodstream. W erate thermal energy forever, its ultimate fate depends on Chains of carbon and nitrogen form the backbone whether something other than thermal pressure manages of the proteins, fats, and carbohydrates in our cells. to halt the unceasing crush of gravity. The final outcome of a star’s struggle between gravity Calcium strengthens our bones, while sodium and and pressure depends almost entirely on its birth mass. potassium ions moderate communications of the All stars are born from spinning clumps of gas, but new- nervous system. What does all this biology have to born stars can have masses ranging from less than 10% of the mass of our Sun to about 100 times that of our Sun. do with astronomy? The profound answer, recognized The most massive stars live fast and die young, proceeding only in the second half of the twentieth century, is from birth to explosive death in just a few million years. that life is based on elements created by stars. The lowest-mass stars, in contrast, consume hydrogen so slowly that they will continue to shine until the universe We’ve already discussed in general terms how is many times older than it is today. the elements in our bodies came to exist. Hydrogen Because of the wide range of stellar masses, we can and helium were produced in the Big Bang, and heav- simplify our discussion of stellar lives by dividing stars into three basic groups: ier elements were created later by stars and scat- ● tered into space by stellar explosions. There, in the Low-mass stars are stars born with less than about two times the mass of our Sun, or less than 2 solar spaces between the stars, these elements mixed with masses (2MSun) of material. interstellar gas and became incorporated into sub- ● Intermediate-mass stars have birth weights between sequent generations of stars. about 2 and 8 solar masses. In this chapter, we will discuss the origins of ● High-mass stars are those stars born with masses the elements in greater detail by delving into the lives greater than about 8 solar masses. of stars. As you read, keep in mind that no matter Both low-mass and intermediate-mass stars swell into how far removed the stars may seem from our every- red giants near the ends of their lives and ultimately be- come white dwarfs. High-mass stars also become red and day lives, they actually are connected to us in the large in their latter days, but their lives end much more most intimate way possible: Without the births, lives, violently. and deaths of stars, none of us would be here. We will focus most of our discussion in this chapter on the dramatic differences between the lives of low- and ypla om ce n . o c r o t m s high-mass stars. Because the life stages of intermediate- a Stellar Evolution Tutorial, Lesson 1 mass stars are quite similar to the corresponding stages of high-mass stars until the very ends of their lives, we include 17.1 Lives in the Balance them in our discussion of high-mass stars. The story of a star’s life is in many ways the story of an Given the brevity of human history compared to the extended battle between two opposing forces: gravity and life of any star, you might wonder how we can know so much pressure. The most common type of pressure in stars is about stellar life cycles. As with any scientific inquiry, we thermal pressure—the familiar type of pressure that keeps study stellar lives by comparing theory and observation. On a balloon inflated and that increases when the tempera- the theoretical side, we use mathematical models based on ture or thermal energy increases. the known laws of physics to predict the life cycles of stars. chapter 17 • Star Stuff 545 2396_AWL_Bennett_Ch17 6/25/03 3:46 PM Page 546 On the observational side, we study stars of different mass itself. The clouds that form stars tend to be quite cold, typ- but the same age by looking in star clusters whose ages we ically only 10–30 K. (Recall that 0 K is absolute zero, and have determined by main-sequence turnoff [Section 16.6]. temperatures on Earth are around 300 K.) They also tend Occasionally, we even catch a star in its death throes. Theo- to be quite dense compared to the rest of the gas between retical predictions of the life cycles of stars agree quite well the stars, although they would qualify as a superb vacuum with these observations. by earthly standards. Like the galaxy as a whole, star-forming In the remainder of this chapter, we will examine in clouds are made almost entirely of hydrogen and helium. detail our modern understanding of the life stories of stars Star-forming clouds are sometimes called molecular and how they manufacture the variety of elements—the clouds,because their low temperatures allow hydrogen star stuff—that make our lives possible. atoms to pair up to form hydrogen molecules (H2). The relatively rare atoms of elements heavier than helium can also form molecules, such as carbon monoxide or water, or tiny, solid grains of dust. More important, the cold temper- atures and high densities allow gravity to overcome thermal 17.2 Star Birth pressure more readily in molecular clouds than elsewhere Stars are born from clouds of interstellar gas (Figure 17.1) in interstellar space. If the thermal pressure in a molecular and return much of that gas to interstellar space when cloud is too weak to counteract the compressing force of they die. In Chapter 19, we will examine this star–gas–star gravity, then the cloud must undergo gravitational contrac- cycle in more detail. Here we will focus on star formation tion. Because molecular clouds are generally lumpy, gravity Figure 17.1 A star-forming cloud of molecular hydrogen gas in the constellation Scorpius extends from VIS the upper-right corner of this photo through the center. The cloud appears dark because dust particles within it obscure the light radiated from more distant stars lying behind it. Blue-white blotches near the edges of the dark cloud are newly formed stars. They appear fuzzy because some of their light is reflecting off patchy gas in their vicinity. The region pictured here is about 50 light-years across. 546 part V•Stellar Alchemy 2396_AWL_Bennett_Ch17 6/25/03 3:46 PM Page 547 Figure 17.2 Fragmentation of a molecular cloud. Gravity attracts matter to the densest regions of a molecular cloud. If gravity can overcome thermal pressure in these dense regions, they collapse to form even denser knots of gaseous matter known as molecular cloud cores. The cloud thus fragments into a number of pieces, each of which will form one or more new stars. pulls the molecular gas toward the densest lumps, known as molecular cloud cores. A cloud thus fragments into numer- ous pieces, each of which will form one or more new stars (Figure 17.2). From Cloud to Protostar Betelgeuse Gravitational contraction within each shrinking fragment of a molecular cloud releases thermal energy.
Recommended publications
  • Plasma Physics and Pulsars
    Plasma Physics and Pulsars On the evolution of compact o bjects and plasma physics in weak and strong gravitational and electromagnetic fields by Anouk Ehreiser supervised by Axel Jessner, Maria Massi and Li Kejia as part of an internship at the Max Planck Institute for Radioastronomy, Bonn March 2010 2 This composition was written as part of two internships at the Max Planck Institute for Radioastronomy in April 2009 at the Radiotelescope in Effelsberg and in February/March 2010 at the Institute in Bonn. I am very grateful for the support, expertise and patience of Axel Jessner, Maria Massi and Li Kejia, who supervised my internship and introduced me to the basic concepts and the current research in the field. Contents I. Life-cycle of stars 1. Formation and inner structure 2. Gravitational collapse and supernova 3. Star remnants II. Properties of Compact Objects 1. White Dwarfs 2. Neutron Stars 3. Black Holes 4. Hypothetical Quark Stars 5. Relativistic Effects III. Plasma Physics 1. Essentials 2. Single Particle Motion in a magnetic field 3. Interaction of plasma flows with magnetic fields – the aurora as an example IV. Pulsars 1. The Discovery of Pulsars 2. Basic Features of Pulsar Signals 3. Theoretical models for the Pulsar Magnetosphere and Emission Mechanism 4. Towards a Dynamical Model of Pulsar Electrodynamics References 3 Plasma Physics and Pulsars I. The life-cycle of stars 1. Formation and inner structure Stars are formed in molecular clouds in the interstellar medium, which consist mostly of molecular hydrogen (primordial elements made a few minutes after the beginning of the universe) and dust.
    [Show full text]
  • Beyond the Solar System Homework for Geology 8
    DATE DUE: Name: Ms. Terry J. Boroughs Geology 8 Section: Beyond the Solar System Instructions: Read each question carefully before selecting the BEST answer. Use GEOLOGIC VOCABULARY where APPLICABLE! Provide concise, but detailed answers to essay and fill-in questions. Use an 882-e scantron for your multiple choice and true/false answers. Multiple Choice 1. Which one of the objects listed below has the largest size? A. Galactic clusters. B. Galaxies. C. Stars. D. Nebula. E. Planets. 2. Which one of the objects listed below has the smallest size? A. Galactic clusters. B. Galaxies. C. Stars. D. Nebula. E. Planets. 3. The Sun belongs to this class of stars. A. Black hole C. Black dwarf D. Main-sequence star B. Red giant E. White dwarf 4. The distance to nearby stars can be determined from: A. Fluorescence. D. Stellar parallax. B. Stellar mass. E. Emission nebulae. C. Stellar distances cannot be measured directly 5. Hubble's law states that galaxies are receding from us at a speed that is proportional to their: A. Distance. B. Orientation. C. Galactic position. D. Volume. E. Mass. 6. Our galaxy is called the A. Milky Way galaxy. D. Panorama galaxy. B. Orion galaxy. E. Pleiades galaxy. C. Great Galaxy in Andromeda. 7. The discovery that the universe appears to be expanding led to a widely accepted theory called A. The Big Bang Theory. C. Hubble's Law. D. Solar Nebular Theory B. The Doppler Effect. E. The Seyfert Theory. 8. One of the most common units used to express stellar distances is the A.
    [Show full text]
  • The Very Long Mystery of Epsilon Aurigae
    A Unique Eclipsing Variable TheThe VeryVery LongLong MMysteryystery ofof EpsilonEpsilon AAurigaeurigae robertrobert e. sstenceltencel one of the great scientifi c advances of the 20th A remarkable naked-eye star century was the theory of stellar evolution, as physicists worked out not just how stars shine, but how they origi- will soon start dimming for nate, live, change, and die. To test theory against reality, however, astronomers had to determine accurate masses the eighth time since 1821. for many diff erent kinds of stars — and this meant analyz- What’s going on is still ing the motions of binary pairs. Theorists also needed the stars’ exact diameters, and this meant analyzing the light not exactly clear. curves of eclipsing binaries in particular. A century ago, S&T ILLUSTRATION BY CASEY REED giants of early astrophysics worked intensely on the prob- lem of eclipsing-binary analysis. Henry Norris Russell’s paper “On the Determination of the Orbital Elements of Eclipsing Variable Stars,” published in 1912, set the stage for what followed. BIG WHITE STAR, BIGGER BLACK PARTNER Epsilon Aurigae, hotter than the Sun and larger than Earth’s entire orbit, pours forth some 130,000 times the Sun’s light — which is why it shines as brightly as 3rd magnitude even from 2,000 light-years away. According to the currently favored model, a long, dark object will start sliding across its middle this summer. The object seems to be an opaque warped disk 10 a.u. wide and appearing roughly 1 a.u. tall. Whatever lies at its center seems to be hidden — though there’s also evidence that we see right through the center.
    [Show full text]
  • Species Which Remained Immutable and Unchanged Thereafter
    THE ORIGIN OF THE ELEMENTS BY WILLIAM A. FOWLER CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA They [atoms] move in the void and catching each other up jostle together, and some recoil in any direction that may chance, and others become entangled with one another in various degrees according to the symmetry of their shapes and sizes and positions and order, and they remain together and thus the coming into being of composite things is effected. -SIMPLICIUS (6th Century A.D.) It is my privilege to begin our consideration of the history of the universe during this first scientific session of the Academy Centennial with a discussion of the origin of the elements of which the matter of the universe is constituted. The question of the origin of the elements and their numerous isotopes is the modern expression of one of the most ancient problems in science. The early Greeks thought that all matter consisted of the four simple substances-air, earth, fire, and water-and they, too, sought to know the ultimate origin of what for them were the elementary forms of matter. They also speculated that matter consists of very small, indivisible, indestructible, and uncreatable atoms. They were wrong in detail but their concepts of atoms and elements and their quest for origins persist in our science today. When our Academy was founded one century ago, the chemist had shown that the elements were immutable under all chemical and physical transformations known at the time. The alchemist was self-deluded or was an out-and-out charla- tan. Matter was atomic, and absolute immutability characterized each atomic species.
    [Show full text]
  • Aerodynamic Phenomena in Stellar Atmospheres, a Bibliography
    - PB 151389 knical rlote 91c. 30 Moulder laboratories AERODYNAMIC PHENOMENA STELLAR ATMOSPHERES -A BIBLIOGRAPHY U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS ^M THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers.
    [Show full text]
  • SHELL BURNING STARS: Red Giants and Red Supergiants
    SHELL BURNING STARS: Red Giants and Red Supergiants There is a large variety of stellar models which have a distinct core – envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic model, the stars with the core – envelope structure may be approximated with a composite polytrope: one for the core, another for the envelope, with a very large difference in the “K” constants between the two. This is a consequence of a very large difference in the specific entropies between the core and the envelope. The original reason for the difference is due to a jump in chemical composition. For example, the core may have no hydrogen, and mostly helium, while the envelope may be hydrogen rich. As a result, there is a nuclear burning shell at the bottom of the envelope; hydrogen burning shell in our example. The heat generated in the shell is diffusing out with radiation, and keeps the entropy very high throughout the envelope. The core – envelope structure is most pronounced when the core is degenerate, and its specific entropy near zero. It is supported against its own gravity with the non-thermal pressure of degenerate electron gas, while all stellar luminosity, and all entropy for the envelope, are provided by the shell source. A common property of stars with well developed core – envelope structure is not only a very large jump in specific entropy but also a very large difference in pressure between the center, Pc, the shell, Psh, and the photosphere, Pph. Of course, the two characteristics are closely related to each other.
    [Show full text]
  • Antony Hewish
    PULSARS AND HIGH DENSITY PHYSICS Nobel Lecture, December 12, 1974 by A NTONY H E W I S H University of Cambridge, Cavendish Laboratory, Cambridge, England D ISCOVERY OF P U L S A R S The trail which ultimately led to the first pulsar began in 1948 when I joined Ryle’s small research team and became interested in the general problem of the propagation of radiation through irregular transparent media. We are all familiar with the twinkling of visible stars and my task was to understand why radio stars also twinkled. I was fortunate to have been taught by Ratcliffe, who first showed me the power of Fourier techniques in dealing with such diffraction phenomena. By a modest extension of existing theory I was able to show that our radio stars twinkled because of plasma clouds in the ionosphere at heights around 300 km, and I was also able to measure the speed of ionospheric winds in this region (1) . My fascination in using extra-terrestrial radio sources for studying the intervening plasma next brought me to the solar corona. From observations of the angular scattering of radiation passing through the corona, using simple radio interferometers, I was eventually able to trace the solar atmo- sphere out to one half the radius of the Earth’s orbit (2). In my notebook for 1954 there is a comment that, if radio sources were of small enough angular size, they would illuminate the solar atmosphere with sufficient coherence to produce interference patterns at the Earth which would be detectable as a very rapid fluctuation of intensity.
    [Show full text]
  • A Star Is Born
    A STAR IS BORN Overview: Students will research the four stages of the life cycle of a star then further research the ramifications of the stage of the sun on Earth. Objectives: The student will: • research, summarize and illustrate the proper sequence in the life cycle of a star; • share findings with peers; and • investigate Earth’s personal star, the sun, and what will eventually come of it. Targeted Alaska Grade Level Expectations: Science [9] SA1.1 The student demonstrates an understanding of the processes of science by asking questions, predicting, observing, describing, measuring, classifying, making generalizations, inferring, and communicating. [9] SD4.1 The student demonstrates an understanding of the theories regarding the origin and evolution of the universe by recognizing that a star changes over time. [10-11] SA1.1 The student demonstrates an understanding of the processes of science by asking questions, predicting, observing, describing, measuring, classifying, making generalizations, analyzing data, developing models, inferring, and communicating. [10] SD4.1 The student demonstrates an understanding of the theories regarding the origin and evolution of the universe by recognizing phenomena in the universe (i.e., black holes, nebula). [11] SD4.1 The student demonstrates an understanding of the theories regarding the origin and evolution of the universe by describing phenomena in the universe (i.e., black holes, nebula). Vocabulary: black dwarf – the celestial object that remains after a white dwarf has used up all of its
    [Show full text]
  • The Formation of Brown Dwarfs 459
    Whitworth et al.: The Formation of Brown Dwarfs 459 The Formation of Brown Dwarfs: Theory Anthony Whitworth Cardiff University Matthew R. Bate University of Exeter Åke Nordlund University of Copenhagen Bo Reipurth University of Hawaii Hans Zinnecker Astrophysikalisches Institut, Potsdam We review five mechanisms for forming brown dwarfs: (1) turbulent fragmentation of molec- ular clouds, producing very-low-mass prestellar cores by shock compression; (2) collapse and fragmentation of more massive prestellar cores; (3) disk fragmentation; (4) premature ejection of protostellar embryos from their natal cores; and (5) photoerosion of pre-existing cores over- run by HII regions. These mechanisms are not mutually exclusive. Their relative importance probably depends on environment, and should be judged by their ability to reproduce the brown dwarf IMF, the distribution and kinematics of newly formed brown dwarfs, the binary statis- tics of brown dwarfs, the ability of brown dwarfs to retain disks, and hence their ability to sustain accretion and outflows. This will require more sophisticated numerical modeling than is presently possible, in particular more realistic initial conditions and more realistic treatments of radiation transport, angular momentum transport, and magnetic fields. We discuss the mini- mum mass for brown dwarfs, and how brown dwarfs should be distinguished from planets. 1. INTRODUCTION form a smooth continuum with those of low-mass H-burn- ing stars. Understanding how brown dwarfs form is there- The existence of brown dwarfs was first proposed on the- fore the key to understanding what determines the minimum oretical grounds by Kumar (1963) and Hayashi and Nakano mass for star formation. In section 3 we review the basic (1963).
    [Show full text]
  • Neutron Stars: Introduction
    Neutron Stars: Introduction Stephen Eikenberry 16 Jan 2018 Original Ideas - I • May 1932: James Chadwick discovers the neutron • People knew that n u clei w ere not protons only (nuclear mass >> mass of protons) • Rutherford coined the name “neutron” to describe them (thought to be p+ e- pairs) • Chadwick identifies discrete particle and shows mass is greater than p+ (by 0.1%) • Heisenberg shows that neutrons are not p+ e- pairs Original Ideas - II • Lev Landau supposedly suggested the existence of neutron stars the night he heard of neutrons • Yakovlev et al (2012) show that he in fact discussed dense stars siiltimilar to a gi ant nucl eus BEFORE neutron discovery; this was immediately adapted to “t“neutron s t”tars” Original Ideas - III • 1934: Walter Baade and Fritz Zwicky suggest that supernova eventtttts may create neutron stars • Why? • Suppg(ernovae have huge (but measured) energies • If NS form from normal stars, then the gravitational binding energy gets released • ESN ~ star … Original Ideas - IV • Late 1930s: Oppenheimer & Volkoff develop first theoretical models and calculations of neutron star structure • WldhWould have con tidbttinued, but WWII intervened (and Oppenheimer was busy with other things ) • And that is how things stood for about 30 years … Little Green Men - I • Cambridge experiment with dipole antennae to map cosmic radio sources • PI: Anthony Hewish; grad students included Jocelyn Bell Little Green Men - II • August 1967: CP 1919 discovered in the radio survey • Nov ember 1967: Bell notices pulsations at P =1.337s
    [Show full text]
  • Astro 404 Lecture 30 Nov. 6, 2019 Announcements
    Astro 404 Lecture 30 Nov. 6, 2019 Announcements: • Problem Set 9 due Fri Nov 8 2 3/2 typo corrected in L24 notes: nQ = (2πmkT/h ) • Office Hours: Instructor – after class or by appointment • TA: Thursday noon-1pm or by appointment • Exam: grading elves hard at work Last time: low-mass stars after main sequence Q: burning phases? 1 Q: shell burning “mirror” principle? Low-Mass Stars After Main Sequence unburnt H ⋆ helium core contracts H He H burning in shell around core He outer layers expand → red giant “mirror” effect of shell burning: • core contraction, envelope expansion • total gravitational potential energy Ω roughly conserved core becomes more tightly bound, envelope less bound ⋆ helium ignition degenerate core unburnt H H He runaway burning: helium flash inert He → 12 He C+O 2 then core helium burning 3α C and shell H burning “horizontal branch” star unburnt H H He ⋆ for solar mass stars: after CO core forms inert He He C • helium shell burning begins inert C • hydrogen shell burning continues Q: star path on HR diagram during these phases? 3 Low-Mass Post-Main-Sequence: HR Diagram ⋆ H shell burning ↔ red giant ⋆ He flash marks “tip of the red giant branch” ⋆ core He fusion ↔ horizontal branch ⋆ He + H shell burning ↔ asymptotic giant branch asymptotic giant branch H+He shell burn He flash core He burn L main sequence horizontal branch red giant branch H shell burning Sun Luminosity 4 Temperature T iClicker Poll: AGB Star Intershell Region in AGB phase: burning in two shells, no core fusion unburnt H H He inert He He C Vote your conscience–all
    [Show full text]
  • Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars What Are Low and Intermediate Mass Stars?
    Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars What are low and intermediate mass stars? Defined by properties of late stellar evolutionary stages Intermediate mass stars: ~1.9 < M/Msun < ~7 Develop electron-degenerate cores after core helium burning and ascending the red giant branch for the second time i.e. on the Asymptotic Giant Branch (AGB). AGB Low mass stars: M/Msun < ~1.9 Develop electron-degenerate cores on leaving RGB the main-sequence and ascending the red giant branch for the first time i.e. on the Red Giant Branch (RGB). Maeder & Meynet 1989 Stages in the evolution of low and intermediate-mass stars These spikes are real The AGB Surface enrichment Pulsation Mass loss The RGB Surface enrichment RGB Pulsation Mass loss About 108 years spent here Most time spent on the main-sequence burning H in the core (~1010 years) Low mass stars: M < ~1.9 Msun Intermediate mass stars: Wood, P. R.,2007, ASP Conference Series, 374, 47 ~1.9 < M/Msun < ~7 Stellar evolution and surface enrichment The Red giant Branch (RGB) zHydrogen burns in a shell around an electron-degenerate He core, star evolves to higher luminosity. zFirst dredge-up occurs: The convection in the envelope moves in when the stars is near the bottom of the RGB and "dredges up" material that has been through partial hydrogen burning by the CNO cycle and pp chains. From John Lattanzio But there's more: extra-mixing What's the evidence? Various abundances and isotopic ratios vary continuously up the RGB. This is not predicted by a single first dredge-up alone.
    [Show full text]