Topics in Core-Collapse Supernova Theory: the Formation of Black Holes and the Transport of Neutrinos

Total Page:16

File Type:pdf, Size:1020Kb

Topics in Core-Collapse Supernova Theory: the Formation of Black Holes and the Transport of Neutrinos Topics in Core-Collapse Supernova Theory: The Formation of Black Holes and the Transport of Neutrinos Thesis by Evan Patrick O'Connor In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2012 (Defended May 21, 2012) ii c 2012 Evan Patrick O'Connor All Rights Reserved iii Acknowledgements First and foremost, I have the pleasure of acknowledging and thanking my advisor, Christian Ott, for his commitment and contribution to my research over the last four years. Christian, your attention to detail, desire for perfection, exceptional physical insight, and unwavering stance against the phrase direct black hole formation are qualities I admire and strive to reproduce in my own research. From our very first meeting, Christian has been an staunch advocate for open science, a philosophy that he has instilled in me throughout my time at Caltech and one that I plan on maintaining in my future career. I also thank the love of my life. Erin, there are so many reasons to be thankful to you. You are the best part of each and every day. On the science front, thank you for all our neutrino discussions, enlightening me on so many different aspects of neutrinos, and keeping my theoretical meanderings grounded in experimental reality. I am indebted to you for all your support, encouragement, per- sistence, and love throughout the writing of this thesis and I look forward to repaying that debt soon. Thank you to my family, as always, your constant encouragement and support in everything I do is greatly appreciated. I am so glad that most of you had a chance to come visit me in Pasadena at some point throughout my time here. I am very much looking forward to moving closer to home, even if it does mean the return of a real winter. I would like to thank all of my collaborators and scientific mentors. Notably, Christian Ott and Luc Dessart who have help contribute to the work presented in this thesis; but also those whom I have worked/collaborated with throughout my graduate career, in particular, Ernazar Abdikamalov, Basudeb Dasgupta, Gang Shen, and Chuck Horowitz, but of course many others. During my first year at UPEI, Derek Lawther converted me from Engineering to Physics with his timely letter en- couraging me to pursue physics. Later on, Michelle Cottreau, Heather Hughes, and Sean Dougherty slowly converted me to astrophysics, and finally Achim Schwenk brought me away from the dark side and into the realm of theoretical astrophysics. Many of my research techniques, principles, and talents stem from my undergraduate honours advisor Sheldon Opps, for which I will be forever grateful. A special thanks to James Polson, and a later nudge by Achim Schwenk, for suggesting that I reach for the top when searching for graduate schools. iv To my fellow Tapir graduate students, particularly my awesome officemate Jeff Kaplan; the Tapir postdocs; and the Tapir faculty and staff: thanks for all the interesting discussions, Thursday enlightenment sessions, helpful advice, and support. I would also like to thank all of the friends I have made at Caltech over the last five years. TNDs are on my list as one of the best memories of Caltech|I will miss them and you. v Abstract Core-Collapse Supernovae are one of the most complex astrophysical systems in the universe. They deeply entwine aspects of physics and astrophysics that are rarely side by side in nature. To accu- rately model core-collapse supernovae one must self-consistently combine general relativity, nuclear physics, neutrino physics, and magneto-hydrodynamics in a symmetry-free computational environ- ment. This is a challenging task, as each one of these aspects on its own is an area of great study. We take an open approach in an effort to encourage collaboration in the core-collapse supernovae community. In this thesis, we develop a new open-source general-relativistic spherically-symmetric Eulerian hydrodynamics code for studying stellar collapse, protoneutron star formation, and evolution until black hole formation. GR1D includes support for finite temperature equations of state and an efficient and qualitatively accurate treatment of neutrino leakage. GR1D implements spherically-symmetric rotation, allowing for the study of slowly rotating stellar collapse. GR1D is available at http://www. stellarcollapse.org We use GR1D to perform an extensive study of black hole formation in failing core-collapse super- novae. Over 100 presupernova models from various sources are used in over 700 total simulations. We systematically explore the dependence of black hole formation on the input physics: initial zero- age main sequence (ZAMS) mass and metallicity, nuclear equation of state, rotation, and stellar mass loss rates. Assuming the core-collapse supernova mechanism fails and a black hole forms, we find that the outcome, for a given equation of state, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing the protoneutron star structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer protoneutron star core is responsible for raising the maximum protoneutron star mass by up to 25% above the cold neutron star value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions. This establishes, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also use GR1D to study proposed progenitors of long-duration γ-ray bursts. We find that many vi of the proposed progenitors have core structures similar to garden-variety core-collapse supernovae. These are not expected to form black holes, a key ingredient of the collapsar model of long-duration γ-ray bursts. The small fraction of proposed progenitors that are compact enough to form black holes have fast rotating iron cores, making them prone to a magneto-rotational explosion and the formation of a protomagnetar rather than a black hole. Finally, we present preliminary work on a fully general-relativistic neutrino transport code and neutrino-interaction library. Following along with the trends explored in our black hole formation study, we look at the dependence of the neutrino observables on the bounce compactness. We find clear relationships that will allow us to extract details of the core structure from the next galactic supernova. Following the open approach of GR1D, the neutrino transport code will be made open- source upon completion. The open-source neutrino-interaction library, NuLib, is already available at http://www.nulib.org. vii Contents Acknowledgements iii Abstract v Table of Contents x List of Figures xii List of Tables xiii 1 Overview 1 1.1 Main Results of this Thesis................................1 1.1.1 GR1D and Other Open-Source Codes.......................1 1.1.2 Black Holes in Stellar Collapse..........................2 1.2 Related Work Not Contained in this Thesis.......................3 1.3 Thesis Structure......................................4 2 Introduction 6 2.1 Observations of Core-Collapse Supernovae........................6 2.2 Core-Collapse Theory...................................8 2.3 The Quest for the Explosion Mechanism.........................9 2.3.1 The Neutrino-Driven Explosion Mechanism................... 10 2.3.2 The Magneto-Rotational Explosion Mechanism................. 11 2.3.3 Other Explosion Mechanisms........................... 12 2.3.4 Missing Physics................................... 12 2.3.5 Failed Supernovae................................. 13 2.4 Signatures of the Supernova Central Engine....................... 14 2.4.1 Neutrino Signatures................................ 14 2.4.2 Gravitational Wave Signatures.......................... 15 2.4.3 Indirect Probes of the Central Engine...................... 16 viii 3 General Relativistic Hydrodynamics & Core-Collapse Supernova Microphysics 17 3.1 Introduction......................................... 17 3.2 Spacetime Equations.................................... 19 3.3 GR Hydrodynamics in 1D Radial-Gauge, Polar Slicing................. 20 3.4 Extension to 1.5D: Including Rotation.......................... 22 3.5 Equations of State (EOS)................................. 24 3.5.1 Hybrid EOS..................................... 24 3.5.2 Lattimer-Swesty EOS............................... 25 3.5.3 Table-Based EOS.................................. 27 3.5.4 Neutron Star Mass vs. Radius Relation Constraints.............. 28 3.6 Neutrino Leakage and Heating.............................. 29 3.6.1 Deleptonization and Electron Capture in the Collapse Phase......... 29 3.6.2 Postbounce Deleptonization and Neutrino Heating/Cooling.......... 30 3.6.2.1 Neutrino Heating............................. 33 3.6.3 Neutrino Pressure................................. 34 3.7 Code Tests......................................... 36 3.7.1 Relativistic Shocktube............................... 36 3.7.2 Sedov Blast Wave................................. 37 3.7.3 Oppenheimer-Snyder Collapse........................... 38 3.7.4 Hybrid Core Collapse: Convergence....................... 39 3.8 Summary.......................................... 40 4 Black Hole Formation in Failing Core-Collapse Supernovae 42 4.1 Nonrotating Black Hole Formation...........................
Recommended publications
  • R-Process Elements from Magnetorotational Hypernovae
    r-Process elements from magnetorotational hypernovae D. Yong1,2*, C. Kobayashi3,2, G. S. Da Costa1,2, M. S. Bessell1, A. Chiti4, A. Frebel4, K. Lind5, A. D. Mackey1,2, T. Nordlander1,2, M. Asplund6, A. R. Casey7,2, A. F. Marino8, S. J. Murphy9,1 & B. P. Schmidt1 1Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 3Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK 4Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 6Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany 7School of Physics and Astronomy, Monash University, VIC 3800, Australia 8Istituto NaZionale di Astrofisica - Osservatorio Astronomico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze, Italy 9School of Science, The University of New South Wales, Canberra, ACT 2600, Australia Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis1–3. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extremely metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis4–6. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars7–13.
    [Show full text]
  • Arxiv:0905.1355V2 [Gr-Qc] 4 Sep 2009 Edrt 1 O Ealdrve) Nti Otx,Re- Context, Been Has As This Collapse in Denoted Gravitational of Review)
    Can accretion disk properties distinguish gravastars from black holes? Tiberiu Harko∗ Department of Physics and Center for Theoretical and Computational Physics, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Zolt´an Kov´acs† Max-Planck-Institute f¨ur Radioastronomie, Auf dem H¨ugel 69, 53121 Bonn, Germany and Department of Experimental Physics, University of Szeged, D´om T´er 9, Szeged 6720, Hungary Francisco S. N. Lobo‡ Centro de F´ısica Te´orica e Computacional, Faculdade de Ciˆencias da Universidade de Lisboa, Avenida Professor Gama Pinto 2, P-1649-003 Lisboa, Portugal (Dated: September 4, 2009) Gravastars, hypothetic astrophysical objects, consisting of a dark energy condensate surrounded by a strongly correlated thin shell of anisotropic matter, have been proposed as an alternative to the standard black hole picture of general relativity. Observationally distinguishing between astrophysical black holes and gravastars is a major challenge for this latter theoretical model. This due to the fact that in static gravastars large stability regions (of the transition layer of these configurations) exist that are sufficiently close to the expected position of the event horizon, so that it would be difficult to distinguish the exterior geometry of gravastars from an astrophysical black hole. However, in the context of stationary and axially symmetrical geometries, a possibility of distinguishing gravastars from black holes is through the comparative study of thin accretion disks around rotating gravastars and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around slowly rotating gravastars, with all the metric tensor components estimated up to the second order in the angular velocity.
    [Show full text]
  • Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole
    Stellar Dynamics and Stellar Phenomena Near A Massive Black Hole Tal Alexander Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel 76100; email: [email protected] | Author's original version. To appear in Annual Review of Astronomy and Astrophysics. See final published version in ARA&A website: www.annualreviews.org/doi/10.1146/annurev-astro-091916-055306 Annu. Rev. Astron. Astrophys. 2017. Keywords 55:1{41 massive black holes, stellar kinematics, stellar dynamics, Galactic This article's doi: Center 10.1146/((please add article doi)) Copyright c 2017 by Annual Reviews. Abstract All rights reserved Most galactic nuclei harbor a massive black hole (MBH), whose birth and evolution are closely linked to those of its host galaxy. The unique conditions near the MBH: high velocity and density in the steep po- tential of a massive singular relativistic object, lead to unusual modes of stellar birth, evolution, dynamics and death. A complex network of dynamical mechanisms, operating on multiple timescales, deflect stars arXiv:1701.04762v1 [astro-ph.GA] 17 Jan 2017 to orbits that intercept the MBH. Such close encounters lead to ener- getic interactions with observable signatures and consequences for the evolution of the MBH and its stellar environment. Galactic nuclei are astrophysical laboratories that test and challenge our understanding of MBH formation, strong gravity, stellar dynamics, and stellar physics. I review from a theoretical perspective the wide range of stellar phe- nomena that occur near MBHs, focusing on the role of stellar dynamics near an isolated MBH in a relaxed stellar cusp.
    [Show full text]
  • The Formation of Brown Dwarfs 459
    Whitworth et al.: The Formation of Brown Dwarfs 459 The Formation of Brown Dwarfs: Theory Anthony Whitworth Cardiff University Matthew R. Bate University of Exeter Åke Nordlund University of Copenhagen Bo Reipurth University of Hawaii Hans Zinnecker Astrophysikalisches Institut, Potsdam We review five mechanisms for forming brown dwarfs: (1) turbulent fragmentation of molec- ular clouds, producing very-low-mass prestellar cores by shock compression; (2) collapse and fragmentation of more massive prestellar cores; (3) disk fragmentation; (4) premature ejection of protostellar embryos from their natal cores; and (5) photoerosion of pre-existing cores over- run by HII regions. These mechanisms are not mutually exclusive. Their relative importance probably depends on environment, and should be judged by their ability to reproduce the brown dwarf IMF, the distribution and kinematics of newly formed brown dwarfs, the binary statis- tics of brown dwarfs, the ability of brown dwarfs to retain disks, and hence their ability to sustain accretion and outflows. This will require more sophisticated numerical modeling than is presently possible, in particular more realistic initial conditions and more realistic treatments of radiation transport, angular momentum transport, and magnetic fields. We discuss the mini- mum mass for brown dwarfs, and how brown dwarfs should be distinguished from planets. 1. INTRODUCTION form a smooth continuum with those of low-mass H-burn- ing stars. Understanding how brown dwarfs form is there- The existence of brown dwarfs was first proposed on the- fore the key to understanding what determines the minimum oretical grounds by Kumar (1963) and Hayashi and Nakano mass for star formation. In section 3 we review the basic (1963).
    [Show full text]
  • PSR J1740-3052: a Pulsar with a Massive Companion
    Haverford College Haverford Scholarship Faculty Publications Physics 2001 PSR J1740-3052: a Pulsar with a Massive Companion I. H. Stairs R. N. Manchester A. G. Lyne V. M. Kaspi Fronefield Crawford Haverford College, [email protected] Follow this and additional works at: https://scholarship.haverford.edu/physics_facpubs Repository Citation "PSR J1740-3052: a Pulsar with a Massive Companion" I. H. Stairs, R. N. Manchester, A. G. Lyne, V. M. Kaspi, F. Camilo, J. F. Bell, N. D'Amico, M. Kramer, F. Crawford, D. J. Morris, A. Possenti, N. P. F. McKay, S. L. Lumsden, L. E. Tacconi-Garman, R. D. Cannon, N. C. Hambly, & P. R. Wood, Monthly Notices of the Royal Astronomical Society, 325, 979 (2001). This Journal Article is brought to you for free and open access by the Physics at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. Mon. Not. R. Astron. Soc. 325, 979–988 (2001) PSR J174023052: a pulsar with a massive companion I. H. Stairs,1,2P R. N. Manchester,3 A. G. Lyne,1 V. M. Kaspi,4† F. Camilo,5 J. F. Bell,3 N. D’Amico,6,7 M. Kramer,1 F. Crawford,8‡ D. J. Morris,1 A. Possenti,6 N. P. F. McKay,1 S. L. Lumsden,9 L. E. Tacconi-Garman,10 R. D. Cannon,11 N. C. Hambly12 and P. R. Wood13 1University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire SK11 9DL 2National Radio Astronomy Observatory, PO Box 2, Green Bank, WV 24944, USA 3Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia 4Physics Department, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada 5Columbia Astrophysics Laboratory, Columbia University, 550 W.
    [Show full text]
  • Supernova Neutrinos in the Proto-Neutron Star Cooling Phase and Nuclear Matter
    TAUP 2019 IOP Publishing Journal of Physics: Conference Series 1468 (2020) 012089 doi:10.1088/1742-6596/1468/1/012089 Supernova neutrinos in the proto-neutron star cooling phase and nuclear matter Ken’ichiro Nakazato1 and Hideyuki Suzuki2 1 Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan 2 Faculty of Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan E-mail: [email protected] Abstract. A proto-neutron star (PNS) is a newly formed compact object in a core collapse supernova. Using a series of phenomenological equations of state (EOS), we have systematically investigated the neutrino emission from the cooling phase of a PNS. The numerical code utilized in this study follows a quasi-static evolution of a PNS solving the general-relativistic stellar structure with neutrino diffusion. As a result, the cooling timescale evaluated from the neutrino light curve is found to be long for the EOS models with small neutron star radius and large effective mass of nucleons. It implies that extracting properties of a PNS (such as mass and radius) and the nuclear EOS is possible by a future supernova neutrino observation. 1. Introduction Core collapse supernovae, which are the spectacular death of massive stars, emit an enormous amount of neutrinos. In the case of SN1987A, a few tens of events were actually detected [1, 2, 3] and contributed to confirm the standard scenario for supernova neutrino emission. Although the neutron star formed in SN1987A has not yet been observed, its mass estimations had been attempted by using the neutrino event number [4, 5].
    [Show full text]
  • The Formation and Early Evolution of Very Low-Mass Stars and Brown Dwarfs Held at ESO Headquarters, Garching, Germany, 11–14 October 2011
    Astronomical News and spectroscopic surveys identifying the at the ELTs, together with encouraging emphasised the power of emerging coun- first galaxies, rare quasars, supernovae some explicitly high-risk projects. It was tries and public outreach for investments and gamma-ray bursts. noted that is very important to retain a in astronomical research and that diver- broad range of facilities, including sity in facilities and astronomical capabili- A lively discussion arose on data policy 4-metre- and 8-metre-class telescopes, ties should be retained together with and data mining for surveys and ELTs. to be used as survey facilities, to pro- large-scale projects. Ellis reminded us Most participants agreed that proprietary mote small projects, and to train young that we cannot plan the future in detail time should be at the minimum level but astronomers. All the long-term flagship and so optimism, versatility and creativity sufficient to guarantee intellectual owner- projects should try to involve more stu- remain the key attributes for success. ship and a satisfactory progress of the dents and young researchers, allowing surveys and the ELTs. Others proposed them to attend science working com- All the presentations and the conference to have the data public from the begin- mittees, and communicating the outcome picture are available at the conference ning. In order to facilitate data mining, it of the major high-level decisional meet- website: http://www.eso.org/sci/meetings/ was proposed that all data provided by ings to them. Furthermore, it was pro- 2011/feedgiant. the surveys and the ELTs should be Vir- posed that at least one young astrono- tual Observatory compliant from the out- mer should be included in each of the set.
    [Show full text]
  • AST301 the Lives of the Stars
    AST301 The Lives of the Stars A Tale of Two Forces: Pressure vs Gravity I. The Sun as a Star What we know about the Sun •Angular Diameter: q = 32 arcmin (from observations) •Solar Constant: f = 1.4 x 106 erg/sec/cm2 (from observations) •Distance: d = 1.5 x 108 km (1 AU). (from Kepler's Third Law and the trigonometric parallax of Venus) •Luminosity: L = 4 x 1033 erg/s. (from the inverse-square law: L = 4p d2 f) •Radius: R = 7 x 105 km. (from geometry: R = p d) •Mass: M = 2 x 1033 gm. (from Newton's version of Kepler's Third Law, M = (4p2/G) d3/P2) •Temperature: T = 5800 K. (from the black body law: L = 4pR2 σ T4) •Composition: about 74% Hydrogen, 24% Helium, and 2% everything else (by mass). (from spectroscopy) What Makes the Sun Shine? Inside the Sun Far Side Gary Larson Possible Sources of Sunlight • Chemical combustion – A Sun made of C+O: 4000 years • Gravitational Contraction – Convert gravitational potential energy – T = U/L = GM82R8/L8 ~ 107 years • Accretion – Limitless, but M8 increases 3% / 106 years • Nuclear Fusion – Good for ~1010 years How Fusion Works E=mc2 • 4 H ⇒ He4 + energy • The mass of 4 H atoms exceeds the mass of a He atom by 0.7%. • Every second, the Sun converts 6x108 tons of H into 5.96x108 tons of He. • The Sun loses 4x106 tons of mass every second. • At this rate, the Sun can maintain its present luminosity for about 1011 years. • 1010 or 1011 years ??? Nuclear Fusion Proton-Proton (PP I) reaction Releases 26.7 MeV 10 < Tcore < 14 MK How Fusion Works Source: Wikipedia Beyond PP I PP II: dominates for 14 < Tcore < 23 MK • 3He + 4He ⇒ 7Be + g 7 - 7 • Be + e ⇒ Li + ne + g • 7Li +p+ ⇒ 24He + g • 16% of L8 PP III: dominates for Tcore > 23 MK • 3He + 4He ⇒ 7Be + g • 7Be + p+ ⇒ 8B + g 8 8 + • B ⇒ Be + e + ne • 8Be ⇒ 24He • 0.02% of L8 Nuclear Timescale • 1010 years • Sun has brightened by 30% in 4.5 Gyr • Photons take 105 – 106 yrs to diffuse out – Gamma-rays thermalize to optical photons How do we know? • The p-p reaction also produces neutrinos.
    [Show full text]
  • Arxiv:1901.01410V3 [Astro-Ph.HE] 1 Feb 2021 Mental Information Is Available, and One Has to Rely Strongly on Theoretical Predictions for Nuclear Properties
    Origin of the heaviest elements: The rapid neutron-capture process John J. Cowan∗ HLD Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA Christopher Snedeny Department of Astronomy, University of Texas, 2515 Speedway, Austin, TX 78712-1205, USA James E. Lawlerz Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA Ani Aprahamianx and Michael Wiescher{ Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Karlheinz Langanke∗∗ GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany Gabriel Mart´ınez-Pinedoyy GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany; and Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Friedrich-Karl Thielemannzz Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland and GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Dated: February 2, 2021) The production of about half of the heavy elements found in nature is assigned to a spe- cific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understand- ing faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experi- arXiv:1901.01410v3 [astro-ph.HE] 1 Feb 2021 mental information is available, and one has to rely strongly on theoretical predictions for nuclear properties.
    [Show full text]
  • Light Rays, Singularities, and All That
    Light Rays, Singularities, and All That Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article is an introduction to causal properties of General Relativity. Topics include the Raychaudhuri equation, singularity theorems of Penrose and Hawking, the black hole area theorem, topological censorship, and the Gao-Wald theorem. The article is based on lectures at the 2018 summer program Prospects in Theoretical Physics at the Institute for Advanced Study, and also at the 2020 New Zealand Mathematical Research Institute summer school in Nelson, New Zealand. Contents 1 Introduction 3 2 Causal Paths 4 3 Globally Hyperbolic Spacetimes 11 3.1 Definition . 11 3.2 Some Properties of Globally Hyperbolic Spacetimes . 15 3.3 More On Compactness . 18 3.4 Cauchy Horizons . 21 3.5 Causality Conditions . 23 3.6 Maximal Extensions . 24 4 Geodesics and Focal Points 25 4.1 The Riemannian Case . 25 4.2 Lorentz Signature Analog . 28 4.3 Raychaudhuri’s Equation . 31 4.4 Hawking’s Big Bang Singularity Theorem . 35 5 Null Geodesics and Penrose’s Theorem 37 5.1 Promptness . 37 5.2 Promptness And Focal Points . 40 5.3 More On The Boundary Of The Future . 46 1 5.4 The Null Raychaudhuri Equation . 47 5.5 Trapped Surfaces . 52 5.6 Penrose’s Theorem . 54 6 Black Holes 58 6.1 Cosmic Censorship . 58 6.2 The Black Hole Region . 60 6.3 The Horizon And Its Generators . 63 7 Some Additional Topics 66 7.1 Topological Censorship . 67 7.2 The Averaged Null Energy Condition .
    [Show full text]
  • Arxiv:2008.04340V2 [Astro-Ph.HE] 7 Dec 2020
    SLAC-PUB-17548 Exciting Prospects for Detecting Late-Time Neutrinos from Core-Collapse Supernovae Shirley Weishi Li,1, 2, 3, ∗ Luke F. Roberts,4, y and John F. Beacom1, 2, 5, z 1Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, OH 43210 2Department of Physics, Ohio State University, Columbus, OH 43210 3SLAC National Accelerator Laboratory, Menlo Park, CA, 94025 4National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 5Department of Astronomy, Ohio State University, Columbus, OH 43210 (Dated: December 7, 2020) The importance of detecting neutrinos from a Milky Way core-collapse supernova is well known. An under-studied phase is proto-neutron star cooling. For SN 1987A, this seemingly began at about 2 s, and is thus probed by only 6 of the 19 events (and only theν ¯e flavor) in the Kamiokande-II and IMB detectors. With the higher statistics expected for present and near-future detectors, it should be possible to measure detailed neutrino signals out to very late times. We present the first comprehensive study of neutrino detection during the proto-neutron star cooling phase, considering a variety of outcomes, using all flavors, and employing detailed detector physics. For our nominal model, the event yields (at 10 kpc) after 10 s|the approximate duration of the SN 1987A signal| far exceed the entire SN 1987A yield, with '250ν ¯e events (to 50 s) in Super-Kamiokande, '110 νe events (to 40 s) in DUNE, and '10 νµ; ντ ; ν¯µ; ν¯τ events (to 20 s) in JUNO.
    [Show full text]
  • Neutrinos from Core-Collapse Supernovae and Binary Neutron Star Mergers
    Neutrinos from core-collapse supernovae and binary neutron star mergers Maria Cristina Volpe Astroparticules et Cosmologie (APC), Paris, France Sun core-collapse Supernovae McLaughlin Perego et al, 2014 accretion disks around black holes or neutron star mergers remnants Solar neutrino observations Vacuum averaged oscillations pep MSW solution 7Be 8B ν Survival Probability e Borexino, Nature 512 (2014) ν Neutrino Energy (MeV) Vacuum-averaged oscillations versus MSW suppression of high energy 8B neutrinos. Energy production of low mass main sequence stars confirmed — pp reaction chain. Future measurement of CNO neutrinos - main energy production in massive main sequence stars. The Mikheev-Smirnov-Wolfenstein effect Neutrinos interact with matter and undergo resonant adiabatic flavor conversion. Wolfenstein PRD (1978) Mikheev, Smirnov(1985) hmat = p2GF ⇢e mean-field approximation matter basis flavour basis ~ ν2 =νe ν , ν ν ν ~ ν2 µ τ e 2 ~ ν 1 =νµ ν~ 1 Effective mass Effective vacuum ν1 MSW resonance DENSITY 2 ∆m˜ /4E i✓˙M h⌫ = − − neutrino hamiltonian in the matter basis i✓˙ ∆m˜ 2/4E ✓ M ◆ ✓˙M Resonance condition : Adiabaticity : γ = | 2 | << 1 h h 0 ∆m˜ /4E ⌫,11 − ⌫,22 ⇡ Also in supernovae, in accretion disks around compact objects, in the Earth and in the Early Universe (BBN epoch) Heavy elements nucleosynthesis Two main mechanisms at the origin of elements heavier than iron : s-process (s-slow) and r-process (r-rapid). Double peak structures at the first A=90, the second A=130 and third A=190 peaks due to both the s-process and the r-process. The r-process sites : a longstanding question The r-process : neutron-capture is fast compared to half-lives of neutron-rich unstable nuclei.
    [Show full text]