The Design and Construction of High-Resolution Spectrometers for Exoplanet Discovery and Characterisation

Total Page:16

File Type:pdf, Size:1020Kb

The Design and Construction of High-Resolution Spectrometers for Exoplanet Discovery and Characterisation Astronomy Unit School of Physics and Astronomy Queen Mary, University of London The Design and Construction of High-Resolution Spectrometers for Exoplanet Discovery and Characterisation Clark Baker Supervised by Guillem Anglada-Escud´eand Richard Nelson Submitted in partial fulfillment of the requirements of the Degree of Doctor of Philosophy 1 Declaration I, Clark Baker, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below and my contribution indicated. Previously published material is also acknowledged below. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party's copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Details of collaboration and publications: All of the work outlined in this thesis has been completed in collaboration with my supervisor Dr. Guillem Anglada-Escud´e. Sections of the work contributing to this thesis have been completed in collaboration with the following people: Prof. Hugh Jones, Prof. Bill Martin, Dr. Enric Pall´e,Dr. Roberto L´opez L´opez and Dr. Jos´eLuis Rasilla. The research undertaken in this project has been made possible by contributions from The Science and Technology Facilities Council (STFC), in supporting my studentship, and The Perren Fund, in enabling the procurement of instrument hardware. All figures in this thesis have been produced by the author, unless otherwise stated. Work contributing to this thesis has been published in the following publication: Clark Baker, Guillem Anglada-Escud´e,Hugh Jones, and William Martin \Highly 2 replicable, low-cost, portable, general-purpose, high-resolution spectrometer with applications in stellar studies and exoplanet science", Proc. SPIE 11117, Tech- niques and Instrumentation for Detection of Exoplanets IX, 111171M (9 September 2019); https://doi.org/10.1117/12.2529290 Signature: Clark Baker Date: 26/07/2020 3 Abstract In this thesis, we discuss the design and construction of high-resolution spectrome- ters for exoplanet discovery and characterisation across the entire scope of project budgetary regimes. As with all aspects of astronomy, light and more specifically elec- tromagnetic waves are our greatest key to unlocking the secrets of exoplanetary sys- tems. The radial velocity method, in which analysis of the Doppler shift of star light can infer the existence and minimum mass of an exoplanetary system, relies wholly on the application of high-resolution, stable spectrometer systems. Alongside this, powerful spectroscopic techniques such as: transit and cross-correlation spectroscopy (used to probe the atmospheric characteristics of planets), the Rossiter{McLaughlin effect (which can infer spin-orbit characteristics of the planetary system) and re- flected light analysis of a planet (that allow us to discover orbital characteristics and true mass of a planet) require field leading spectrometer design. These investigative techniques alone more than warrant the existence of large, high-cost, ultra-stable, high-resolution spectrograph systems, such as HARPS, PFS, ESPRESSO e.t.c. However, with ever changing science goals, there is scope for a new kind of instrument. With growing discussion amongst the exoplanet community on the application of combined high contrast imaging and high dispersion spectroscopy in exoplanet science, there is a need for replicable, low-cost, stable, high-resolution spectrometer systems for integral field applications; which can be efficiently coupled to high contrast imagers. This thesis presents the design and construction of such an instrument, with a proof of concept prototype spectrometer produced which is compact (comparable in size to a 3U CubeSat chassis), low-cost (<£10; 000), highly-replicable (utilising mostly commercially-off-the-shelf components), stable (demonstrated RV precision of approximately 20m/s) and high-resolution (resolving power > 60; 000). Sub-systems for this instrument, a fibre coupling system and a data-reduction pipeline, are designed and constructed with the complete instrument successfully tested on-sky at the QMUL Astronomy Unit Observatory. The design aspects of this system are further employed in the design study of a large-scale, high-budget, ultra-stable, red-NIR, high-resolution spectrometer con- cept: NEREA (Near Earths and high-Res Exoplanet Atmospheres). If funded, this instrument is to be efficiently coupled to The Gran Telescopio Canarias (GTC). The combination of the 10m aperture of the GTC and the high-resolution, stable spec- 4 troscopy of NEREA will open up opportunities to investigate exoplanetary systems which are currently unobtainable with contemporary instrumentation. Finally, all of the experience gained through the completion of these projects is channelled into the construction of a `Spectrometer Design Toolkit' software which aids in the rapid design of spectrograph concepts. This system is tested in the re-design of the collimating/re-focussing lens for EXOhSPEC (EXOplanet high res- olution SPECtrograph), a compact, high-resolution spectrograph in development at the University of Hertfordshire for the Thai National Observatory (TNO). 5 Acknowledgements Firstly, I would like to thank my supervisor, Guillem Anglada-Escud´e.His support, patience and tutelage throughout these four years has been invaluable. The lessons he has taught me and opportunities he has provided will stay with me throughout the rest of my career. I would like to give special thanks to Richard Nelson for his continued support of me and this project throughout. His efforts and encouragement have enabled us to achieve the results that are outlined in this thesis. Without his support, I am certain that this would not have been possible; I am very grateful. I want to give a huge thanks to John Strachan for all of the time he freely and openly gave to aid me throughout the years. The concepts he helped me to under- stand, his guidance in navigating the life of a PhD student and the time he spent helping me prepare for post-doc interviews has helped me immensely; thank you. Thank you to my collaborators at The University of Hertfordshire, Hugh Jones and Bill Martin, for their support, openness, teachings and shared resources; their contributions have been crucial to allow this project to take place. I hope that my contributions to future collaborations can begin to show my gratitude for this. I would also like to thank Piyamas Choochalerm and Ronny Errmann for their assistance over the years in remotely accessing the resources that I needed. I would also like to give many thanks to my collaborators at the IAC, Enric Pall´e, Roberto L´opez L´opez and Jos´eLuis Rasilla. Their great collaboration, teachings and discussion helped me to make substantial breakthroughs in my understanding of this topic and re-ignited my passion for this work. I want to give a special thanks to Enric Pall´efor his continued advice, infectious enthusiasm and for writing me a very positive reference. Thank you to Steve Thomas for his keenness and enthusiasm for my project throughout and his assistance in observatory matters. When I was interviewed for this PhD position I was asked something to the effect of: \Are you sure you want to do this instrumentation project here, we are primarily a theory group" to which my answer was a resounding \Yes". I want to thank all of the Astronomy Unit staff that made this very out-of-the-ordinary PhD project possible and furthermore for fostering such a positive work environment. I have never known another group where everyone is as caring, friendly and open as the Astronomy Unit. I would also like to take this opportunity to thank my examiners, Dr. Edward Gillen and Prof. John Girkin, for all of their efforts in assessing this thesis, their very helpful comments and suggestions, and for fostering a thoroughly enjoyable viva experience. I would now like to thank those that kept me sane over the years. Firstly my 6 fellow PhD students, I would like to thank all of those who were my companions throughout this process - both those who have long since submitted and those that are still studying. You have been amazing, I couldn't imagine a better bunch of people! I will now give some special mentions: • Those that are collectively referred to as the \North Wing": Domenico Trotta, John Ronayne, Paul Hallam, Francesco Lovascio, John Strachan, Callum Boocock, Jesse Coburn, Sandy Zeng, Ali Barlas and George Turpin - with honorary men- tions to Sanson Poon, Frini Taifakou and Rebeca Carrillo. • My fellow 502 office mates: Charalambos `Charlie' Pittordis, Pedro Carrilho, Shailee Imrith, Louis Coates, Eline de Weerd, Viraj Sanghai, Jessie Durk, Sophia Goldberg, Ahdab Althukair and Usman Gilani. • My finishing-up-office mates: Jack Skinner, Jorge Fuentes, Kit Gallagher, Joanna Borowiec and Paul Miyagawa. • The rest of the gang: Alice Giroul, Fraser Kennedy, George Montagnon, Paula Soares, Pedro Fernandes, Kevin Chan. • The post-docs: Maritza Soto, Colin McNally, Gavin Coleman, Luca Franci and Julian Adamek. Thank you all for making this the place that it is! I would also like to take this opportunity to thank some of my closest friends: • \Teem Azeem": Peter Shatwell, James Fernandes, Akash Jyoti, Rhea Mole, Serena Yuen, Emma Davies, Christian Storm, Aalisha Rahim and Liam Smith. • My friends in Tenerife: Nushkia Chamba, Ef¸sanS¨okmenand James Angthopo. I want to give my thanks to my A-level Physics teacher, Ian Roche, for igniting my passion for Physics and for all of the time after lessons he spent answering my endless questions.
Recommended publications
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • August 2017 BRAS Newsletter
    August 2017 Issue Next Meeting: Monday, August 14th at 7PM at HRPO nd (2 Mondays, Highland Road Park Observatory) Presenters: Chris Desselles, Merrill Hess, and Ben Toman will share tips, tricks and insights regarding the upcoming Solar Eclipse. What's In This Issue? President’s Message Secretary's Summary Outreach Report - FAE Light Pollution Committee Report Recent Forum Entries 20/20 Vision Campaign Messages from the HRPO Perseid Meteor Shower Partial Solar Eclipse Observing Notes – Lyra, the Lyre & Mythology Like this newsletter? See past issues back to 2009 at http://brastro.org/newsletters.html Newsletter of the Baton Rouge Astronomical Society August 2017 President’s Message August, 21, 2017. Total eclipse of the Sun. What more can I say. If you have not made plans for a road trip, you can help out at HRPO. All who are going on a road trip be prepared to share pictures and experiences at the September meeting. BRAS has lost another member, Bart Bennett, who joined BRAS after Chris Desselles gave a talk on Astrophotography to the Cajun Clickers Computer Club (CCCC) in January of 2016, Bart became the President of CCCC at the same time I became president of BRAS. The Clickers are shocked at his sudden death via heart attack. Both organizations will miss Bart. His obituary is posted online here: http://www.rabenhorst.com/obituary/sidney-barton-bart-bennett/ Last month’s meeting, at LIGO, was a success, even though there was not much solar viewing for the public due to clouds and rain for most of the afternoon. BRAS had a table inside the museum building, where Ben and Craig used material from the Night Sky Network for the public outreach.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Stellar Population Synthesis Models Between 2.5 and 5Μm Based on The
    MNRAS 449, 2853–2874 (2015) doi:10.1093/mnras/stv503 Stellar population synthesis models between 2.5 and 5 µm based on the empirical IRTF stellar library B. Rock,¨ 1,2‹ A. Vazdekis,1,2‹ R. F. Peletier,3‹ J. H. Knapen1,2 and J. Falcon-Barroso´ 1,2 1Instituto de Astrof´ısica de Canarias, V´ıa Calle Lactea,´ E-38205 La Laguna, Tenerife, Spain 2Departamento de Astrof´ısica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain 3Kapteyn Astronomical Institute, University of Groningen, Postbus 800, NL-9700 AV Groningen, the Netherlands Downloaded from https://academic.oup.com/mnras/article/449/3/2853/2893016 by guest on 27 September 2021 Accepted 2015 March 5. Received 2014 December 21; in original form 2014 July 23 ABSTRACT We present the first single-burst stellar population models in the infrared wavelength range between 2.5 and 5 µm which are exclusively based on empirical stellar spectra. Our models take as input 180 spectra from the stellar IRTF (Infrared Telescope Facility) library. Our final single-burst stellar population models are calculated based on two different sets of isochrones and various types of initial mass functions of different slopes, ages larger than 1 Gyr and metallicities between [Fe/H] =−0.70 and 0.26. They are made available online to the scien- tific community on the MILES web page. We analyse the behaviour of the Spitzer [3.6]−[4.5] colour calculated from our single stellar population models and find only slight dependences on both metallicity and age. When comparing to the colours of observed early-type galaxies, we find a good agreement for older, more massive galaxies that resemble a single-burst popu- lation.
    [Show full text]
  • Target Selection for the SUNS and DEBRIS Surveys for Debris Discs in the Solar Neighbourhood
    Mon. Not. R. Astron. Soc. 000, 1–?? (2009) Printed 18 November 2009 (MN LATEX style file v2.2) Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood N. M. Phillips1, J. S. Greaves2, W. R. F. Dent3, B. C. Matthews4 W. S. Holland3, M. C. Wyatt5, B. Sibthorpe3 1Institute for Astronomy (IfA), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 2School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS 3UK Astronomy Technology Centre (UKATC), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 4Herzberg Institute of Astrophysics (HIA), National Research Council of Canada, Victoria, BC, Canada 5Institute of Astronomy (IoA), University of Cambridge, Madingley Road, Cambridge, CB3 0HA Accepted 2009 September 2. Received 2009 July 27; in original form 2009 March 31 ABSTRACT Debris discs – analogous to the Asteroid and Kuiper-Edgeworth belts in the Solar system – have so far mostly been identified and studied in thermal emission shortward of 100 µm. The Herschel space observatory and the SCUBA-2 camera on the James Clerk Maxwell Telescope will allow efficient photometric surveying at 70 to 850 µm, which allow for the detection of cooler discs not yet discovered, and the measurement of disc masses and temperatures when combined with shorter wavelength photometry. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey and the DEBRIS Herschel Open Time Key Project are complimentary legacy surveys observing samples of ∼500 nearby stellar systems. To maximise the legacy value of these surveys, great care has gone into the target selection process. This paper describes the target selection process and presents the target lists of these two surveys.
    [Show full text]
  • Correlations Between the Stellar, Planetary and Debris Components Of
    Astronomy & Astrophysics manuscript no. dunes˙debris˙exoplanets˙v18 c ESO 2018 September 3, 2018 Correlations between the stellar, planetary and debris components of exoplanet systems observed by Herschel Jonathan P. Marshall1,2,⋆, A. Moro-Mart´ın3,4, C. Eiroa1, G. Kennedy5, A. Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10, M.C. Wyatt5, B. Matthews11,12, J. Horner2,13,14, B. Montesinos10, G. Bryden15, C. del Burgo16, J.S. Greaves17, R.J. Ivison18,19, G. Meeus1, G. Olofsson20, G.L. Pilbratt21, and G.J. White22,23 (Affiliations can be found after the references) Received —; accepted — ABSTRACT Context. Stars form surrounded by gas and dust rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own Solar system, with its eight planets and two debris belts is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100 and 160 µm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the Solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Understanding the Impacts of Stellar Companions on Planet Formation and Evolution: a Survey of Stellar and Planetary Companions Within 25 Pc
    Draft version December 18, 2020 Typeset using LATEX twocolumn style in AASTeX62 Understanding the Impacts of Stellar Companions on Planet Formation and Evolution: A Survey of Stellar and Planetary Companions within 25 pc Lea A. Hirsch,1 Lee Rosenthal,2 Benjamin J. Fulton,3 Andrew W. Howard,2 David R. Ciardi,4 Geoffrey W. Marcy,5 Eric L. Nielsen,6, 1 Erik A. Petigura,7 Robert J. de Rosa,8, 1 Howard Isaacson,5 Lauren M. Weiss,9 Evan Sinukoff,9 and Bruce Macintosh1 1Kavli Center for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 2California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA 3NASA Exoplanet Science Institute, Caltech/IPAC-NExScI, 1200 East California Boulevard, Pasadena, CA 91125, USA 4NASA Exoplanet Science Institute, Caltech/IPAC, 1200 East California Boulevard, Pasadena, CA 91125, USA 5University of California Berkeley, 501 Campbell Hall, Berkeley, CA 94709, USA 6Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003, USA 7Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA 8European Southern Observatory, Alonso de C´ordova 3107, Vitacura, Santiago, Chile 9Institute for Astronomy, 2680 Woodlawn Dr., Honolulu, HI 96822, USA (Accepted December 7, 2020) Submitted to AJ ABSTRACT We explore the impact of outer stellar companions on the occurrence rate of giant planets detected with radial velocities. We searched for stellar and planetary companions to a volume-limited sample of solar-type stars within 25 pc. Using adaptive optics (AO) imaging observations from the Lick 3-m and Palomar 20000 Telescopes, we characterized the multiplicity of our sample stars, down to the bottom of the main sequence.
    [Show full text]
  • The Local Cygnus Cold Cloud and Further Constraints on a Local Hot Bubble
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2015 The local Cygnus cold cloud and further constraints on a local hot bubble. Geoffrey Robert Lentner University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Physics Commons Recommended Citation Lentner, Geoffrey Robert, "The local ygnC us cold cloud and further constraints on a local hot bubble." (2015). Electronic Theses and Dissertations. Paper 2213. https://doi.org/10.18297/etd/2213 This Master's Thesis is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. THE LOCAL CYGNUS COLD CLOUD AND FUTHER CONSTRAINTS ON A LOCAL HOT BUBBLE By Geoffrey Robert Lentner B.S., Purdue University, 2013 A Thesis Submitted to the Faculty of the College of Arts and Sciences of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Science in Physics Department of Physics and Astronomy University of Louisville Louisville, Kentucky August 2015 Copyright 2015 by Geoffrey Robert Lentner All rights reserved THE LOCAL CYGNUS COLD CLOUD AND FUTHER CONSTRAINTS ON A LOCAL HOT BUBBLE By Geoffrey Robert Lentner B.S., Purdue University, 2013 A Thesis Approved On July 20, 2015 by the following Thesis Committee: Thesis Director James Lauroesch Lutz Haberzettl John Kielkopf Ryan Gill ii DEDICATION This work is dedicated to my two beautiful boys, Henry and Charlie.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]