The Local Cygnus Cold Cloud and Further Constraints on a Local Hot Bubble
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INFORMATION CIRCULAR No. 185 (FEBRUARY 2015)
INTERNATIONAL ASTRONOMICAL UNION COMMISSION 26 (DOUBLE STARS) INFORMATION CIRCULAR No. 185 (FEBRUARY 2015) NEW ORBITS ADS Name P T e Ω(2000) 2015 Author(s) α2000δ n a i ! Last ob. 2016 32 STF 3056 AB 545y 2142.0 0.670 136◦4 141◦9 000709 ZIRM 00047+3416 0◦6606 000623 99◦4 119◦6 2009.8 141.9 0.708 147 BU 255 245. 2067.2 0.960 166.1 66.3 0.445 ZIRM 00118+2825 1.4694 0.661 116.0 265.4 2008.8 65.9 0.442 285 AC 1 525. 1820.1 0.600 107.5 288.7 1.839 ZIRM 00209+3259 0.6857 1.234 84.0 26.8 2012.1 288.8 1.841 363 A 431 AB 53.56 2003.58 0.644 25.5 329.5 0.172 SCARDIA 00271-0753 6.7214 0.364 109.0 293.0 2013.573 321.9 0.168 et al. (*) 1081 STF 113 A-BC 650. 1686.0 0.640 87.2 20.4 1.637 ZIRM 01198-0031 0.5538 1.324 43.5 106.7 2013.9 20.6 1.638 - MCA 7 3.800 2010.280 0.017 145.0 47.8 0.030 DOCOBO 02366+1227 94.737 0.077 112.7 3.7 2010.718 322.9 0.078 et al. (**) - FIN 333 83.73 1998.06 0.423 34.1 34.1 0.462 DOCOBO 02434-6643 4.300 0.509 90.0 269.2 2013.737 34.1 0.457 et al. (**) 2524 A 2909 11.345 2013.744 0.507 16.2 23.1 0.129 DOCOBO 03244-1539 31.732 0.172 71.3 283.0 2013.737 3 38.4 0.125 et al. -
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Exomoon Habitability Constrained by Illumination and Tidal Heating
submitted to Astrobiology: April 6, 2012 accepted by Astrobiology: September 8, 2012 published in Astrobiology: January 24, 2013 this updated draft: October 30, 2013 doi:10.1089/ast.2012.0859 Exomoon habitability constrained by illumination and tidal heating René HellerI , Rory BarnesII,III I Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany, [email protected] II Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, [email protected] III NASA Astrobiology Institute – Virtual Planetary Laboratory Lead Team, USA Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge”. We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. -
BRAS Newsletter August 2013
www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell -