Publications Ofthe Astronomical Society Ofthe Pacific 99:490-496, June 1987
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frontier: First Encounters 2 Contents
Frontier: First Encounters 2 Contents Credits v Preface vii Quick start ix 1 Tutorial 1 1.1 Your first view . 1 1.2 You and your ship (Inventory mode) . 2 1.3 The galaxy . 3 1.4 Where to go, and what to do there . 5 1.5 Getting out of here . 9 1.6 Arriving . 11 1.7 On landing . 14 2 The controls 17 2.1 Welcome to your Saker Mk III . 17 2.2 Ship instrumentation, and how to use it . 17 2.3 The View Panel (F1) . 19 2.4 The Inventory Panel (F2) . 22 2.5 The Map Panel (F3) . 25 2.6 The Communications Panel (F4) . 28 2.7 The Scanner . 30 2.8 Fuel Gauge and Temperature Gauges . 31 2.9 Warning Lights . 31 2.10 Dual Console . 32 2.11 Options . 35 3 Flying a spacecraft 37 3.1 Basic flight controls . 37 3.2 Fly-by-wire — an idiot’s guide . 38 3.3 Launching and docking procedures . 39 3.4 Flying between star-systems . 44 3.5 Flying within a system . 46 3.6 Intra-system flight without an autopilot . 49 3.7 Manual flight, and relative velocities . 51 3.8 Your pilot’s test — a revision guide . 55 3.9 Basic combat controls . 57 i ii CONTENTS 3.10 The combat drill . 59 3.11 Combat techniques . 63 3.12 Interception techniques . 68 3.13 Planetary combat . 70 3.14 Full manual flight control (Advanced) . 73 4 Careers 77 4.1 Bulletin Boards . 77 4.2 Deliveries . 79 4.2.1 Parcel courier . -
Simultaneous Multiwavelength Flare Observations of Ev Lacertae
Draft version August 19, 2021 Typeset using LATEX twocolumn style in AASTeX61 SIMULTANEOUS MULTIWAVELENGTH FLARE OBSERVATIONS OF EV LACERTAE Rishi R. Paudel,1, 2 Thomas Barclay,1, 3 Joshua E. Schlieder,3 Elisa V. Quintana,3 Emily A. Gilbert,4, 5, 6, 3 Laura D. Vega,7, 3, 2 Allison Youngblood,8 Michele Silverstein,3 Rachel A. Osten,9 Michael A. Tucker,10, ∗ Daniel Huber,10 Aaron Do,10 Kenji Hamaguchi,11, 1 D. J. Mullan,12 John E. Gizis,12 Teresa A. Monsue,3 Knicole D. Colon,´ 3 Patricia T. Boyd,3 James R. A. Davenport,13 and Lucianne Walkowicz6 1University of Maryland, Baltimore County, Baltimore, MD 21250, USA 2CRESST II and Exoplanets and Stellar Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA 3NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 4Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637, USA 5University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 6The Adler Planetarium, 1300 South Lakeshore Drive, Chicago, IL 60605, USA 7Department of Astronomy, University of Maryland, College Park, MD 20742, USA 8Laboratory for Atmospheric and Space Physics, 1234 Innovation Dr, Boulder, CO 80303, USA 9Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 10Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 11CRESST II and X-ray Astrophysics Laboratory NASA/GSFC, Greenbelt, MD, USA 12Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA 13Department of Astronomy, University of Washington, Seattle, WA 98195, USA ABSTRACT We present the first results of our ongoing project conducting simultaneous multiwavelength observations of flares on nearby active M dwarfs. -
HOW to CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, and RADIUS Andrew W
The Astrophysical Journal, 804:64 (38pp), 2015 May 1 doi:10.1088/0004-637X/804/1/64 © 2015. The American Astronomical Society. All rights reserved. HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS Andrew W. Mann1,2,8,9, Gregory A. Feiden3, Eric Gaidos4,5,10, Tabetha Boyajian6, and Kaspar von Braun7 1 University of Texas at Austin, USA; [email protected] 2 Institute for Astrophysical Research, Boston University, USA 3 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden 4 Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822, USA 5 Max Planck Institut für Astronomie, Heidelberg, Germany 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ, USA Received 2015 January 6; accepted 2015 February 26; published 2015 May 4 ABSTRACT Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars’ complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (Teff) and the Stefan–Boltzmann law to determine radii of 183 nearby K7–M7 single stars with a precision of 2%–5%. Our improved stellar parameters enable us to develop model-independent relations between Teff or absolute magnitude and radius, as well as between color and Teff. The derived Teff–radius relation depends strongly on [Fe/H],as predicted by theory. -
X-Ray Properties of Active M Dwarfs As Observed by XMM-Newton
A&A 435, 1073–1085 (2005) Astronomy DOI: 10.1051/0004-6361:20041941 & c ESO 2005 Astrophysics X-ray properties of active M dwarfs as observed by XMM-Newton J. Robrade and J. H. M. M. Schmitt Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany e-mail: [email protected] Received 2 September 2004 / Accepted 8 February 2005 Abstract. We present a comparative study of X-ray emission from a sample of active M dwarfs with spectral types M3.5–M4.5 using XMM-Newton observations of two single stars, AD Leonis and EV Lacertae, and two unresolved binary systems, AT Microscopii and EQ Pegasi. The light curves reveal frequent flaring during all four observations. We perform a uniform spectral analysis and determine plasma temperatures, abundances and emission measures in different states of activity. Applying multi-temperature models with variable abundances separately to data obtained with the EPIC and RGS detectors we are able to investigate the consistency of the results obtained by the different instruments onboard XMM-Newton. We find that the X-ray properties of the sample M dwarfs are very similar, with the coronal abundances of all sample stars following a trend of increasing abundance with increasing first ionization potential, the inverse FIP effect. The overall metallicities are below solar photospheric ones but appear consistent with the measured photospheric abundances of M dwarfs like these. A significant increase in the prominence of the hotter plasma components is observed during flares while the cool plasma component is only marginally affected by flaring, pointing to different coronal structures. -
Flares on Active M-Type Stars Observed with XMM-Newton and Chandra
Flares on active M-type stars observed with XMM-Newton and Chandra Urmila Mitra Kraev Mullard Space Science Laboratory Department of Space and Climate Physics University College London A thesis submitted to the University of London for the degree of Doctor of Philosophy I, Urmila Mitra Kraev, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abstract M-type red dwarfs are among the most active stars. Their light curves display random variability of rapid increase and gradual decrease in emission. It is believed that these large energy events, or flares, are the manifestation of the permanently reforming magnetic field of the stellar atmosphere. Stellar coronal flares are observed in the radio, optical, ultraviolet and X-rays. With the new generation of X-ray telescopes, XMM-Newton and Chandra , it has become possible to study these flares in much greater detail than ever before. This thesis focuses on three core issues about flares: (i) how their X-ray emission is correlated with the ultraviolet, (ii) using an oscillation to determine the loop length and the magnetic field strength of a particular flare, and (iii) investigating the change of density sensitive lines during flares using high-resolution X-ray spectra. (i) It is known that flare emission in different wavebands often correlate in time. However, here is the first time where data is presented which shows a correlation between emission from two different wavebands (soft X-rays and ultraviolet) over various sized flares and from five stars, which supports that the flare process is governed by common physical parameters scaling over a large range. -
Exoplanet Community Report
JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probeclass missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2 -
FLARES on the Dme FLARE STAR EV LACERTAE Rachel A
The Astrophysical Journal, 621:398–416, 2005 March 1 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. FROM RADIO TO X-RAY: FLARES ON THE dMe FLARE STAR EV LACERTAE Rachel A. Osten1, 2 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903; [email protected] Suzanne L. Hawley2 Astronomy Department, Box 351580, University of Washington, Seattle, WA 98195; [email protected] Joel C. Allred Physics Department, Box 351560, University of Washington, Seattle, WA 98195; [email protected] Christopher M. Johns-Krull2 Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005; [email protected] and Christine Roark3 Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA 52245 Received 2004 June 23; accepted 2004 November 5 ABSTRACT We present the results of a campaign to observe flares on the M dwarfflare star EV Lacertae over the course of two days in 2001 September, utilizing a combination of radio continuum, optical photometric and spectroscopic, ultraviolet spectroscopic, and X-ray spectroscopic observations to characterize the multiwavelength nature offlares from this active, single, late-type star. We find flares in every wavelength region in which we observed. A large radio flare from the star was observed at both 3.6 and 6 cm and is the most luminous example of a gyrosynchrotron flare yet observed on a dMe flare star. The radio flare can be explained as encompassing a large magnetic volume, comparable to the stellar disk, and involving trapped electrons that decay over timescales of hours. -
Transition from Eyeball to Snowball Driven by Sea-Ice Drift on Tidally Locked Terrestrial Planets
Transition from Eyeball to Snowball Driven by Sea-ice Drift on Tidally Locked Terrestrial Planets Jun Yang1,*, Weiwen Ji1, & Yaoxuan Zeng1 1Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China. *Corresponding author: J.Y., [email protected] Tidally locked terrestrial planets around low-mass stars are the prime targets for future atmospheric characterizations of potentially habitable systems1, especially the three nearby ones–Proxima b2, TRAPPIST-1e3, and LHS 1140b4. Previous studies suggest that if these planets have surface ocean they would be in an eyeball-like climate state5-10: ice-free in the vicinity of the substellar point and ice-covered in the rest regions. However, an important component of the climate system–sea ice dynamics has not been well studied in previous studies. A fundamental question is: would the open ocean be stable against a globally ice-covered snowball state? Here we show that sea-ice drift cools the ocean’s surface when the ice flows to the warmer substellar region and melts through absorbing heat from the ocean and the overlying air. As a result, the open ocean shrinks and can even disappear when atmospheric greenhouse gases are not much more abundant than on Earth, turning the planet into a snowball state. This occurs for both synchronous rotation and spin- orbit resonances (such as 3:2). These results suggest that sea-ice drift strongly reduces the open ocean area and can significantly impact the habitability of tidally locked planets. 1 Sea-ice drift, driven by surface winds and ocean currents, transports heat and freshwater across the ocean surface, directly or indirectly influencing ice concentration, ice growth and melt, ice thickness, surface albedo, and air–sea heat exchange11,12. -
To Trappist-1 RAIR Golaith Ship
Mission Profile Navigator 10:07 AM - 12/2/2018 page 1 of 10 Interstellar Mission Profile for SGC Navigator - Report - Printable ver 4.3 Start: omicron 2 40 Eri (Star Trek Vulcan home star) (HD Dest: Trappist-1 2Mass J23062928-0502285 in Aquarii [X -9.150] [Y - 26965) (Keid) (HIP 19849) in Eridani [X 14.437] [Y - 38.296] [Z -3.452] 7.102] [Z -2.167] Rendezvous Earth date arrival: Tuesday, December 8, 2420 Ship Type: RAIR Golaith Ship date arrival: Tuesday, January 8, 2419 Type 2: Rendezvous with a coasting leg ( Top speed is reached before mid-point ) Start Position: Start Date: 2-December-2018 Star System omicron 2 40 Eri (Star Trek Vulcan home star) (HD 26965) (Keid) Earth Polar Primary Star: (HIP 19849) RA hours: inactive Type: K0 V Planets: 1e RA min: inactive Binary: B, C, b RA sec: inactive Type: M4.5V, DA2.9 dec. degrees inactive Rank from Earth: 69 Abs Mag.: 5.915956445 dec. minutes inactive dec. seconds inactive Galactic SGC Stats Distance l/y Sector X Y Z Earth to Start Position: 16.2346953 Kappa 14.43696547 -7.10221947 -2.16744969 Destination Arrival Date (Earth time): 8-December-2420 Star System Earth Polar Trappist-1 2Mass J23062928-0502285 Primary Star: RA hours: inactive Type: M8V Planets 4, 3e RA min: inactive Binary: B C RA sec: inactive Type: 0 dec. degrees inactive Rank from Earth 679 Abs Mag.: 18.4 dec. minutes inactive Course Headings SGC decimal dec. seconds inactive RA: (0 <360) 232.905748 dec: (0-180) 91.8817176 Galactic SGC Sector X Y Z Destination: Apparent position | Start of Mission Omega -9.09279603 -38.2336637 -3.46695345 Destination: Real position | Start of Mission Omega -9.09548281 -38.2366036 -3.46626331 Destination: Real position | End of Mission Omega -9.14988933 -38.2961361 -3.45228825 Shifts in distances of Destination Distance l/y X Y Z Change in Apparent vs. -
Meeting Program
A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ. -
MECATX December 2019 Sky Tour Remote Video Astronomy Group
MECATX December 2019 Sky Tour Remote Video Astronomy Group (1) Caelum, the Engraving Tool - December 1 (2) Orion, the Hunter- December 13 (3) Lepus, the Hare- December 14 (4) Mensa, the Table Mountain - December 14 (5) Pictor, the Painter’s Easel- December 16 (6) Dorado, the Swordfish- December 17 (7) Columba, the Dove- December 18 (8) Auriga, the Charrioteer- December 21 (9) Camelopardalis, the Giraffe- December 23 MECATX RVA December 2018 - www.mecatx.ning.com – Youtube – MECATX – www.ustream.tv – dfkott Revised by: Alyssa Donnell 12.01.2019 December 1 Caelum (SEE-lum), the Engraving Tool Cae, Caeli (SEE-lye) MECATX RVA December 2018 - www.mecatx.ning.com – Youtube – MECATX – www.ustream.tv – dfkott 1 Caelum Meaning: The Sculptor's Chisel Pronunciation: see' lum Abbreviation: Cae Possessive form: Caeli (see' lee) Asterisms: none Bordering constellations: Columba, Dorado, Eridanus, Horologium, Lepus, Pictor Overall brightness: 3.204 (85) Central point: RA = 4h40m Dec. = -38° Directional extremes: N = -27° S = -49° E = 5h03m W = 4h18m Messier objects: none Meteor showers: none Midnight culmination date: 1 Dec Bright stars: none Named stars: none Near stars: none Size: 124.86 square degrees (0.303% of the sky) Rank in size: 81 Solar conjunction date: 2 Jun Visibility: completely visible from latitudes: S of +41° completely invisible from latitudes: N of +63° Visible stars: (number of stars brighter than magnitude 5.5): 4 Interesting facts: (1) This was one of the 14 constellations invented by Lacaille during his stay at the Cape of Good -
Observations of Variable Stars from Holomon Astronomical Station A
Observations of variable stars from Holomon Astronomical Station A. Kokori1, 2; A. Tsiaras3; M. Aspridis4; K. Karpouzas4; J. H. Seiradakis4 & S. Avgoloupis5 1 Faculty of Humanities and Social Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland 2 Blackrock Castle Observatory, Cork Institute of Technology, Castle Rd, Blackrock, T12 YW52 Co. Cork, Ireland 3 Department of Physics & Astronomy, University College London, Gower Street, WC1E6BT London, United Kingdom 4 Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece 5 Department of Primary Education, Faculty of Education, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece ABSTRACT EV Lacertae is a young (300 million years), M3.5 red dwarf star with strong flare activity. We observed EV Lac in the optical, for three consecutive nights in August 2016. The data obtained were analysed using the Holomon Photometric software and revealed three flares, one for each night. The first, increased the stellar flux by approximately 15% while the following two by approximately 5%. EV Lacertae (EV Lac, Gliese 873, HIP 112460) is a spectral type M3.5 red dwarf star, 16.5 light years away and lies in the constellation Lacerta. It is the nearest star to the Sun in that region of the sky. It is a flare star that emits X-rays and on 25 April 2008, NASA’S Swift satellite recorded a flare which was thousands of times more powerful than the largest observed solar flare. Mavridis and Avgoloupis (1986) were the first who suggested the existence of an activity cycle of 5 years.