The Molecular Characterization and Expression of New Human SLC26 Anion Transporters Minna Kujala-Myllynen

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Characterization and Expression of New Human SLC26 Anion Transporters Minna Kujala-Myllynen Helsinki University Biomedical Dissertations No. 69 The Molecular Characterization and Expression of New Human SLC26 Anion Transporters Minna Kujala-Myllynen Department of Medical Genetics University of Helsinki Finland Academic dissertation To be publicly discussed with the permission of the Faculty of Medicine, University of Helsinki, in the large lecture hall of Haartman Institute, Haartmaninkatu 3, Helsinki, on November 18th 2005, at 12 noon. Supervised by: Juha Kere, Professor Department of Biosciences at Novum Karolinska Institute Stockholm, Sweden and Department of Medical Genetics University of Helsinki Helsinki, Finland Reviewed by: Hannu Jalanko, MD, PhD, Adjunct Professor Hospital for Children and Adolescents University of Helsinki Helsinki, Finland and Anne Räisänen-Sokolowski, MD, PhD, Adjunct Professor Department of Pathology University of Helsinki, and Helsinki University Central Hospital Helsinki, Finland Official opponent: Per-Henrik Groop, MD, DMSc, Adjunct Professor Folkhälsan Research Center University of Helsinki Helsinki, Finland ISSN 1457-8433 ISBN 952-10-2735-5 (paperback) ISBN 952-10-2736-3 (PDF) Yliopistopaino Helsinki 2005 To My Family Table of Contents List of Original Publications ................................................................................. 13 Abstract ................................................................................................................. 16 Introduction ........................................................................................................... 19 Review of the Literature ...................................................................................... 23 1. Anion Exchanger Genes and Proteins ............................................... 23 1.1 The Classic Family of Anion Exchangers Belongs to Solute Carrier Family 4 (SLC4) Bicarbonate Transporters ..................... 23 1.1.1 SLC4A1 ........................................................................... 24 1.1.2 SLC4A2 ........................................................................... 24 1.1.3 SLC4A3 ........................................................................... 25 1.2 The Solute Carrier Family 26 (SLC26) Anion Transporter Family ................................................................................................ 25 1.2.1 SLC26A1 Was Originally Found in Rats ...................... 26 1.2.2 Mutations of SLC26A2 Cause Several Bone and Cartilage Diseases of Varying Severity ............................. 26 1.2.3 SLC26A3 is Defective in Congenital Chloride Diarrhea ................................................................................. 28 1.2.4 Certain Forms of Deafness Result from Flawed SLC26A4 ................................................................................. 29 1.2.5 The Cochlear Motor Protein SLC26A5 is Associated with Non-syndromic Deafness ........................................... 30 1.2.6 The New Members SLC26A6-A11 .............................. 31 2. Interactions of Several Proteins Define Overall Ion Transport ........ 32 2.1 Cystic Fibrosis Transmembrane Conductance Regulator . 32 2.2 Sodium/Hydrogen Exchanger 3 ............................................. 33 2.3 Vacuolar H+ ATPase .................................................................. 33 2.4 Carbonic Anhydrase II ............................................................. 34 2.5 PDZ Domain Containing Proteins .......................................... 35 3. The Human Kidney ................................................................................ 36 3.1 Structure of the Human Kidney ............................................... 36 3.2 Kidneys Have Many Functions ................................................ 37 3.2.1 Kidneys Regulate pH of the Body ............................. 38 3.2.2 Reabsorption of Na+ and Cl- in the Kidney Tubules ................................................................................... 39 3.2.3 Kidneys Can Autoregulate Their Filtration via Juxtaglomerular Complexes .............................................. 39 3.3 Polycystic and Dysplastic Kidney Diseases .......................... 40 3.4 Expression of SLC26A4 in the Kidney ...................................... 41 4. The Epididymis ....................................................................................... 42 4.1 Structure of the Human Epididymis ........................................ 42 4.2 Function of the Epididymis ...................................................... 42 4.2.1 Absorption of Na+, Cl- and Water During the Flow Through the Epididymis ....................................................... 44 4.2.2 Strict Bicarbonate Control is Needed in the Epididymal Ducts for Keeping Sperm Quiescent ........... 44 Aims of the Study ................................................................................................. 47 Materials and Methods ....................................................................................... 49 1. Computational Sequence Analysis (I-II) ............................................ 49 2. Chromosomal Mapping Using Radiation Hybrids (I) ....................... 49 3. Cloning of the SLC26A6-A9 Genes (I-II) ............................................. 50 4. Polyacrylamide Gel Electrophoresis Analysis of Single Base Polymorphism (I) ........................................................................................ 50 5. Expression Analyses Using Northern Blotting (I-II) ............................. 51 6. Expression Analyses Using PCR Panels (I-II) ....................................... 51 7. Expression of SLC26A6 and A9 in Cell Lines (I-II) ............................... 51 8. Functional Transport Measurements in Xenopus Laevis Oocytes (II) ................................................................................................................. 52 9. Tissue Samples (I-IV) .............................................................................. 53 10. RT-PCR (III) ............................................................................................. 53 11. In Situ Hybridization (I-II) ...................................................................... 54 12. Antibodies (I-IV) ................................................................................... 54 13. Transfection, Immunofluorescence and Peptide Competition (III) ................................................................................................................ 55 14. Western Blotting (III-IV) ........................................................................ 56 15. Immunohistochemistry (I-IV) .............................................................. 56 Results ..................................................................................................................... 59 1. Detection and Chromosomal Localization of New SLC26 Genes (I) .................................................................................................................. 59 2. Cloning of New SLC26 Genes ............................................................. 60 2.1 SLC26A1 (I) .................................................................................. 60 2.2 SLC26A6 (I) ................................................................................. 60 2.3 SLC26A7 (I-II) .............................................................................. 61 2.4 SLC26A8 (I-II) .............................................................................. 62 2.5 SLC26A9 (II) ................................................................................ 63 2.6 SLC26A10 and SLC26A11 .......................................................... 64 3. Functional Characterization of the SLC26A7-A9 Transporters (II) .. 64 4. Characterization of the Antibodies (III-IV) ........................................ 65 4.1 The SLC26A6 Antibodies ........................................................... 65 4.2 The SLC26A7 Antibodies (III) .................................................... 65 4.3 The SLC26A8 Antibodies (IV) ................................................... 65 5. Expression Profiles of SLC26A6-A9 (I-II) ............................................... 66 5.1 SLC26A6 is Expressed in Various Tissues (I) ............................. 66 5.2 SLC26A7 Was Observed in the Human Kidneys (II) ............. 67 5.3 SLC26A8 Expression is Restricted to the Testes (II) ................ 68 5.4 SLC26A9 is Located in the Pulmonary Epithelium (II) .......... 68 6. Distinct Expression of SLC26A6 and SLC26A7 in the Human Kidney (III) ................................................................................................................ 68 6.1 SLC26A6 and SLC26A7 mRNA Expression in the Kidneys .... 69 6.2 Specific Expression of the SLC26A6 and SLC26A7 Proteins in Distinct Human Kidney Structures ................................................ 69 7. Expression of Selected SLC26 and Other Ion Transport Associated Proteins in the Human Epididymis (IV) .................................................... 72 Discussion .............................................................................................................. 75 1. The SLC26 Family Grew By Several New Structurally Homologous Members ..................................................................................................... 75 2. The New SLC26 Members May Have Important Functions in Certain Tissues ............................................................................................ 80 3. SLC26A6
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Molecular Profiling of Peripheral Blood Is Associated with Circulating Tumor Cells Content and Poor Survival in Metastatic Castration-Resistant Prostate Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 12 Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer Mercedes Marín-Aguilera1, Òscar Reig1,2, Juan José Lozano3, Natalia Jiménez1, Susana García-Recio1,4, Nadina Erill5, Lydia Gaba2, Andrea Tagliapietra2, Vanesa Ortega2, Gemma Carrera6, Anna Colomer5, Pedro Gascón4 and Begoña Mellado1,2 1 Translational Genomics Group and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain 2 Medical Oncology Department, Hospital Clínic, Barcelona, Spain 3 Bioinformatics Platform Department, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain 4 Laboratory of Translational Oncology, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain 5 Althia, Barcelona, Spain 6 Medical Oncology Department, Hospital Plató, Barcelona, Spain Correspondence to: Begoña Mellado, email: [email protected] Keywords: circulating tumor cells, peripheral blood, microarrays, cell search system Received: January 22, 2015 Accepted: February 14, 2015 Published: March 12, 2015 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The enumeration of circulating
    [Show full text]
  • IL21R Expressing CD14+CD16+ Monocytes Expand in Multiple
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX IL21R expressing CD14 +CD16 + monocytes expand in multiple myeloma patients leading to increased osteoclasts Marina Bolzoni, 1 Domenica Ronchetti, 2,3 Paola Storti, 1,4 Gaetano Donofrio, 5 Valentina Marchica, 1,4 Federica Costa, 1 Luca Agnelli, 2,3 Denise Toscani, 1 Rosanna Vescovini, 1 Katia Todoerti, 6 Sabrina Bonomini, 7 Gabriella Sammarelli, 1,7 Andrea Vecchi, 8 Daniela Guasco, 1 Fabrizio Accardi, 1,7 Benedetta Dalla Palma, 1,7 Barbara Gamberi, 9 Carlo Ferrari, 8 Antonino Neri, 2,3 Franco Aversa 1,4,7 and Nicola Giuliani 1,4,7 1Myeloma Unit, Dept. of Medicine and Surgery, University of Parma; 2Dept. of Oncology and Hemato-Oncology, University of Milan; 3Hematology Unit, “Fondazione IRCCS Ca’ Granda”, Ospedale Maggiore Policlinico, Milan; 4CoreLab, University Hospital of Parma; 5Dept. of Medical-Veterinary Science, University of Parma; 6Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture; 7Hematology and BMT Center, University Hospital of Parma; 8Infectious Disease Unit, University Hospital of Parma and 9“Dip. Oncologico e Tecnologie Avanzate”, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2016.153841 Received: August 5, 2016. Accepted: December 23, 2016. Pre-published: January 5, 2017. Correspondence: [email protected] SUPPLEMENTAL METHODS Immunophenotype of BM CD14+ in patients with monoclonal gammopathies. Briefly, 100 μl of total BM aspirate was incubated in the dark with anti-human HLA-DR-PE (clone L243; BD), anti-human CD14-PerCP-Cy 5.5, anti-human CD16-PE-Cy7 (clone B73.1; BD) and anti-human CD45-APC-H 7 (clone 2D1; BD) for 20 min.
    [Show full text]
  • Prestinłs Anion Transport and Voltage-Sensing Capabilities Are
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 96 April 2009 3179–3186 3179 Prestin’s Anion Transport and Voltage-Sensing Capabilities Are Independent Jun-Ping Bai,† Alexei Surguchev,†‡ Simone Montoya,†‡ Peter S. Aronson,§{ Joseph Santos-Sacchi,‡{k and Dhasakumar Navaratnam†k* †Department of Neurology, ‡Division of Otolaryngology, Department of Surgery, §Department of Internal Medicine, {Department of Cellular and Molecular Physiology, and kDepartment of Neurobiology, Yale University School of Medicine, New Haven, Connecticut ABSTRACT The integral membrane protein prestin, a member of the SLC26 anion transporter family, is responsible for the voltage-driven electromotility of mammalian outer hair cells. It was argued that the evolution of prestin’s motor function required a loss of the protein’s transport capabilities. Instead, it was proposed that prestin manages only an abortive hemicycle that results in the trapped anion acting as a voltage sensor, to generate the motor’s signature gating charge movement or nonlinear capaci- tance. We demonstrate, using classical radioactive anion ([14C]formate and [14C]oxalate) uptake studies, that in contrast to previous observations, prestin is able to transport anions. The prestin-dependent uptake of both these anions was twofold that of cells transfected with vector alone, and comparable to SLC26a6, prestin’s closest phylogenetic relative. Furthermore, we identify a potential chloride-binding site in which the mutations of two residues (P328A and L326A) preserve nonlinear capacitance, yet negate anion transport. Finally, we distinguish 12 charged residues out of 22, residing within prestin’s transmembrane regions, that contribute to unitary charge movement, i.e., voltage sensing.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Human Lysosomal Sulphate Transport
    Human Lysosomal Sulphate Transport Martin David LEWIS B.Sc. (Hons) Thesis Submitted For the Degree Of Doctor of PhilosoPhY rn The University of Adelaide (Faculty of Medicine) May 2001 Lysosomal Diseases Research Unit and Department of P aediatrics PathologY Faculty of Medicine Department of Chemical 'Women's Women's and Children's HosPital and Children's HosPital South Australia South Australia 11 Elliot, Sømuel and Millie Table of Gontents Abstract xl1 Declaration xiv Acknowledgments XV Abbreviations xvi List of Figures xxi List of Tables xxiii 1. INTRODUGTION. """""""" 1 1.1.1 1,1.2 Membrane proteins. """"""""2 1.1.3 Types oftransporters. """"""'4 5 t.t.4 Carrier transport mechanisms. 1.1.5 1.2 Sutphate metabolism. 8 1.2.1 Phosphoadenosinephosphosulphatesynthesis"" I 1 1.2.2 The roles of sulphate within the cell' ' "" " " 1.2.2.1 A structuralrole of sulphation. ..""""' """""""""""' 11 t2 1.2.2.2 Metabolic and regulatory roles of sulphate' """""" 1.2.3 Intracellular sulphate pools...'........ """"""12 12 1.2.3.1 The origins of intracellular sulphate pools"" 1.2.3.2 Metabolism of sulphate from cysteine """""""""""" 15 1.2.3.3 Regulation of sulphate pools 1.3 The definition and function of the lysosome' """""""""""'19 1.3.1 Structure of the lysosome. ....'......... """""'20 1.3.1.1 Lysosomal hydrolysis of glycosaminoglycans"""' """"""""""""'21 25 1.3.1.1.1 Sulphatases 1.3 .2 Lysosomal biogenesis. 1.3.2.1 Targeting of lysosomal luminal proterns' 27 1V t.3.2.2 Targeting of lysosomal membrane proteins. """""""28 28 1.3.2.3 Lysosomal membrane Proteins 30 1.3.3 Lysosomal transporters 32 1.3.3.1 Proton pump (H*-ATPase) 33 1.3.3.2 Lysosomal cystine üansport............
    [Show full text]
  • Novel Targets of Apparently Idiopathic Male Infertility
    International Journal of Molecular Sciences Review Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility Rossella Cannarella * , Rosita A. Condorelli , Laura M. Mongioì, Sandro La Vignera * and Aldo E. Calogero Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (R.A.C.); [email protected] (L.M.M.); [email protected] (A.E.C.) * Correspondence: [email protected] (R.C.); [email protected] (S.L.V.) Received: 8 February 2020; Accepted: 2 March 2020; Published: 3 March 2020 Abstract: Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm-oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility. Keywords: spermatogenetic failure; embryo growth; male infertility; spermatogenesis; recurrent pregnancy loss; sperm proteome; DNA fragmentation; sperm transcriptome 1. Introduction Infertility is a widespread condition in industrialized countries, affecting up to 15% of couples of childbearing age [1]. It is defined as the inability to achieve conception after 1–2 years of unprotected sexual intercourse [2].
    [Show full text]
  • Supporting Information
    Supporting Information Table S1. List of confirmed SLC transporters represented in Canine GeneChip. SLC family Members detected Members not detected SLC1: The high affinity glutamate and neutral amino acid SLC1A1 SLC1A2, SLC1A3, SLC1A6 transporter family SLC2: The facilitative GLUT transporter family SLC2A1, SLC2A8 SLC2A3, SLC2A9 SLC3: The heavy subunits of the heteromeric amino acid SLC3A1 transporters SLC4: The bicarbonate transporter family SLC4A11 SLC4A4, SLC4A8 SLC5: The sodium glucose cotransporter family SLC5A6 SLC5A3, SLC5A10, SLC5A12 SLC6: The sodium- and chloride- dependent SLC6A6, SLC6A12 SLCA18 neurotransmitter transporter family SLC7: The cationic amino acid transporter/glycoprotein- NR associated family SLC8: The Na+/Ca2+ exchanger family SLC8A1 SLC9: The Na+/H+ exchanger family SLC9A1, SLC9A6, SLC9A9 SLC10: The sodium bile salt cotransport family SLC10A2 SLC11: The proton coupled metal ion transporter family NR SLC12: The electroneutral cation-Cl cotransporter family SLC12A3, SLC12A6, SLC12A8 SLC13: The human Na+-sulfate/carboxylate cotransporter SLC13A2 family SLC14: The urea transporter family NR SLC15: The proton oligopeptide cotransporter family SLC15A2, SLC15A4 SLC15A1 SLC16: The monocarboxylate transporter family SLC16A13 SLC16A4 SLC17: The vesicular glutamate transporter family SLC17A3, SLC17A7 SLC18: The vesicular amine transporter family NR SLC19: The folate/thiamine transporter family NR SLC20: The type III Na+-phosphate cotransporter family NR SLC21/SLCO: The organic anion transporting family SLC21A3, SLC21A8,
    [Show full text]
  • Supplementary. Table S1 a Total of Degs Detected in This Study (Gm) No
    Supplementary. Table S1 A total of DEGs detected in this study (Gm) No. genename significance in annotation 1 At1g01020 D2 ARV1__expressed protein, similar to hypothetical protein DDB0188786 [Dictyostelium discoideum] (GB:EAL62332.1); contains InterPro domain Arv1-like protein (InterPro:IPR007290) 2 At1g01100 D2 60S acidic ribosomal protein P1 (RPP1A), similar to 60S ACIDIC RIBOSOMAL PROTEIN P1 GB:O23095 from (Arabidopsis thaliana) 3 At1g01120 D2, Dm KCS1__fatty acid elongase 3-ketoacyl-CoA synthase 1 (KCS1), nearly identical to GB:AAC99312 GI:4091810 from (Arabidopsis thaliana) 4 At1g01160 D1, D2, Dm GIF2__SSXT protein-related / transcription co-activator-related, similar to SYT/SSX4 fusion protein (GI:11127695) (Homo sapiens); supporting cDNA gi:21539891:gb:AY102640.1:; contains Pfam profile PF05030: SSXT protein (N-terminal region) 5 At1g01170 D2 ozone-responsive stress-related protein, putative, similar to stress-related ozone-induced protein AtOZI1 (GI:790583) (Arabidopsis thaliana); contains 1 predicted transmembrane domain; 6 At1g01240 D1, D2, Dm expressed protein 7 At1g01300 D2, Dm aspartyl protease family protein, contains Pfam domain, PF00026: eukaryotic aspartyl protease 8 At1g01320 D2 tetratricopeptide repeat (TPR)-containing protein, low similarity to SP:P46825 Kinesin light chain (KLC) {Loligo pealeii}; contains Pfam profile PF00515: TPR Domain 9 At1g01430 D2, Dm expressed protein, similar to hypothetical protein GB:CAB80917 GI:7267605 from (Arabidopsis thaliana) 10 At1g01470 D1, D2, Dm LEA14_LSR3__late embryogenesis abundant
    [Show full text]
  • Expression and Characterization of a Human Sodium Glucose Transporter (Hsglt1) in Pichia Pastoris
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Expression and characterization of a human sodium glucose transporter (hSGLT1) in Pichia pastoris TESI DOCTORAL Albert Suades Sala 2017 Expression and characterization of a human sodium glucose transporter (hSGLT1) in Pichia pastoris Mèmoria presentada per Albert Suades Sala per optar al grau de doctor. El treball presentat ha estat dirigit pel Dr.Josep Bartomeu Cladera Cerdà, el Dr. Joan Manyosa Ribatallada i el Dr. Alex Perálvarez Marín i realitzat en la Unitat de Biofísica del Departament de Bioquímica i de Biologia Molecular i al Centre d’Estudis en Biofísica (CEB) de la facultat de Medicina a la Universitat Autònoma de Barcelona Vist i plau dels directors de la tesi: Dr. Josep Bartomeu Cladera Dr. Joan Manyosa Ribatallada Dr. Alex Perálvarez Marín II Blessed are the forgetful, for they get the better even of their blunders Friedrich Nietzsche III Agraïments En primer lloc, m’agradaria agrair els meus directors de tesi; Joan, Pep i Alex per haver-me donat l’oportunitat i la confiança de realitzar la tesis. Al Joan, per tenir sempre preparada una broma sarcàstica sota la màniga i per animar-me de la forma més efectiva empleada a tot el món; una bona cervesa freda.
    [Show full text]