Molecular Profiling of Peripheral Blood Is Associated with Circulating Tumor Cells Content and Poor Survival in Metastatic Castration-Resistant Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Profiling of Peripheral Blood Is Associated with Circulating Tumor Cells Content and Poor Survival in Metastatic Castration-Resistant Prostate Cancer www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 12 Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer Mercedes Marín-Aguilera1, Òscar Reig1,2, Juan José Lozano3, Natalia Jiménez1, Susana García-Recio1,4, Nadina Erill5, Lydia Gaba2, Andrea Tagliapietra2, Vanesa Ortega2, Gemma Carrera6, Anna Colomer5, Pedro Gascón4 and Begoña Mellado1,2 1 Translational Genomics Group and Targeted Therapeutics in Solid Tumors Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain 2 Medical Oncology Department, Hospital Clínic, Barcelona, Spain 3 Bioinformatics Platform Department, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain 4 Laboratory of Translational Oncology, Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain 5 Althia, Barcelona, Spain 6 Medical Oncology Department, Hospital Plató, Barcelona, Spain Correspondence to: Begoña Mellado, email: [email protected] Keywords: circulating tumor cells, peripheral blood, microarrays, cell search system Received: January 22, 2015 Accepted: February 14, 2015 Published: March 12, 2015 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The enumeration of circulating tumor cells (CTCs) in peripheral blood correlates with clinical outcome in castration-resistant prostate cancer (CRPC). We analyzed the molecular profiling of peripheral blood from 43 metastatic CRPC patients with known CTC content in order to identify genes that may be related to prostate cancer progression. Global gene expression analysis identified the differential expression of 282 genes between samples with ≥5 CTCs vs <5 CTCs, 58.6% of which were previously described as over-expressed in prostate cancer (18.9% in primary tumors and 56.1% in metastasis). Those genes were involved in survival functions such as metabolism, signal transduction, gene expression, cell growth, death, and movement. The expression of selected genes was evaluated by quantitative RT-PCR. This analysis revealed a two-gene model (SELENBP1 and MMP9) with a high significant prognostic ability (HR 6; 95% CI 2.61 - 13.79; P<0.0001). The combination of the two-gene signature plus the CTCs count showed a higher prognostic ability than CTCs enumeration or gene expression alone (P<0.05). This study shows a gene expression profile in PBMNC associated with CTCs count and clinical outcome in metastatic CRPC, describing genes and pathways potentially associated with CRPC progression. INTRODUCTION profile of peripheral blood is of interest for determining molecular alterations that may justify a more aggressive Prostate cancer (PC) is the second leading cause of clinical behavior in patients with higher CTCs count. death from cancer in men [1]. During the progression of Studies mostly have focused on the capability of CTCs the disease, subgroups of cancer cells reach the circulation as biomarkers but also their potential utility in diagnosis, and are able to proliferate in distant tissues [2]. prognosis, and as a marker of treatment effectiveness [3]. Interest has been growing in recent years about These studies are supported by technologies that allow the circulating tumor cells (CTCs) as leaders in the metastatic reproducible detection and quantification of CTCs. These process. Because of its great accessibility, the expression cells can be separated from other hematopoietic cells by physical characteristics such as size and shape, or by www.impactjournals.com/oncotarget 10604 Oncotarget biological characteristics such as expression of epithelial count in the PBMNC of patients with metastatic CRPC or cancer-specific markers. The CellSearch System and molecular pathways that may be associated with (Veridex, LLC) is the most widely used CTC-isolation CRPC progression. Notably, most of the detected genes technology in clinical testing. This semi-automated in patients with ≥5 CTCs were previously described as method received U.S. Food and Drug Administration over expressed in PC, and specifically 56.1% were over- approval for the enumeration of CTCs in whole blood [4, expressed in PC metastasis. RT-PCR expression of two 5]. In castration-resistant PC (CRPC), the quantification genes, SELENBP1 and MMP9, together with the CTC of CTCs by CellSearch system has been proved to be count showed a significant prognostic ability in CRPC clinically relevant. Studies have used this technology to patients. Overall, our findings support that expression define groups with unfavorable and favorable prognosis studies in PBMNC in metastatic CRPC patients may among patients with metastatic prostate cancer [6] and translate the biology of the CTCs and may be used to for molecular studies of CTCs [6-10]. Furthermore, identify patients with a more aggressive clinical behavior. the decline in the number of CTCs under treatment is a stronger prognostic factor for post-treatment survival RESULTS than a 50% decline in prostate-specific antigen (PSA) [11]. However, the detection of CTCs by the expression of epithelial specific markers, may have as a consequence Patients and CTCs count that CTCs with different molecular characteristics cannot be detected. In addition to CTCs, non-tumoral epithelial and Seventy-four patients were included in the study. circulating hematopoietic cells may also be involved in Four of them were excluded from the analysis: one patient tumor progression [12]. Indeed, two recently published that did not accomplish the inclusion criteria and three studies described transcriptional profiles in peripheral samples that failed the quality control were discarded for blood associated with prognosis in patients with CRPC being analyzed. The clinical characteristics of the 70 final [13, 14]. patients are shown in Table 1. Patients were prospectively The detection of tumor or epithelial markers by followed from the time of inclusion in the study. reverse-transcriptase polymerase chain reaction (RT- PBMNC from 43 patients were tested for CTC count PCR) in the mononuclear cell fraction of peripheral blood and microarrays analysis. All the 70 samples were studied (PBMNC) have been widely use as a strategy to detect by qRT-PCR. Clinical characteristics between patients CTCs in patients with cancer [15]. In the present work with ≥5 CTCs and <5CTCs were well balanced (Table 1). we describe a transcriptional profile associated with CTCs The median number of CTCs per patient sample was 59 (range 1-899). Specifically, 23 patients (53.4%) Figure 1: Survival analysis according to CTC count. A) Kaplan-Meier curves that estimate the probabilities of overall survival (OS) of CRPC patients with <5 and ≥5 CTCs. The log-rank test was used to assess the statistical difference between the two groups (P<0.001); B) Receiver operating characteristic (ROC) curve for prediction accuracy of ≥5 CTCs content in OS of CRPC. www.impactjournals.com/oncotarget 10605 Oncotarget Table 1: Clinical characteristics of patients and CTC count; 1CTCs: circulating tumor cells; 2PSA: prostatic specific antigen; 3AP: Alkaline phosphatase; 4LDH: Lactate dehydrogenase; 5“events” refer to number of deaths. Patients' characteristics CTC1 load <5 CTCs ≥5 CTCs CTCs non-eval Total Number of patients 23 20 27 70 Age (years) Median (range) 72 (40.1-78.3) 73.5 (49-83) 67.5 (51-79.8) 66.5 (40.1-83.1) Gleason N (%) ≤ 7 9 (39.1) 7 (35) 13 (48.3) 29 (41.5) 8-10 12 (52.2) 10 (50) 12 (44.4) 34 (48.6) Unknown 2 (9) 3 (15) 2 (7.4) 7 (10) PSA2 (ng/mL) Median (range) 24.3 (1.3-1,375) 40.4 (1.8-1,002) 47.5 (1.8-445.6) 57.9 (1.3-1,375) AP3 (U/L) Median (range) 180.5 (71-679) 401 (121-5797) 265 (91-1143) 253 (71-5797) LDH4 (U/L) Median (range) 408 (253-628) 588 (336-1569) 351 (232-604) 408 (232-1569) Hemoglobin (g/dL) Median (range) 127 (86-153) 112.5 (74-144) 129 (96-156) 127 (74-156) Previous chemotherapy (%) Yes 9 (39.1) 7 (35) 6 (22.2) 22 (31.4) No 14 (60.9) 13 (65) 21 (77.8) 48 (68.6) Metastasis Bone 18 (46.1) 20 (64.5) 22 (51.2) 60 (53.1) Visceral 5 (12.8) 1 (3.2) 7 (16.3) 13 (11.5) Lymph nodes 15 (38.5) 10 (32.3) 12 (27.9) 37 (32.7) Local relapse 1 (2.6) 0 2 (4.7) 3 (2.7) CTC number (%) 0-2 20 (46.5) - - - 3-4 3 (6.9) - - - 5-20 - 6 (13.9) - - 21-50 - 9 (20.9) - - >51 - 5 (11.6) - - Follow-up (months) Median (range) 12 (1.9-36.8) 12.23 (1.2-35.3) 12 (3.3-26.2) 12 (1.2-36.8) Number of events5 (%) 14 (60.9) 18 (90) 4 (14.8) 36 (51.4) presented <5 CTCs (average 1 cell) and 20 patients assessed by the ROC curve (area under curve=0.790) (Fig. (46.5%) had ≥5 CTCs (average 126 cells). During a 1B). median follow-up period of 12 months, 32 of the 43 patients (74.4%) died. Univariate Cox proportional Gene expression profiling in peripheral blood hazards regression analysis assessed the number of CTCs mononuclear cells is associated with CTC count as a risk factor for overall survival (OS). Patients with <5 CTCs had longer survival relative to patients with ≥5 CTCs by log-rank analysis (Cox HR 5.5; 95%CI, 2-15.3; Hierarchical clustering and principal component log-rank P<0.001) (Fig. 1A). The predictive accuracy of analysis algorithms were used to examine the sample the number of CTCs (≥5 CTCs vs <5 CTCs) for OS was groupings in the expression data. Expression profiles www.impactjournals.com/oncotarget 10606 Oncotarget Table 2: Genes differentially expressed between ≥5 CTCs and <5 CTCs and also between primary tumor/metastasis and normal prostate tissue according to previous data in the literature [16];*qRT-PCR validated genes.
Recommended publications
  • Kinesin-14 Motor Protein KIFC1 Participates in DNA Synthesis and Chromatin Maintenance Ya-Lan Wei1 and Wan-Xi Yang 1
    Wei and Yang Cell Death and Disease (2019) 10:402 https://doi.org/10.1038/s41419-019-1619-9 Cell Death & Disease ARTICLE Open Access Kinesin-14 motor protein KIFC1 participates in DNA synthesis and chromatin maintenance Ya-Lan Wei1 and Wan-Xi Yang 1 Abstract The nuclear localization signal (NLS) in kinesin-14 KIFC1 is associated with nuclear importins and Ran gradient, but detailed mechanism remains unknown. In this study, we found that KIFC1 proteins have specific transport characteristics during cell cycle. In the absence of KIFC1, cell cycle kinetics decrease significantly with a prolonged S phase. After KIFC1 overexpression, the duration of S phase becomes shorten. KIFC1 may transport the recombinant/ replicate-related proteins into the nucleus, meanwhile avoiding excessive KIFC1 in the cytoplasm, which results in aberrant microtubule bundling. Interestingly, the deletion of kifc1 in human cells results in a higher ratio of aberrant nuclear membrane, and the degradation of lamin B and lamin A/C. We also found that kifc1 deletion leads to defects in metaphase mitotic spindle assembly, and then results in chromosome structural abnormality. The kifc1-/- cells finally form micronuclei in daughter cells, and results in aneuploidy and chromosome loss in cell cycle. In this study, we demonstrate that kinesin-14 KIFC1 proteins involve in regulating DNA synthesis in S phase, and chromatin maintenance in mitosis, and maintain cell growth in a nuclear transport-independent way. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction KIFC1 mainly cluster the spindles involving in chromo- Kinesin-14 KIFC1 transports various cargos along the some alignment and segregation. While chromokinesins microtubule to the minus ends1.
    [Show full text]
  • Roles and Mechanisms of Kinesin-6 KIF20A in Spindle Organization During Cell Division T ⁎ Wen-Da Wu, Kai-Wei Yu, Ning Zhong, Yu Xiao, Zhen-Yu She
    European Journal of Cell Biology 98 (2019) 74–80 Contents lists available at ScienceDirect European Journal of Cell Biology journal homepage: www.elsevier.com/locate/ejcb Review Roles and mechanisms of Kinesin-6 KIF20A in spindle organization during cell division T ⁎ Wen-Da Wu, Kai-Wei Yu, Ning Zhong, Yu Xiao, Zhen-Yu She Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China ARTICLE INFO ABSTRACT Keywords: Mitotic kinesin is crucial for spindle assembly and chromosome segregation in cell division. KIF20A/MKlp2, a Kinesin-6 member of kinesin-6 subfamily, plays important roles in the central spindle organization at anaphase and cy- KIF20A tokinesis. In this review, we briefly introduce the discovery and classification of kinesin-6 motors in model Microtubule organisms, and summarize the biochemical features and mechanics of KIF20A proteins. We emphasize the Anaphase complicated interactions of KIF20A with partner proteins, including MKlp1, Plk1 and Rab6. Particularly, we Spindle assembly highlight the regulation of Cdk1 and chromosomal passenger complex on kinesin-6 KIF20A at late stage of Mitosis mitosis. We summarized the multiple functions of KIF20A in central spindle assembly and the formation of cleavage furrow in both mitosis and meiosis. In addition, we conclude the expression patterns of KIF20A in tumorigenesis and its applications in tumor therapy. 1. Introduction kinesin superfamily proteins (Miki et al., 2005). Kinesin-6 subfamily is comprised of KIF20A (Lawrence et al., 2004), KIF20B (MPP1) Kinesin superfamily proteins (KIFs) are molecular motors that (Kamimoto et al., 2001; Matsumoto-Taniura et al., 1996; Westendorf mediate the transport of various cargos, including the newly synthe- et al., 1994) and MKlp1 (Lawrence et al., 2004; Nislow et al., 1990; sized protein complexes, vesicles and mRNAs along the microtubule Sellitto and Kuriyama, 1988).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • IL21R Expressing CD14+CD16+ Monocytes Expand in Multiple
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX IL21R expressing CD14 +CD16 + monocytes expand in multiple myeloma patients leading to increased osteoclasts Marina Bolzoni, 1 Domenica Ronchetti, 2,3 Paola Storti, 1,4 Gaetano Donofrio, 5 Valentina Marchica, 1,4 Federica Costa, 1 Luca Agnelli, 2,3 Denise Toscani, 1 Rosanna Vescovini, 1 Katia Todoerti, 6 Sabrina Bonomini, 7 Gabriella Sammarelli, 1,7 Andrea Vecchi, 8 Daniela Guasco, 1 Fabrizio Accardi, 1,7 Benedetta Dalla Palma, 1,7 Barbara Gamberi, 9 Carlo Ferrari, 8 Antonino Neri, 2,3 Franco Aversa 1,4,7 and Nicola Giuliani 1,4,7 1Myeloma Unit, Dept. of Medicine and Surgery, University of Parma; 2Dept. of Oncology and Hemato-Oncology, University of Milan; 3Hematology Unit, “Fondazione IRCCS Ca’ Granda”, Ospedale Maggiore Policlinico, Milan; 4CoreLab, University Hospital of Parma; 5Dept. of Medical-Veterinary Science, University of Parma; 6Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture; 7Hematology and BMT Center, University Hospital of Parma; 8Infectious Disease Unit, University Hospital of Parma and 9“Dip. Oncologico e Tecnologie Avanzate”, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2016.153841 Received: August 5, 2016. Accepted: December 23, 2016. Pre-published: January 5, 2017. Correspondence: [email protected] SUPPLEMENTAL METHODS Immunophenotype of BM CD14+ in patients with monoclonal gammopathies. Briefly, 100 μl of total BM aspirate was incubated in the dark with anti-human HLA-DR-PE (clone L243; BD), anti-human CD14-PerCP-Cy 5.5, anti-human CD16-PE-Cy7 (clone B73.1; BD) and anti-human CD45-APC-H 7 (clone 2D1; BD) for 20 min.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Wnt/Β-Catenin and Sex Hormone Signaling in Endometrial Homeostasis and Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, November, Vol.1, No 7 Wnt/Β-Catenin and Sex Hormone Signaling in Endometrial Homeostasis and Cancer Yongyi Wang1,2, Marten van der Zee1,2, Riccardo Fodde2, Leen J Blok1 1 Department of Obstetrics & Gynaecology, Josephine Nefkens Institute, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands 2 Departments of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands Correspondence to: Leen J Blok, e-mail: [email protected] Keywords: Wnt/β-catenin, estradiol, progesterone, endometrium Received: September 30, 2010, Accepted: October 11, 2010, Published: October 12, 2010 Copyright: © Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT: A delicate balance between estrogen and progestagen signaling underlies proper functioning of the female reproductive tract and, in particular, the monthly re- and degenerative phases characteristic of the menstrual cycle. Here, we propose that the canonical Wnt/β-catenin signaling pathway may underlie this finely tuned hormonal equilibrium in endometrial homeostasis and, upon its constitutive activation, lead to neoplastic transformation of the endometrium. During the menstrual cycle, estradiol will enhance Wnt/β-catenin signaling in the proliferative phase, while progesterone inhibits Wnt/β-catenin signaling, thus restraining estrogens’ proliferative actions, during the secretory phase. In case of enhanced or unopposed estrogen signaling, constitutive activation of Wnt/β-catenin signaling will trigger endometrial hyperplasia, which may develop further into endometrial cancer.
    [Show full text]
  • Macropinocytosis Requires Gal-3 in a Subset of Patient-Derived Glioblastoma Stem Cells
    ARTICLE https://doi.org/10.1038/s42003-021-02258-z OPEN Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells Laetitia Seguin1,8, Soline Odouard2,8, Francesca Corlazzoli 2,8, Sarah Al Haddad2, Laurine Moindrot2, Marta Calvo Tardón3, Mayra Yebra4, Alexey Koval5, Eliana Marinari2, Viviane Bes3, Alexandre Guérin 6, Mathilde Allard2, Sten Ilmjärv6, Vladimir L. Katanaev 5, Paul R. Walker3, Karl-Heinz Krause6, Valérie Dutoit2, ✉ Jann N. Sarkaria 7, Pierre-Yves Dietrich2 & Érika Cosset 2 Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glio- 1234567890():,; blastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3- mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macro- pinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of- principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients. 1 University Côte d’Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging (IRCAN), Nice, France. 2 Laboratory of Tumor Immunology, Department of Oncology, Center for Translational Research in Onco-Hematology, Swiss Cancer Center Léman (SCCL), Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
    [Show full text]
  • Screening and Identification of Hub Genes in Bladder Cancer by Bioinformatics Analysis and KIF11 Is a Potential Prognostic Biomarker
    ONCOLOGY LETTERS 21: 205, 2021 Screening and identification of hub genes in bladder cancer by bioinformatics analysis and KIF11 is a potential prognostic biomarker XIAO‑CONG MO1,2*, ZI‑TONG ZHANG1,3*, MENG‑JIA SONG1,2, ZI‑QI ZHOU1,2, JIAN‑XIONG ZENG1,2, YU‑FEI DU1,2, FENG‑ZE SUN1,2, JIE‑YING YANG1,2, JUN‑YI HE1,2, YUE HUANG1,2, JIAN‑CHUAN XIA1,2 and DE‑SHENG WENG1,2 1State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine; 2Department of Biotherapy, Sun Yat‑Sen University Cancer Center; 3Department of Radiation Oncology, Sun Yat‑Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China Received July 31, 2020; Accepted December 18, 2020 DOI: 10.3892/ol.2021.12466 Abstract. Bladder cancer (BC) is the ninth most common immunohistochemistry and western blotting. In summary, lethal malignancy worldwide. Great efforts have been devoted KIF11 was significantly upregulated in BC and might act as to clarify the pathogenesis of BC, but the underlying molecular a potential prognostic biomarker. The present identification mechanisms remain unclear. To screen for the genes associated of DEGs and hub genes in BC may provide novel insight for with the progression and carcinogenesis of BC, three datasets investigating the molecular mechanisms of BC. were obtained from the Gene Expression Omnibus. A total of 37 tumor and 16 non‑cancerous samples were analyzed to Introduction identify differentially expressed genes (DEGs). Subsequently, 141 genes were identified, including 55 upregulated and Bladder cancer (BC) is the ninth most common malignancy 86 downregulated genes. The protein‑protein interaction worldwide with substantial morbidity and mortality.
    [Show full text]
  • HIC1 Modulates Prostate Cancer Progression by Epigenetic Modification
    Author Manuscript Published OnlineFirst on January 22, 2013; DOI: 10.1158/1078-0432.CCR-12-2888 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. HIC1 modulates prostate cancer progression by epigenetic modification Jianghua Zheng#1, 2, Jinglong Wang#1, Xueqing Sun#1,Mingang Hao1,Tao Ding3, Dan Xiong 1, Xiumin Wang1, Yu Zhu 4, Gang Xiao 1, Guangcun Cheng1, Meizhong Zhao5, Jian Zhang6, Jianhua Wang1* 1 Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. 2 Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China. 3 Department of Urology, Shanghai Putuo Hospital, Shanghai Traditional Chinese Medicine University, Shanghai, 200062, China. 4 Department of Urology, Shanghai Ruijin Hospital, Shanghai, 200025, China. 5 Shanghai Ruijin Hospital, Comprehensive Breast Health Center, Shanghai, 200025, China. 6 Guangxi Medical University, Nanning, 530021, China. # J Zheng, J Wang and X Sun contributed equally to this work. *Corresponding author: Jianhua Wang, PhD, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. Phone: 021-54660871; Fax: 021-63842157; E-mail:[email protected]. No potential conflicts of interest were disclosed 1 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 22, 2013; DOI: 10.1158/1078-0432.CCR-12-2888 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Statement of Translational Relevance This study aimed to further our understanding of the role that hypermethylatioted in cancer 1 (HIC1) plays in prostate cancer (PCa) progression.
    [Show full text]
  • Methods in and Applications of the Sequencing of Short Non-Coding Rnas" (2013)
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Methods in and Applications of the Sequencing of Short Non- Coding RNAs Paul Ryvkin University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Ryvkin, Paul, "Methods in and Applications of the Sequencing of Short Non-Coding RNAs" (2013). Publicly Accessible Penn Dissertations. 922. https://repository.upenn.edu/edissertations/922 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/922 For more information, please contact [email protected]. Methods in and Applications of the Sequencing of Short Non-Coding RNAs Abstract Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields angingr from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non- coding RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications ot RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis.
    [Show full text]