The Meloidae (Coleoptera) of Wisconsin

Total Page:16

File Type:pdf, Size:1020Kb

The Meloidae (Coleoptera) of Wisconsin Zootaxa 4030 (1): 001–089 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4030.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:BBB57FB4-F7E7-48B0-A17B-BE929EAD25E5 ZOOTAXA 4030 THE MELOIDAE (COLEOPTERA) OF WISCONSIN DANIEL A. MARSCHALEK 1,2,* & DANIEL K. YOUNG 3 1 Department of Entomology, University of Wisconsin, 445 Russell Labs, 1630 Linden Drive, Madison, WI 53706–1598 USA. 2 Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182–4614 USA. E-mail: [email protected] 3 Department of Entomology, University of Wisconsin, 445 Russell Labs, 1630 Linden Drive, Madison, WI 53706–1598 USA. E-mail: [email protected] * Corresponding Author Magnolia Press Auckland, New Zealand Accepted by F. Shockley: 1 Sept. 2015; published: 13 Oct. 2015 DANIEL A. MARSCHALEK & DANIEL K. YOUNG THE MELOIDAE (COLEOPTERA) OF WISCONSIN (Zootaxa 4030) 89 pp.; 30 cm. 13 Oct. 2015 ISBN 978-1-77557-813-0 (paperback) ISBN 978-1-77557-814-7 (Online edition) FIRST PUBLISHED IN 2015 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2015 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4030 (1) © 2015 Magnolia Press MARSCHALEK & YOUNG Table of contents Abstract . 3 Introduction . 4 Methods . 6 Results . 8 Meloidae Gyllenhal 1810 . 8 Key to the Wisconsin Genera of Adult Meloidae . 8 Meloinae Gyllenhal 1810 . 8 Epicauta Dejean . 8 Key to the Wisconsin Species of Adult Epicauta . 9 Epicauta fabricii (LeConte) . 10 Epicauta flavocinerea (Blatchley) . 11 Epicauta murina (LeConte) . 12 Epicauta cinerea (Forster) . 13 Epicauta flobcina Pinto . 14 Epicauta funebris Horn . 15 Epicauta obesa (Chevrolat) . 15 Epicauta pensylvanica (Degeer) . 16 Epicauta atrata (Fabricius) . 17 Epicauta sericans LeConte . 19 Epicauta occidentalis Werner . 19 Epicauta vittata (Fabricius) . 20 Lytta Fabricius . 22 Key to the Wisconsin Species of Adult Lytta . 22 Lytta sayi LeConte . 22 Lytta aenea Say . 23 Lytta nuttalli Say . 24 Meloe Linnaeus . 25 Key to the Wisconsin Species of Adult Meloe . 25 Meloe niger Kirby . 26 Meloe dianella Pinto & Selander . 27 Meloe angusticollis Say . 28 Meloe impressus Kirby . 28 Meloe campanicollis Pinto & Selander . 29 Nemognathinae Castelnau 1840 . 30 Gnathium Kirby . 30 Gnathium minimum (Say) . 30 Nemognatha Illiger . 32 Key to the Wisconsin Species of Adult Nemognatha . 32.
Recommended publications
  • Elytra Reduction May Affect the Evolution of Beetle Hind Wings
    Zoomorphology https://doi.org/10.1007/s00435-017-0388-1 ORIGINAL PAPER Elytra reduction may affect the evolution of beetle hind wings Jakub Goczał1 · Robert Rossa1 · Adam Tofilski2 Received: 21 July 2017 / Revised: 31 October 2017 / Accepted: 14 November 2017 © The Author(s) 2017. This article is an open access publication Abstract Beetles are one of the largest and most diverse groups of animals in the world. Conversion of forewings into hardened shields is perceived as a key adaptation that has greatly supported the evolutionary success of this taxa. Beetle elytra play an essential role: they minimize the influence of unfavorable external factors and protect insects against predators. Therefore, it is particularly interesting why some beetles have reduced their shields. This rare phenomenon is called brachelytry and its evolution and implications remain largely unexplored. In this paper, we focused on rare group of brachelytrous beetles with exposed hind wings. We have investigated whether the elytra loss in different beetle taxa is accompanied with the hind wing shape modification, and whether these changes are similar among unrelated beetle taxa. We found that hind wings shape differ markedly between related brachelytrous and macroelytrous beetles. Moreover, we revealed that modifications of hind wings have followed similar patterns and resulted in homoplasy in this trait among some unrelated groups of wing-exposed brachelytrous beetles. Our results suggest that elytra reduction may affect the evolution of beetle hind wings. Keywords Beetle · Elytra · Evolution · Wings · Homoplasy · Brachelytry Introduction same mechanism determines wing modification in all other insects, including beetles. However, recent studies have The Coleoptera order encompasses almost the quarter of all provided evidence that formation of elytra in beetles is less currently known animal species (Grimaldi and Engel 2005; affected by Hox gene than previously expected (Tomoyasu Hunt et al.
    [Show full text]
  • 39Th Biennial Report: Agricultural Research in Kansas
    This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. Agricultural Research in Kansas 39th Biennial Report of the Kansas Agricultural Experiment Station Report of the Director for the Biennium Ending June 30, 1998 This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. FRONT COVER New alliances among research, education, and industry address all aspects of wheat production, processing, and marketing. We appreciate loans of photographs from: Mary Ellen Barkley Keith Behnke Ralph Charlton Barbara Gatewood Wayne Geyer Carol Shanklin This report was prepared in the Department of Communications by: Eileen Schofield, Senior Editor Gloria Schwartz, Publications Writer I Fred Anderson, Graphics Artist Information provided by: Teri Davis Doug Elcock Charisse Powell and KAES department offices This report is available on the World Wide Web at http://www.oznet.ksu.edu. Contribution no. 99-331-S from the Kansas Agricultural Experiment Station This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. Letter of Transmittal Office of the Director To the Honorable William Graves, Governor of Kansas It is my pleasure to transmit herewith the report of the Agricultural Experiment Station of the Kansas State University of Agriculture and Applied Science for the biennium ending June 30, 1998.
    [Show full text]
  • Blister Beetles in Alfalfa Circular 536 Revised by Jane Breen Pierce1
    Blister Beetles in Alfalfa Circular 536 Revised by Jane Breen Pierce1 Cooperative Extension Service • College of Agricultural, Consumer and Environmental Sciences This publication provides information on the veterinary Table 1. Estimated Number of Beetles for a Lethal and agronomic importance, distinguishing features, (1 mg/kg) Dose of Cantharidin biology, distribution, and control of blister beetles. Beetle Horse Weight (lb) Recommendations for the purchase and use of alfalfa Cantharidin hay by horse owners and other livestock owners are Content (mg) 275 550 1,000 also provided. 1 125 250 455 2 63 125 244 3 41 83 161 VETERINARY SIGNIFICANCE OF BLISTER BEETLES 4 31 63 122 The common name for blister beetles comes from the 5 25 50 97 irritating reaction the beetle’s body fluids cause on ani- Adapted from Campinera et al. (1985) mal skin or delicate membranes. These fluids contain cantharidin, a potent blistering agent that is present in varying amounts in most blister beetle species. Fluids are blistering of the mouth, esophagus, stomach, and blad- released when the beetle is crushed or handled roughly. der. Death can occur 24 hours after a heavy dose. Cantharidin is a stable chemical and a long-term health Laboratory studies have been conducted to determine threat to nearly all livestock (particularly horses) that are the amount of cantharidin contained in various species fed contaminated hay. Storing infested hay does not sig- of blister beetles. Reports on beetles in several genera nificantly reduce the amount of cantharidin in the hay. indicate cantharidin content varying from 1 to 11.3% Research reports indicate cantharidin toxosis can be of their dry weight.
    [Show full text]
  • Cytogenetic Analysis, Heterochromatin
    insects Article Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters Laura Ruiz-Torres, Pablo Mora , Areli Ruiz-Mena, Jesús Vela , Francisco J. Mancebo , Eugenia E. Montiel, Teresa Palomeque and Pedro Lorite * Department of Experimental Biology, Genetics Area, University of Jaén, 23071 Jaén, Spain; [email protected] (L.R.-T.); [email protected] (P.M.); [email protected] (A.R.-M.); [email protected] (J.V.); [email protected] (F.J.M.); [email protected] (E.E.M.); [email protected] (T.P.) * Correspondence: [email protected] Simple Summary: The family Meloidae contains approximately 3000 species, commonly known as blister beetles for their ability to secrete a substance called cantharidin, which causes irritation and blistering in contact with animal or human skin. In recent years there have been numerous studies focused on the anticancer action of cantharidin and its derivatives. Despite the recent interest in blister beetles, cytogenetic and molecular studies in this group are scarce and most of them use only classical chromosome staining techniques. The main aim of our study was to provide new information in Citation: Ruiz-Torres, L.; Mora, P.; Meloidae. In this study, cytogenetic and molecular analyses were applied for the first time in the Ruiz-Mena, A.; Vela, J.; Mancebo, F.J.; family Meloidae. We applied fluorescence staining with DAPI and the position of ribosomal DNA in Montiel, E.E.; Palomeque, T.; Lorite, P. Hycleus scutellatus was mapped by FISH. Hycleus is one of the most species-rich genera of Meloidae Cytogenetic Analysis, but no cytogenetic data have yet been published for this particular genus.
    [Show full text]
  • Lytta Vesicatoria) Dermatitis Outbreak and Containment at Kwara State University Students’ Hostels Adeyemi Mufutau AJAO*1 Oluwasogo A
    Scholars Journal of Applied Medical Sciences (SJAMS) ISSN 2320-6691 (Online) Sch. J. App. Med. Sci., 2016; 4(2B):460-468 ISSN 2347-954X (Print) ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com Original Research Article Investigation of Blister Beetle (Lytta vesicatoria) Dermatitis Outbreak and Containment at Kwara State University Students’ Hostels Adeyemi Mufutau AJAO*1 Oluwasogo A. OLALUBI2, Ismaila, Adeniran ADEROLU3, Shola. K BABATUNDE1, Nimat B. IDRIS4, Abdulrasheed Abidemi ADIO2, E.B AJAO4 1Department of Bioscience and Biotechnology, Kwara State University, Nigeria 2School of Allied Health & Environmental Scieces, 3Department of Crop production, 4Medical Centre and Environment Safety Unit, Kwara State University, Malete. PMB 1533, Ilroin, Kwara State, Nigeria *Corresponding author Adeyemi Mufutau AJAO Email: [email protected] Abstract: The study was undertaken to ascertain the causative agent and diagnosis of the clinical profile of patients that made them susceptible to Blister Beetle Dermatitis, efforts were also devoted to investigate risk factors associated with BBD symptoms in patients. This study also provides entomological and environmental data on occurrence and outbreak of BBD at the student hostels in Kwara State University, Nigeria. Patients with clinical manifestation of dermatitis were studied by questionnaire administration along with close clinical examination of the disease condition. The questionnaire sought information on skin lesions, sleeping locations of the patients and beetle activity. The result of the study revealed 44 patients (30 males and 14 females) reported insect bite, dermatitis at and were treated for BBD at the University Medical Centre. The majority of patients were in the age group 10-25years, (77.3%).
    [Show full text]
  • Concluding Remarks
    Concluding Remarks The bulk of secretory material necessary for the encapsulation of spermatozoa into a spermatophore is commonly derived from the male accessory organs of re­ production. Not surprisingly, the extraordinary diversity in size, shape, and struc­ ture of the spermatophores in different phyla is frequently a reflection of the equally spectacular variations in the anatomy and secretory performance of male reproductive tracts. Less obvious are the reasons why even within a given class or order of animals, only some species employ spermatophores, while others de­ pend on liquid semen as the vehicle for spermatozoa. The most plausible expla­ nation is that the development of methods for sperm transfer must have been in­ fluenced by the environment in which the animals breed, and that adaptation to habitat, rather than phylogeny, has played a decisive role. Reproduction in the giant octopus of the North Pacific, on which our attention has been focussed, pro­ vides an interesting example. During copulation in seawater, which may last 2 h, the sperm mass has to be pushed over the distance of 1 m separating the male and female genital orifices. The metre-long tubular spermatophore inside which the spermatozoa are conveyed offers an obvious advantage over liquid semen, which could hardly be hauled over such a long distance. Apart from acting as a convenient transport vehicle, the spermatophore serves other purposes. Its gustatory and aphrodisiac attributes, the provision of an ef­ fective barrier to reinsemination, and stimulation of oogenesis and oviposition are all of great importance. Absolutely essential is its function as storage organ for spermatozoa, at least as effective as that of the epididymis for mammalian spermatozoa.
    [Show full text]
  • Volume 42, Number 2 June 2015
    Wisconsin Entomological Society N e w s I e t t e r Volume 42, Number 2 June 2015 Monitoring and Management - A That is, until volunteer moth surveyor, Steve Sensible Pairing Bransky, came onto the scene. Steve had By Beth Goeppinger, Wisconsin Department done a few moth and butterfly surveys here ofN atural Resources and there on the property. But that changed in 2013. Armed with mercury vapor lights, Richard Bong State Recreation Area is a bait and a Wisconsin scientific collector's heavily used 4,515 acre property in the permit, along with our permission, he began Wisconsin State Park system. It is located in surveying in earnest. western Kenosha County. The area is oak woodland, savanna, wetland, sedge meadow, He chose five sites in woodland, prairie and old field and restored and remnant prairie. savanna habitats. He came out many nights Surveys of many kinds and for many species in the months moths might be flying. After are done on the property-frog and toad, finding that moth populations seemed to drift fence, phenology, plants, ephemeral cycle every 3-5 days, he came out more ponds, upland sandpiper, black tern, frequently. His enthusiasm, dedication and grassland and marsh birds, butterfly, small never-ending energy have wielded some mammal, waterfowl, muskrat and wood surprising results. Those results, in turn, ducks to name a few. Moths, except for the have guided us in our habitat management showy and easy-to-identify species, have practices. been ignored. Of the 4,500 moth species found in the state, Steve has confirmed close to 1,200 on the property, and he isn't done yet! He found one of the biggest populations of the endangered Papaipema silphii moths (Silphium borer) in the state as well as 36 species of Catocola moths (underwings), them.
    [Show full text]
  • Pest Management News
    Pest Management News Dr. John D. Hopkins, Associate Professor and Extension Entomologist – Coeditor Dr. Kelly M. Loftin, Professor and Extension Entomologist – Coeditor Contributors Dr. Becky McPeake, Professor and Wildlife Extension Specialist Dr. Bob Scott, Professor and Extension Weed Scientist Sherrie E. Smith, Plant Pathology Instructor, Plant Health Clinic Diagnostician Letter #3 July 31, 2016 ________________________________________________________________________________ Squash Vine Borer Management for Home Garden and Commercial Squash and Pumpkin Production John D. Hopkins Squash vine borers in Arkansas are one of the most damaging and most common pests of squash and pumpkins, especially in home gardens. Plant types affected include hubbard squash, gourds, pumpkins, zucchini, acorn squash, and yellow squash. Butternut squash is less susceptible than other squashes and cucumbers and melons are usually not attacked. The adult of the squash vine borer, Melittia cucurbitae (Harris) [Order Lepidoptera, Family Sesiidae] is a clear-winged moth with metallic greenish-black scales on the front wings. The hind wings are transparent and the casual observer might mistake this moth for a wasp. The adult is approximately 1 inch long and the abdomen is ringed with orange and black. These moths fly quickly and noisily about plants during the daytime. Female moths lay their small (1/25 inch), oval, somewhat flattened, brownish eggs on stems (normally close to the ground) in late May or early June. Young borers hatch in about a week, tunnel into stems and feed. Larval excrement (frass) may extrude from the entry points and affected stems and vines may ultimately wilt and die. Larvae feed within the plant for about four weeks until they are full grown.
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • Coleoptera: Meloidae) in Kerman Province, Iran
    J Insect Biodivers Syst 07(1): 1–13 ISSN: 2423-8112 JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article https://jibs.modares.ac.ir http://zoobank.org/References/216741FF-63FB-4DF7-85EB-37F33B1182F2 List of species of blister beetles (Coleoptera: Meloidae) in Kerman province, Iran Sara Sadat Nezhad-Ghaderi1 , Jamasb Nozari1* , Arastoo Badoei Dalfard2 & Vahdi Hosseini Naveh1 1 Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. [email protected]; [email protected]; [email protected] 2 Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran. [email protected] ABSTRACT. The family Meloidae Gyllenhaal, 1810 (Coleoptera), commonly known as blister beetles, exist in warm, dry, and vast habitats. This family was studied in Kerman province of Iran during 2018–2019. The specimens were Received: collected using sweeping net and via hand-catch. They were identified by the 23 December, 2019 morphological characters, genitalia, and acceptable identification keys. To improve the knowledge of the Meloidae species of southeastern Iran, faunistic Accepted: 11 September, 2020 investigations on blister beetles of this region were carried out. Totally, 30 species belonging to 10 genera from two subfamilies (Meloinae and Published: Nemognathinae) were identified. Among the identified specimens, 22 species 14 September, 2020 were new for fauna of Kerman province. Subject Editor: Sayeh Serri Key words: Meloidae, Southeastern Iran, Meloinae, Nemognathinae, Fauna Citation: Nezhad-Ghaderi, S.S., Nozari, J., Badoei Dalfard, A. & Hosseini Naveh, V. (2021) List of species of blister beetles (Coleoptera: Meloidae) in Kerman province, Iran. Journal of Insect Biodiversity and Systematics, 7 (1), 1–13.
    [Show full text]
  • Djvu Document
    Vol. 5, No. 2, June 1991 65 On the Nomenclature and ClasSification of the Meloic;1ae (Coleoptera) Richard B. Selander Florida State Collection of Arthropods P. O. Box 147100 Gainesville, Florida 32614-7100 Abstract menelature (International Commission on Zoologi Forty-three availablefamily-group names (and three cal Nomenclature 1985). unavaillihle names) in Meloidae are listed as a basis fOr establishing nomenclatural priority. Available genus- , with indication of the type species of each; this is fol- Borcbmann (1917), and Kaszab (1969) have pub- lished classifications ofthe Meloidae to the generic or subgeneric level on a worldwide basis. None Of nomenc a ure. na y, a Classl Ica on 0 te amI y Meloidae to the subgeneric level is presented in which the three paid much attention to the priority of names at the famIly-group and genus-group levels are family-group names, nor in general ha"e the many treated in a manner consistent with the provisions ofthe authors who have dealt with restricted segments of InternatIOnal Code of ZoolOgIcal Nomenclature. TIils the meloid fauna. Kaszab's (1969) method of classification recognizes three subfamilies (Eleticinae, assigning authorship was particularly confusing In Meloinae, and Horiinae), 10 tribes, 15 subtribes, 116 violation of the ICZN and general practice in genera, and 66 subgenera. The subtribes Pyrotina and zoology, he gave authorship to the first author to Lydina (properly Alosimina), ofthe tribe Cerocomini, are use a name at a particular taxonomic level. For combined with the subtribe Lyttina. The tribe Steno- example, Eupomphini was CI edited to Selandel derini, of the subfamily Horiinae, is defined to include (l955b) but Eupomphina to Kaszab (1959) (actually Stenodera Eschscholtz.Epispasta Selanderistransferred from Cerocomini to Meloini.
    [Show full text]
  • Blister Beetle Basics W
    The Spotted Blister Beetle Iron-Cross Blister Beetle Blister Beetle Basics W. Eugene Hall1, Naomi Pier1 and Peter C. Ellsworth2 University of Arizona, 1Assistants in Extension & 2IPM Specialist Blister beetles (family Meloidae) are found throughout Arizona. These beetles contain a defensive chemical (cantharidin) that may be harmful to humans and other animals. Blister beetles are often times confused with other similar looking beetles that do not produce cantharidin. Blister beetles are found in many different sizes and colors. However, they all share the characteristic feature of a broad head that is wider than the thorax (“neck”). This, combined with broader elytra (wing covers), creates a distinct “neck-like” appearance (Fig. 1 & 2). They also have just 4 1 segments in their hind tarsi (Fig. 1). Blister beetles may be 2 confused with checkered beetles, soldier beetles, darkling beetles, 3 4 Figureground 8G. Adult beetles blister beetle, and Zonitis others atripennis beetles. (Fig.Figure 8H 2. –Adult6). blister beetle, Zonitis sayi. (Whitney (WhitneySandya Cranshaw, Colorado State University, Bugwood.org) Cranshaw, Colorado State University, Bugwood.org) BODY SOFT 4 TARSI IN Blister Beetle NOT Blister Beetles OR LEATHERY HINDLEG Athigiman Figure 1. Examples of two blister beetle species (Epicauta pardalis, left; Tegrodera aloga, right) with the characteristic narrow thorax (“neck”) , NMSU, Circular 536 Circular , NMSU, indicated by arrows. Blister beetles have soft, leathery bodies. Other Resources: Hall, WE, LM Brown, N Pier, PC Ellsworth. 2019. Blister Beetles in Food? U. Arizona. https://cals.arizona.edu/crops/cotton/files/BBinFood.pdf Figure 2. Left to right, Epicauta blister beetle, tamarisk leaf beetle, Pierce, JB.
    [Show full text]