Sodium Dichromate Aoa Use 2 ZFL V2 Public

Total Page:16

File Type:pdf, Size:1020Kb

Sodium Dichromate Aoa Use 2 ZFL V2 Public ANALYSIS OF ALTERNATIVES Legal name of applicants: ZF Luftfahrttechnik GmbH Submitted by: ZF Luftfahrttechnik GmbH Substance: Sodium dichromate, EC No: 234-190-3, CAS No: 7789-12-0 (dihydrate), 10588-01-9 (anhydrous) Use title: Use of Sodium dichromate for surface treatment of metals such as aluminium, steel, zinc, magnesium, titanium, alloys, composites, sealings of anodic films. Use number: 2 USE NUMBER: 2 ANALYSIS OF ALTERNATIVES Disclaimer This document shall not be construed as expressly or implicitly granting a license or any rights to use related to any content or information contained therein. In no event shall applicant be liable in this respect for any damage arising out or in connection with access, use of any content or information contained therein despite the lack of approval to do so. II Use number: 2 ANALYSIS OF ALTERNATIVES CONTENTS 1. SUMMARY 1 2. INTRODUCTION .................................................................................................................................................. 7 2.1. Substance .......................................................................................................................................... 7 2.2. Uses of Cr(VI) containing substances .............................................................................................. 7 2.3. Purpose and benefits of Cr(VI) compounds ..................................................................................... 7 3. ANALYSIS OF SUBSTANCE FUNCTION.......................................................................................................... 9 3.1. Usage ................................................................................................................................................ 9 3.2. Surface treatment process descriptions ............................................................................................. 14 3.2.1. Pre-treatment processes ........................................................................................................................... 17 3.2.2. Main surface treatment processes ............................................................................................................ 19 3.2.3. Post-treatment processes .......................................................................................................................... 20 3.3. Substance specific characteristics of chromates ............................................................................... 22 3.3.1. Characteristics and properties of sodium dichromate .............................................................................. 22 3.4. Key functionalities of chromate based surface treatments................................................................ 24 3.4.1. Key functionalities of sodium dichromate-based surface pre-treatments ................................................ 24 3.4.2. Key sodium dichromate functionalities for the main- and post-treatment process .................................. 26 3.4.3. Summary of selected quantified key functionalities ................................................................................ 28 4. ANNUAL TONNAGE............................................................................................................................................ 32 4.1. Annual tonnage band of sodium dichromate .................................................................................... 32 5. OVERVIEW OF THE PROCESS FOR ALTERNATIVE DEVELOPMENT AND APPROVAL IN THE AEROSPAC SECTOR ............................................................................................................................. 33 5.1. Development and qualification ......................................................................................................... 36 5.1.1. Requirements development ..................................................................................................................... 36 5.1.2. Technology development ........................................................................................................................ 37 5.1.3. Qualification ............................................................................................................................................ 39 5.1.4. Certification ............................................................................................................................................. 40 5.1.5. Implementation / industrialisation ........................................................................................................... 42 5.2. Examples ................................................................................................................................................ 43 6. IDENTIFICATION OF POSSIBLE ALTERNATIVES ......................................................................................... 45 6.1 Description of efforts made to identify possible alternatives ........................................................... 45 6.1.1. Research and development in the aerospace sector ................................................................................. 45 6.1.2. Data searches ........................................................................................................................................... 46 6.1.3. Consultations ........................................................................................................................................... 46 6.2 List of possible alternatives .............................................................................................................. 47 7. SUITABILITY AND AVAILABILITY OF POSSIBLE ALTERNATIVES ......................................................... 49 7.1. Main processes & post treatments .................................................................................................... 49 CATEGORY 1 ALTERNATIVES ............................................................................................................................... 49 7.1.1. ALTERNATIVE 1: Acidic surface treatments ........................................................................................ 49 7.1.2. ALTERNATIVE 2: Silane/siloxane and sol-gel coatings ....................................................................... 52 7.1.3. ALTERNATIVE 3: Cr(III)-based surface treatments ............................................................................. 58 7.1.4. ALTERNATIVE 4: Water-based post-treatments ................................................................................... 64 CATEGORY 2 ALTERNATIVES ............................................................................................................................... 69 7.1.5. ALTERNATIVE 5: Molybdates and molybdenum-based processes ...................................................... 69 7.1.6. ALTERNATIVE 6: Organometallics (zirconium and titanium-based products, such as fluorotitanic and fluorozirconic acids) ................................................................................................... 72 7.1.7. ALTERNATIVE 7: Benzotriazole-based processes, e.g. 5-methyl-1H-benzotriazol.............................. 75 7.1.8. ALTERNATIVE 8: Chromate-free etch primers .................................................................................... 76 7.1.9. ALTERNATIVE 9: Manganese-based processes .................................................................................... 78 7.1.10. ALTERNATIVE 10: Cold nickel sealing .............................................................................................. 82 7.1.11. ALTERNATIVE 11: Magnesium-rich primers ..................................................................................... 85 7.1.12. ALTERNATIVE 12: Electrolytic paint technology .............................................................................. 88 7.1.13. ALTERNATIVE 13: Zinc-nickel electroplating ................................................................................... 92 7.2. Pre treatments ................................................................................................................................... 94 Use number: 2 III ANALYSIS OF ALTERNATIVES 7.2.1. Inorganic acids......................................................................................................................................... 94 7.2.2. Hydrogen peroxide activated benzyl alcohol (with acid) ........................................................................ 100 8. OVERALL CONCLUSIONS ON SUITABILITYAND AVAILABILITY OF POSSIBLE ALTERNATIVES ............................................................................................................................................. 103 9. REFERENCE LIST ................................................................................................................................................ 107 APPENDIX 1 – JUSTIFICATIONS FOR CONFIDENTIALITY CLAIMS ............................................................... 111 APPENDIX 2 – MASTERLIST OF ALTERNATIVES WITH CLASSIFICATION INTO CATEGORIES 1-3 AND SHORT SUMMARY OF THE REASON FOR CLASSIFICATION OF ALTERNATIVES INTO CATEGORY 3 ......................................................................................................... 112 APPENDIX 3 – INFORMATION ON RELEVANT SUBSTANCES FOR IDENTIFIED ALTERNATIVES ............................................................................................................................................. 116 IV Use number:
Recommended publications
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Coast Guard, DHS Pt. 150, App. I
    Coast Guard, DHS Pt. 150, App. I APPENDIX I TO PART 150—EXCEPTIONS Member of reactive group Compatible with TO THE CHART Propylene glycol (20) (a) The binary combinations listed below Oleum (0) ............................... Hexane (31) have been tested as prescribed in Appendix Dichloromethane (36) III and found not to be dangerously reactive. Perchloroethylene (36) These combinations are exceptions to the 1,2-Propylene glycol (20) ...... Diethylenetriamine (7) Compatibility Chart (Figure 1) and may be Polyethylene polyamines (7) Triethylenetetramine (7) stowed in adjacent tanks. Sodium dichromate, 70% (0) Methyl alcohol (20) Member of reactive group Compatible with Sodium hydrosulfide solution Methyl alcohol (20) (5). Acetone (18) .......................... Diethylenetriamine (7) Iso-Propyl alcohol (20) Acetone cyanohydrin (0) ....... Acetic acid (4) Sulfuric acid (2) ..................... Coconut oil (34) Acrylonitrile (15) ..................... Triethanolamine (8) Coconut oil acid (34) Palm oil (34) 1,3-Butylene glycol (20) ......... Morpholine (7) Tallow (34) 1,4-Butylene glycol (20) ......... Ethylamine (7) Sulfuric acid, 98% or less (2) Choice white grease tallow Triethanolamine (8) (34) gamma-Butyrolactone (0) ...... N-Methyl-2-pyrrolidone (9) Caustic potash, 50% or less Isobutyl alcohol (20) (b) The binary combinations listed below (5). Ethyl alcohol (20) have been determined to be dangerously re- Ethylene glycol (20) active, based on either data obtained in the Isopropyl alcohol (20) Methyl alcohol (20) literature or on laboratory testing which has iso-Octyl alcohol (20) been carried out in accordance with proce- Caustic soda, 50% or less (5) Butyl alcohol (20) dures prescribed in Appendix III. These com- tert-Butyl alcohol, Methanol binations are exceptions to the Compat- mixtures ibility Chart (Figure 1) and may not be Decyl alcohol (20) stowed in adjacent tanks.
    [Show full text]
  • Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life
    Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life Item Type text; Electronic Dissertation Authors Pasek, Matthew Adam Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 06:16:37 Link to Item http://hdl.handle.net/10150/194288 PHOSPHORUS AND SULFUR COSMOCHEMISTRY: IMPLICATIONS FOR THE ORIGINS OF LIFE by Matthew Adam Pasek ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCE In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College UNIVERSITY OF ARIZONA 2 0 0 6 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Matthew Adam Pasek entitled Phosphorus and Sulfur Cosmochemistry: Implications for the Origins of Life and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 04/11/2006 Dante Lauretta _______________________________________________________________________ Date: 04/11/2006 Timothy Swindle _______________________________________________________________________ Date: 04/11/2006
    [Show full text]
  • Vanadate-Molybdate Reagent Safety Data Sheet According to Federal Register / Vol
    Vanadate-Molybdate Reagent Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 12/20/2013 Revision date: 05/02/2014 Supersedes: 12/20/2013 Version: 1.1 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Mixture Product name : Vanadate-Molybdate Reagent Product code : LC26600 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : For laboratory and manufacturing use only. 1.3. Details of the supplier of the safety data sheet LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture GHS-US classification Skin Corr. 1B H314 Eye Dam. 1 H318 2.2. Label elements GHS-US labelling Hazard pictograms (GHS-US) : GHS05 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H314 - Causes severe skin burns and eye damage Precautionary statements (GHS-US) : P260 - Do not breathe mist, vapours, spray P264 - Wash exposed skin thoroughly after handling P280 - Wear protective gloves, eye protection, protective clothing, face protection P301+P330+P331 - IF SWALLOWED: rinse mouth. Do NOT induce vomiting P303+P361+P353 - IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower P304+P340 - IF INHALED: remove victim to fresh air and keep at rest in a position comfortable for breathing P305+P351+P338 - If in eyes: Rinse cautiously with water for several minutes.
    [Show full text]
  • Massachusetts Chemical Fact Sheet
    Massachusetts Chemical Fact Sheet Hexavalent Chromium Table 1: HEXAVALENT CHROMIUM COMPOUNDS: Compounds SELECTED EXAMPLES* Compound Chemical Formula CAS # This fact sheet is part of a series of chemical fact sheets Ammonium chromate (NH ) Cr0 7788-98-9 developed by TURI to help Massachusetts companies, 4 2 4 community organizations and residents understand the Ammonium dichromate (NH4)2Cr2O7 7789-09-5 chemical’s use and health and environmental effects, as Barium chromate BaCrO4 10294-40-3 well as the availability of safer alternatives. tert-Butyl Chromate [(CH3)3CO]2CrO2 1189-85-1 Hexavalent chromium compounds are a toxic form of Calcium chromate CaCrO4 13765-19-0 chromium and are used in a variety of industrial processes Chromic acid H2CrO4 7738-94-5 and products. Chromium VI chloride CrCl6 14986-48-2 Hexavalent chromium compounds are human carcinogens, Chromic trioxide CrO3 1333-82-0 mutagens and developmental toxicants and are acutely Hexavalent chromium ion Cr6+ 18540-29-9 toxic. Non-hexavalent chromium compounds do not pose Lead chromate PbCrO4 7758-97-6 the same level of concern with regard to either chronic or Lead chromate oxide PbCrO4-PbO 8454-12-1 acute toxicity. Potassium chlorochromate KCrO3Cl 16037-50-6 Until 2011, all chromium compounds were treated as Potassium chromate K2CrO4 7789-00-6 a single category under TURA. Beginning with Potassium dichromate K Cr O 7778-50-9 reporting year 2012, hexavalent chromium 2 2 7 compounds are reportable under TURA as a Silver chromate Ag2CrO4 7784-01-2 separate category and are designated as a Higher Sodium chromate Na2CrO4 7775-11-3 Hazard Substance, which lowers the reporting Sodium dichromate 7789-12-0 threshold to 1,000 lb/year.
    [Show full text]
  • Vanadate and Peroxovanadate Complexes of Biomedical Relevance – a Speciation Approach with Focus on Diabetes
    Vanadate and Peroxovanadate Complexes of Biomedical Relevance – A speciation approach with focus on diabetes András Gorzsás Department of Chemistry Inorganic Chemistry Umeå University Umeå, Sweden Akademisk avhandling som med tillstånd av rektorsämbetet vid Umeå Universitet för erhållande av Filosofie Doktorsexamen framlägges till offentlig granskning vid Kemiska institutionen, sal KB3A9, KBC–huset, fredagen den 22 april 2005, kl 13.00. Fakultetsopponent: Professor Carlos F. G. C. Geraldes, Department of Biochemistry, Faculty of Science and Technology, University of Coimbra, P. O. Box 3126, P – 3001 – 401 Coimbra, Portugal i TITLE Vanadate and Peroxovanadate Complexes of Biomedical Relevance – A speciation approach with focus on diabetes AUTHOR András Gorzsás ADDRESS Department of Chemistry, Inorganic Chemistry, Umeå University, SE – 901 87 Umeå, Sweden ABSTRACT Diabetes mellitus is one of the most threatening epidemics of modern times with rapidly increasing incidence. Vanadium and peroxovanadium compounds have been shown to exert insulin–like actions and, in contrast to insulin, are orally applicable. However, problems with side–effects and toxicity remain. The exact mechanism(s) by which these compounds act are not yet fully known. Thus, a better understanding of the aqueous chemistry of vanadates and peroxovanadates in the presence of various (bio)ligands is needed. The present thesis summarises six papers dealing mainly with aqueous speciation in different vanadate – and peroxovanadate – ligand systems of biological and medical relevance. Altogether, five ligands have been studied, including important blood constituents (lactate, citrate and phosphate), a potential drug candidate (picolinic acid), and a dipeptide (alanyl serine) to model the interaction of (peroxo)vanadate in the active site of enzymes. Since all five ligands have been studied both with vanadates and peroxovanadates, the number of systems described in the present work is eleven, including the vanadate – citrate – lactate mixed ligand system.
    [Show full text]
  • Oxidation of 9-Fluorenol to 9-Fluorenone with Sodium Hypochlorite
    CHEM 2229 EXP 1: Oxidation of 9-Fluorenol to 9-Fluorenone with Sodium Hypochlorite Objective: In this experiment you will learn how to perform an oxidation reaction by oxidizing an alcohol (9- hydroxyfluorene) to a ketone (9-fluorenone) using sodium hypochlorite in an acidic environment; how to perform TLC to monitor a reaction; how to perform an extraction to isolate a product; and, how to verify purity of a product using TLC and melting point. * Chromatography is a useful method for separating components of a mixture of compounds based on their polarity. Thin layer chromatography is especially useful for determining the number of components in a mixture, the identity of the compounds, and the purity of a compound. **Solvent Extraction is also known as Liquid–liquid extraction (LLE) or partitioning. It is a method used to separate compounds based on their relative solubilities in two different immiscible liquids: usually the polar solvent water and a non-polar organic solvent. Immiscible means that the liquids do not mix and because of this form two distinct layers. ***The melting point (MP) is a physical property of a solid also used for the purpose of identification and purity determination. Reading Assignment: OCLT: OCLT, pp. 83-108 (chromatography generalities & TLC), pp. 368-369 (TLC technique summary), pp. 203-246 (extraction); pp. 376-381 (extraction illustrations); 366 (vacuum filtration); and 309-315 (melting point). Solomons Organic Chemistry, 12th ed. (Note: Pages correspond to 12th ed.) pp. 542-547 (12.4 Oxidation of Alcohols) Concepts: Acids, Bases, Decantation, Drying Agents, Exothermic Reactions, Extraction, Half Cell Method, Oxidation/Reduction, Oxidizing Agents, Reducing Agents, Reflux, Salting Out Chemicals: acetic acid (glacial), acetone, 9-fluorenol, 9-fluorenone, hexane, sodium bicarbonate, sodium chloride, sodium hypochlorite (aq soln) / bleach, sodium sulfate Safety Precautions: Wear chemical splash-proof goggles and appropriate attire at all times.
    [Show full text]
  • Sodium Dichromate Listing Background Document for the Inorganic Chemical Listing Determination
    SODIUM DICHROMATE LISTING BACKGROUND DOCUMENT FOR THE INORGANIC CHEMICAL LISTING DETERMINATION This Document Does Not Contain Confidential Business Information August 2000 U.S. ENVIRONMENTAL PROTECTION AGENCY ARIEL RIOS BUILDING 1200 PENNSYLVANIA AVENUE, N.W. WASHINGTON, D.C. 20460 i TABLE OF CONTENTS 1. SECTOR OVERVIEW ....................................................1 1.1 SECTOR DEFINITION, FACILITY NAMES AND LOCATIONS .....1 1.2 PRODUCTS, PRODUCT USAGE, AND MARKETS ....................1 1.3 PRODUCTION CAPACITY .........................................4 1.4 PRODUCTION, PRODUCT AND PROCESS TRENDS ...................4 2. ELEMENTIS CHROMIUM ................................................5 2.1 PRODUCTION PROCESS DESCRIPTION .............................5 2.2 PRODUCTION TRENDS, CHANGES AND IMPROVEMENTS ............7 2.3 RESIDUAL GENERATION AND MANAGEMENT ......................7 2.3.1 Spent Post-Neutralization Ore Residue .............................7 2.3.2 Caustic Filter Sludge ..........................................9 2.3.3 Sodium Dichromate Evaporation Unit Wastewater ...................10 2.3.4 Sodium Chromate Evaporation Unit Wastewater ....................10 2.3.5 Reduced Chromium Treatment Residues from Spent Ore Residue Treatment Unit .....................................................11 2.3.6 Reduced Chromium Treatment Residues from Wastewater Treatment Unit .........................................................12 2.3.7 Commingled Treated Wastewaters ...............................13 2.3.8 Process Filters, Membranes,
    [Show full text]
  • H. Kü PPERS, H.-H. Eulert, K.-F. Hesse, W. Kalz, and H. Hom BORG
    Band 41 b Zeitschrift für Naturforschung 1986 Contents Contents of Number 1 Synthesis and Crystal Structure of Di[bis(triphenyl- phosphine)iminium]-biscyanophthalocyaninato- Original Communications ferrate(II)-dichloromethane H. K ü p p e r s , H.-H. E u l e r t , K.-F. H e s s e , The Chloro Rhodates(III) [RhCl6]3- and W. K a l z , and H . H om bo rg 44 [RhCl 5(H20)]2_. Crystal Structure of AsPh 4[W (0)Cl3(HN3S2)]; Synthesis, IR Spectrum (NH4)3RhCl 6 • H20 (In German) and Crystal Structure (In German) U. T r e ib e r , M. Z w i l l in g , E. S c h w e d a , and E. C o n r a d i , H . W a d l e , U. M ü l l e r , and K. D e h - J. S tr ä h le 1 n ic k e 48 Synthesis and Crystal Structure of Bis[l,5-ditolyl- Synthesis and Structure of N-Thiobis-N'-(phenylsul- pentaazadienido-silver(I)] and Bis[l,3-diphenyl- fonyl)sulfurdiimide (In German) triazenido-silver (I)] (In German) H . W . R o e s k y , J. S u n d e r m e y e r , M . N o l t e m e y e r , J. B eck and J. S t r ä h l e 4 G. M . S h e l d r ic k , K. M e y e r -B ä s e , and P. G.
    [Show full text]
  • ANALYSIS of ALTERNATIVES Public Version
    ANALYSIS OF ALTERNATIVES Public Version Legal name of applicant(s): Kemira Chemicals Oy Submitted by: Kemira Chemicals Oy Substance: Sodium dichromate Use title: Use of sodium dichromate as an additive for suppressing parasitic reactions and oxygen evolution, pH buffering and cathode corrosion protection in the electrolytic manufacture of sodium chlorate with or without subsequent production of chlorine dioxide or sodium chlorite. Use number: 1 Disclaimer This report has been prepared by Risk & Policy Analysts Ltd, with reasonable skill, care and diligence under a contract to the client and in accordance with the terms and provisions of the contract. Risk & Policy Analysis Ltd will accept no responsibility towards the client and third parties in respect of any matters outside the scope of the contract. This report has been prepared for the client and we accept no liability for any loss or damage arising out of the provision of the report to third parties. Any such party relies on the report at their own risk. Note This public version of the Analysis of Alternatives includes some redacted text. The letters indicated within each piece of redacted text correspond to the type of justification for confidentiality claims which is included as an Annex (Section 7) in the complete version of the document. Table of contents 1 Summary..............................................................................................................................1 1.1 Use applied for................................................................................................................................1
    [Show full text]
  • Chapter 3 Alcohols, Phenols, and Ethers
    Chapter 3 Alcohols, Phenols, and Ethers Chapter 3 Alcohols, Phenols, and Ethers Chapter Objectives: • Learn to recognize the alcohol, phenol, and ether functional groups. • Learn the IUPAC system for naming alcohols, phenols, and ethers. • Learn the important physical properties of the alcohols, phenols, and ethers. • Learn the major chemical reaction of alcohols, and learn how to predict the products of dehydration and oxidation reactions. • Learn to recognize the thiol functional group. Mr. Kevin A. Boudreaux Angelo State University CHEM 2353 Fundamentals of Organic Chemistry Organic and Biochemistry for Today (Seager & Slabaugh) www.angelo.edu/faculty/kboudrea Introduction • In this chapter, we will start looking at organic molecules that incorporate C—O bonds. • Oxygen is in Group 6A of the periodic table, and in most of its compounds, contains two single bonds and two lone pairs (or one double bond and two lone pairs), and is sp3-hybridized with a bent molecular shape: O O •The alcohol, phenol, and ether functional groups are found in a number of important naturally occurring molecules: CH3CH2OH Ethanol OH CH3CH2OCH2CH3 Diethyl ether HO Menthol Cholesterol 2 1 Chapter 3 Alcohols, Phenols, and Ethers Alcohols 3 The Hydroxy (—OH) Functional Group •The hydroxyl group (—OH) is found in the alcohol and phenol functional groups. (Note: that’s not the same as hydroxide, OH-, which is ionic.) –in alcohols, a hydroxyl group is connected to a carbon atom. –in phenols, —OH is connected to a benzene ring. (The “parent” molecule of this class is also named phenol: PhOH or C6H5OH.) • When two carbon groups are connected by single bonds to an oxygen, this is classified as the ether functional group.
    [Show full text]
  • Semtech – REACH-SVHC 219 Compliance Inquiry >
    < Semtech – REACH-SVHC 219 Compliance Inquiry > Dear Valued Customer, August 31, 2021 Semtech Corporation acknowledges that the European Union has enacted the “REACH Regulation”, EC1907/2006. And within that regulation, Annex XIV addresses a listing of Substances of Very High Concern, SVHC, and Annex XVII which maintains a complete listing of hazardous substances along with restrictions on the manufacture and release to market of such hazardous substances. As Annex XIV continues to mature to address SVHC candidate list of substances proposed by ECHA (European Chemical Agency), and the guidelines defining protocol for the semiconductor industry are ratified, Semtech Corporation will continue to assess impact to our product, and the manufacturing processes used by our suppliers, and continue to take appropriate actions necessary to ensure compliance while maintaining the integrity of our supply chain. Part(s) listed below are not subject to EU WFD-SCIP directive. As of the date of this letter, Semtech product, identified as pb-free, RoHS compliant, and their related processes do not intentionally use, add, contain nor exceed 0.1% weight by weight, or release any of the substances of very high concern listed in annex XIV and referenced in the attached table. This also applies to the Semtech product noted below which you expressed an interest in. Part number(s): RCLAMP5031T.TNT Additionally, Semtech Corporation employs and maintains a fabless business model as we do not own any significant portion of a fabrication or assembly process. Pursuant to our business model, Semtech Corporation does not own nor operate a fabrication facility within the European Union.
    [Show full text]