The Stratigraphy of Mars

Total Page:16

File Type:pdf, Size:1020Kb

The Stratigraphy of Mars PROCEEDINGS OF THE SEVENTEENTH LUNAR AND PLANETARY SCIENCE CONFERENCE, PART 1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B13, PAGES E139-E158, NOVEMBER 30, 1986 The Stratigraphyof Mars KENNETH L. TANAKA U. $. GeologicalSurvey, Flagstaff A detailedplanetwide stratigraphy for Mars hasbeen developed from global mapping based on Viking imagesand cratercounting of geologicunits. The originalNoachian, Hesperian, and AmazonianSystems are divided into eight seriescorresponding to stratigraphicreferents. Characteristic crater densitiesand materialreferents of eachseries are (1) Lower NoaehianIN(16)] (numberof eraten > 16 km in diameter perl06 km 2) > 200]basement material; (2) MiddleNoachian IN(16) = 100-200]cratered terrain material; (3) Upper Noaehian[N(16)= 25-100; N(5) = 200-400]intercrater plains material; (4) Lower Hesperian IN(5) = 125-200]ridged plains material; (5) Upper Hesperian[N(5) = 67-125;N(2) = 400-750]complex plainsmaterial; (6) LowerAmazonian IN(2) = 150-400]smooth plains material in southernAcidalia Planitia; (7) Middle AmazonianIN(2) = 40-150] lava flowsin AmazonisPlanitia; and (8) UpperAmazonian IN(2) < 40] flood-plainmaterial in southernElysium Planitia. Correlations between various crater size-frequency distributionsof highland materials on the moon and Mars suggestthat rocks of the Middle Noachian Seriesare about 3.92-3.85b.y. old. Stratigraphicages eompi!ed for unitsand featuresof variousorigins show that volcanism,tectonism, and meteoritebombardment have generallydecreased through Mars' geologichistory. In recenttime, surficialprocesses have dominatedthe formationand modificationof rockunits. The overallstratigraphy of Mars is complex,however, because of temporaland spatial variations in geologicactivity. INTRODUCTION appearance,to determinethe relativeages of map units. These units were classifiedand placedin three stratigraphicsystems: Anewglobal geologic map series at 1:15,000,000scale derived the N oachianSystem, characterized by rugged,heavily cratered fromViking images has expanded and improved our knowledge material;the HesperianSystem, whose base was defined as the ofthe geologic and stratigraphic framework of Mars.This series baseof the ridgedplains material; and the AmazonianSystem, consistsof threemaps covering the following regions: the western which included relatively smooth, moderatelycratered plains equatorialregion Oat + 57ø, long0 ø to 180ø [Scottand Tanaka, materialsand polar deposits.The namesfor thesesystems were 1986]),the easternequatorial region (lat ñ 57ø, long !80ø to selectedfrom regionshaving representativeand widespread 360ø;R. Greeleyand J. E. Guest,unpublished data, !986), and exposuresof the materialsused as referents. the north and south polar regions(lat > + 55ø [Tanaka and A new generationof local geologicmaps of Mars at different Scott,1987]. This mapping, combined with previousstudies and scaleswere based on improvedimagery acquired from the Viking newcrater counts, forms the basisfor the most detailed formal orbiters[Scott et al., 1981;Dial, 1984;Scott and Tanaka,1984; representationof Martian geologichistory to date.In this paper, Witbeckand Underwoo& 1984].All of theseworkers followed I proposenew stratigraphic series and epochs that form discrete the time-stratigraphicsystems developed by Scott and Carr stagesinto which the evolution of the planet'ssurface can be [1978]. The stratigraphic-systemboundaries were defined by divided. usingdensities of cratershaving diameters of 4-!0 km [Greeley In an early study of the Martian surface, Soderblom et al. and Spudis, 1981] and 2, 5, and 16 km [Scott and Tanaka, [1974]recognized four stratigraphicdivisions: ancient eroded !984, 1986].In addition,Gurnis [1981] obtained crater densities uplands,cratered (ridged) plains interpreted as volcanic, Elysium for broad terrain units, and many workers focusedon local volcanicrocks, and Tharsis volcanic rocks. Formal geologic or regionalgeologic histories that providecrater-density data mappingof Marsbegan with a 1:5,000,000-scalemap series based and stratigraphicrelations. mainlyon Mariner9 images.Because of the variedqu. ality and The presentstudy sets forth a new,Viking-based stratigraphy resolutionof the imagesand the differencein mappingstyle of Mars in which I (!) establisha more detailedchronostra- amongthe workers,the stratigraphicclassification systems that tigraphicclassification system, (2) ascertainthe craterdensities theydeveloped were commonly inconsistent. Most authorsused andpossible absolute ages of the chronostratigraphicunits, (3) a qualitativeapproach to stratigraphicage by definingthree, deducerelative ages of major geologicunits and features,(4) four,or fiveimpact-crater degradation classes [e.g., Masursky presentstratigraphic maps of the entire surface,and (5) et al., 1978; Wise, 1979; Moore, 1980; respectively];some summarizethe planet'sgeologic history in orderof epochs. [Milton,1974; Masursky et al., 1978;Wise, 1979] used crater- densitydata to determinetheoretical absolute ages from the SUBDIVISION OF MARTIAN CHRONOSTRATIGRAPHICUNITS cratetinghistory models of Soderblomet al. [1974]and Neukurn andWise [ 1976]. The three-period,time-stratigraphic classification established A formalizedstratigraphy was first presentedin the by Scott and Carr [1978] is useful,widely recognized, and in l:25,000,000-scalegeologic map of Marsby Scottand Carr no need of fundamental revision. Subdivision of the chrono- [1978].Condit [1978] counted 4- to 10-km-diametercraters and stratigraphicsystems into seriesis nowpossible because of recent usedthem, together with overlaprelations and degradational and ongoingwork, particularlyon the westernregion of Mars [Scott and Tanaka, 1986], and is necessaryfor detailed stratigraphicwork. For simplicityand utility, seriesnames are Thispaper is notsubject to U.S. copyright.Published in 1986by theAmerican Geophysical Union. adapted from systemnames and qualified with "Upper," "Middle," and "Lower." Referentswere picked on the basisof Papernumber 6B7240. prior usageand recognition,established stratigraphic position, E139 E140 TANAKA: THE STRATIGRAPHYOF MARS TABLE 1. ChronostratigraphicSeries and Referentsfor Mars of about3 to 5 km.Generally, rims of superposedimpact craters are degradedand ejectablankets are not recognized.Because Series Referent of thisdegradation, crater densities are not reliablefor relative. Upper Amazonian Flood-plainmaterial, southern Elysium agecomparison between materials of theLower Noachian Se• Planitia and unitsof otherseries; however, they appearto be useful Middle Amazonian Lava flows, Amazonis Planitia in determiningrelative ages of the rockunits within the series Lower Amazonian Smoothplains material, Addalia at differentlocalities. One areaof basementmaterial at lat• Planitia Upper Hesperian Complexplains material, Vastitas S, long101 o hasrelatively well preserved craters [N(16) (number Borealis ofcraters > 16 km in diameterper 106 km 2) --294 :t: 81]. Lower Hesperian Ridgedplains material, Hesperia The lowermostpart of this basementmaterial is not exposed Planurn and its top is embayedby Middle Noachiancratered terrain Upper Noachian Intercraterplains material, east of material. ArgyrePlanitia Middle Noaehian Crateredterrain material, west of Hellas Other outcropsof materialembayed by this crateredterrain Planitia material form basin rims that surroundHellas, Argyre,and Lower Noachian Basementmaterial, Charitum and IsidisP!anitiae and form Promethei Rupes (south polar basin), Nereidurn Montes as well as isolatedmassifs and ridges,which are mostlyin the westernpart of Mars [Scottand King, 1984].Material of similar areal extent, degreeof preservation,and, aboveall, represen- positionmay alsobe exposedat the baseof deepscarps, such as those within Valles Marineris. Possibly the material of the tation of a distinctivegeologic episode. In contrastto terrestrial Lower NoachianSeries represents upper parts of the primitive rock units,the Martian unitsare largely defined by their surficial crustof Mars formed by solidificationof a primordial,molten characteristics,and rock typesare inferred.Also, recognition surfaceand bombardedby large planetesimal-sizeobjects. of vertical changesin the units and descriptionof their bases generallyare not possible.The newlyproposed series and their referentsand crater densitiesare formally describedbelow (and Middle Noachian Series summarizedin Tables1 and 2). Possibleabsolute ages for these The Middle Noachian Series consists of cratered terrain seriesare discussedin a following section. materialthat characterizesmost of the ruggedhighland terrain Lower Noachian Series and scatteredcratered terrain remnantsin the northernplain• of Mars. Much of this material was mapped as "hilly and Recent mapping [Scott and Tanaka, 1986] distinguished cratered" or "cratered plateau" materials by Scott and Cart stratigraphicallylower "basement material" from the widespread [1978] and was recentlyremapped as the "crateredunit of the crateredterrain material in many areason Mars. Both of these plateausequence" [Scott and Tanaka, 1986]. This rock unitis materials are part of the Noachian System[Scott and Cart, the most widespreadof the Noaehian System.The designation 1978]. The basementmaterial includes units previously mapped of the Noaehian System was originally based on materialin as "basin rim material" and "mountain material" belongingto the Noachisarea west of the Hellas impact structure.This area the Noachianand HesperianSystems [Scott and Carr, 1978]. (lat 40ø S, long 320ø to 345ø) still
Recommended publications
  • MID-LATITUDE MARTIAN ICE AS a TARGET for HUMAN EXPLORATION, ASTROBIOLOGY, and IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A
    First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1011.pdf MID-LATITUDE MARTIAN ICE AS A TARGET FOR HUMAN EXPLORATION, ASTROBIOLOGY, AND IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A. S. McEwen1, and C. M. Dundas2. 1University of Arizona, Department of Planetary Sciences, 2USGS, Astrogeology Science Center. Introduction: Future human missions to Mars will region of late Noachian highlands terrain, and is com- need to rely on resources available near the Martian prised of a series of grabens and ridges surrounded by surface. Water is of primary importance, and is known later Hesperian/Amazonian lava flows from the Thar- to be abundant on Mars in multiple forms, including sis region [7]. The proposed landing site is within these hydrated minerals [1] and pore-filling and excess ice lava flows (HAv), and provides access to a region of deposits [2]. Of these sources, excess ice (or ice which late Hesperian lowlands in the western region of the exceeds the available regolith pore space) may be the EZ. There is evidence for Amazonian glacial and peri- most promising for in-situ resource utilization (ISRU). glacial activity [e.g., HiRISE images Since Martian excess ice is thought to contain a low PSP_008671_2210 and ESP_017374_2210], and the fraction of dust and other contaminants (~<10% by Gamma Ray Spectrometer water map suggests that volume, [3]) only a modest deposit of excess ice will there is abundant subsurface ice in the uppermost me- be sufficient to support a human presence. ter within this region [10]. Meandering channel-like Subsurface water ice may also be of astrobiological features have been identified in HiRISE images (e.g., interest as a potential current habitat or as a preserva- PSP_003529_2195 in close proximity to apparent ice tion medium for biosignatures.
    [Show full text]
  • Evidence for Thermal-Stress-Induced Rockfalls on Mars Impact Crater Slopes
    Icarus 342 (2020) 113503 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence for thermal-stress-induced rockfalls on Mars impact crater slopes P.-A. Tesson a,b,*, S.J. Conway b, N. Mangold b, J. Ciazela a, S.R. Lewis c, D. M�ege a a Space Research Centre, Polish Academy of Science, Wrocław, Poland b Laboratoire de Plan�etologie et G�eodynamique UMR 6112, CNRS, Nantes, France c School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK ARTICLE INFO ABSTRACT Keywords: Here we study rocks falling from exposed outcrops of bedrock, which have left tracks on the slope over which Mars, surface they have bounced and/or rolled, in fresh impact craters (1–10 km in diameter) on Mars. The presence of these Thermal stress tracks shows that these rocks have fallen relatively recently because aeolian processes are known to infill Ices topographic lows over time. Mapping of rockfall tracks indicate trends in frequency with orientation, which in Solar radiation � � turn depend on the latitudinal position of the crater. Craters in the equatorial belt (between 15 N and 15 S) Weathering exhibit higher frequencies of rockfall on their north-south oriented slopes compared to their east-west ones. � Craters >15 N/S have notably higher frequencies on their equator-facing slopes as opposed to the other ori­ entations. We computed solar radiation on the surface of crater slopes to compare insolation patterns with the spatial distribution of rockfalls, and found statistically significant correlations between maximum diurnal inso­ lation and rockfall frequency.
    [Show full text]
  • Review of the MEPAG Report on Mars Special Regions
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/21816 SHARE Review of the MEPAG Report on Mars Special Regions DETAILS 80 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-37904-5 | DOI 10.17226/21816 CONTRIBUTORS GET THIS BOOK Committee to Review the MEPAG Report on Mars Special Regions; Space Studies Board; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine; European Space Sciences Committee; FIND RELATED TITLES European Science Foundation Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Committee to Review the MEPAG Report on Mars Special Regions Space Studies Board Division on Engineering and Physical Sciences European Space Sciences Committee European Science Foundation Strasbourg, France Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study is based on work supported by the Contract NNH11CD57B between the National Academy of Sciences and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency.
    [Show full text]
  • 11 Fall Unamagazine
    FALL 2011 • VOLUME 19 • No. 3 FOR ALUMNI AND FRIENDS OF THE UNIVERSITY OF NORTH ALABAMA Cover Story 10 ..... Thanks a Million, Harvey Robbins Features 3 ..... The Transition 14 ..... From Zero to Infinity 16 ..... Something Special 20 ..... The Sounds of the Pride 28 ..... Southern Laughs 30 ..... Academic Affairs Awards 33 ..... Excellence in Teaching Award 34 ..... China 38 ..... Words on the Breeze Departments 2 ..... President’s Message 6 ..... Around the Campus 45 ..... Class Notes 47 ..... In Memory FALL 2011 • VOLUME 19 • No. 3 for alumni and friends of the University of North Alabama president’s message ADMINISTRATION William G. Cale, Jr. President William G. Cale, Jr. The annual everyone to attend one of these. You may Vice President for Academic Affairs/Provost Handy festival contact Dr. Alan Medders (Vice President John Thornell is drawing large for Advancement, [email protected]) Vice President for Business and Financial Affairs crowds to the many or Mr. Mark Linder (Director of Athletics, Steve Smith venues where music [email protected]) for information or to Vice President for Student Affairs is being played. At arrange a meeting for your group. David Shields this time of year Sometimes we measure success by Vice President for University Advancement William G. Cale, Jr. it is impossible the things we can see, like a new building. Alan Medders to go anywhere More often, though, success happens one Vice Provost for International Affairs in town and not hear music. The festival student at a time as we provide more and Chunsheng Zhang is also a reminder that we are less than better educational opportunities.
    [Show full text]
  • Workshop on the Martiannorthern Plains: Sedimentological,Periglacial, and Paleoclimaticevolution
    NASA-CR-194831 19940015909 WORKSHOP ON THE MARTIANNORTHERN PLAINS: SEDIMENTOLOGICAL,PERIGLACIAL, AND PALEOCLIMATICEVOLUTION MSATT ..V",,2' :o_ MarsSurfaceandAtmosphereThroughTime Lunar and PlanetaryInstitute 3600 Bay AreaBoulevard Houston TX 77058-1113 ' _ LPI/TR--93-04Technical, Part 1 Report Number 93-04, Part 1 L • DISPLAY06/6/2 94N20382"£ ISSUE5 PAGE2088 CATEGORY91 RPT£:NASA-CR-194831NAS 1.26:194831LPI-TR-93-O4-PT-ICNT£:NASW-4574 93/00/00 29 PAGES UNCLASSIFIEDDOCUMENT UTTL:Workshopon the MartianNorthernPlains:Sedimentological,Periglacial, and PaleoclimaticEvolution TLSP:AbstractsOnly AUTH:A/KARGEL,JEFFREYS.; B/MOORE,JEFFREY; C/PARKER,TIMOTHY PAA: A/(GeologicalSurvey,Flagstaff,AZ.); B/(NationalAeronauticsand Space Administration.GoddardSpaceFlightCenter,Greenbelt,MD.); C/(Jet PropulsionLab.,CaliforniaInst.of Tech.,Pasadena.) PAT:A/ed.; B/ed.; C/ed. CORP:Lunarand PlanetaryInst.,Houston,TX. SAP: Avail:CASIHC A03/MFAOI CIO: UNITEDSTATES Workshopheld in Fairbanks,AK, 12-14Aug.1993;sponsored by MSATTStudyGroupandAlaskaUniv. MAJS:/*GLACIERS/_MARSSURFACE/*PLAINS/*PLANETARYGEOLOGY/*SEDIMENTS MINS:/ HYDROLOGICALCYCLE/ICE/MARS CRATERS/MORPHOLOGY/STRATIGRAPHY ANN: Papersthathavebeen acceptedforpresentationat the Workshopon the MartianNorthernPlains:Sedimentological,Periglacial,and Paleoclimatic Evolution,on 12-14Aug. 1993in Fairbanks,Alaskaare included.Topics coveredinclude:hydrologicalconsequencesof pondedwateron Mars; morpho!ogical and morphometric studies of impact cratersin the Northern Plainsof Mars; a wet-geology and cold-climateMarsmodel:punctuation
    [Show full text]
  • Discrete Element Modelling of Pit Crater Formation on Mars
    geosciences Article Discrete Element Modelling of Pit Crater Formation on Mars Stuart Hardy 1,2 1 ICREA (Institució Catalana de Recerca i Estudis Avançats), Passeig Lluís Companys 23, 08010 Barcelona, Spain; [email protected]; Tel.: +34-934-02-13-76 2 Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, C/Martí i Franqués s/n, 08028 Barcelona, Spain Abstract: Pit craters are now recognised as being an important part of the surface morphology and structure of many planetary bodies, and are particularly remarkable on Mars. They are thought to arise from the drainage or collapse of a relatively weak surficial material into an open (or widening) void in a much stronger material below. These craters have a very distinctive expression, often presenting funnel-, cone-, or bowl-shaped geometries. Analogue models of pit crater formation produce pits that typically have steep, nearly conical cross sections, but only show the surface expression of their initiation and evolution. Numerical modelling studies of pit crater formation are limited and have produced some interesting, but nonetheless puzzling, results. Presented here is a high-resolution, 2D discrete element model of weak cover (regolith) collapse into either a static or a widening underlying void. Frictional and frictional-cohesive discrete elements are used to represent a range of probable cover rheologies. Under Martian gravitational conditions, frictional-cohesive and frictional materials both produce cone- and bowl-shaped pit craters. For a given cover thickness, the specific crater shape depends on the amount of underlying void space created for drainage.
    [Show full text]
  • “Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
    National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target
    [Show full text]
  • Case Fil Copy
    NASA TECHNICAL NASA TM X-3511 MEMORANDUM CO >< CASE FIL COPY REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 Compiled by Raymond Arvidson and Russell Wahmann Office of Space Science NASA Headquarters NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1977 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. TMX3511 4. Title and Subtitle 5. Report Date May 1977 6. Performing Organization Code REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 SL 7. Author(s) 8. Performing Organization Report No. Compiled by Raymond Arvidson and Russell Wahmann 10. Work Unit No. 9. Performing Organization Name and Address Office of Space Science 11. Contract or Grant No. Lunar and Planetary Programs Planetary Geology Program 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A compilation of abstracts of reports which summarizes work conducted by Principal Investigators. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at Washington University, St. Louis, Missouri, May 23-26, 1977. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Planetary geology Solar system evolution Unclassified—Unlimited Planetary geological mapping Instrument development 19. Security Qassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 294 $9.25 * For sale by the National Technical Information Service, Springfield, Virginia 22161 FOREWORD This is a compilation of abstracts of reports from Principal Investigators of NASA's Office of Space Science, Division of Lunar and Planetary Programs Planetary Geology Program.
    [Show full text]
  • Ships of the Star Fleet ONE HUNDRED and NINETIETH EDITION
    Ships of the Star Fleet ONE HUNDRED AND NINETIETH EDITION By Admiral Chris Wallace Star Fleet Operations / Star Fleet Advanced Starship Design Bureau Masthead CHIEF EDITOR AND PUBLISHER Admiral Chris Wallace Chief of Star Fleet Operations LAYOUT CONSULTANT Sakura Shinguji Panda Press Interstellar PROJECT COORDINATOR Captain Belldandy Morisato Star Fleet Advanced Starship Design Bureau STRATEGIC EDITOR Commander Natsumi Tsujimoto Star Fleet Operating Forces PRODUCTION EDITOR Rear Admiral Kurt Roithinger Star Fleet Command TECHNICAL EDITOR Admiral Alex Rosenzweig Star Fleet Department of Technical Services ENGINEERING CONSULTANT Lieutenant Commander Skuld Star Fleet Operating Forces SYSTEMS ANALYST Rear Admiral Carsten Pedersen Star Fleet Offi ce of Research and Development NAVAL LIASON Rear Admiral John Scharmen Star Fleet Operations GRAPHICS Copyright © 2378 by the Star Fleet Spacecraft Design Advisory Commission, Star Fleet Command, Commodore David Pipgras Utopia Planitia Spacedock, Mars. Region Five Offi ce of Graphic Design HISTORICAL CONSULTANT This document prepared and published by Team Neko and Team Kempo for the Starfl eet Lieutenant General Scott A. Akers Spacecraft Design Advisory Commission. Offi ce of the Star Fleet Historian SUPPORT STAFF Memory Alpha Cataloging Data: Doctor Richard Sternbach, PhD. UFPI ITP/SP SOTSF23772378 Doctor Michael Okuda, PhD. Doctor Graham Kennedy, PhD. This edition of Ships of the Star Fleet is authorized for viewing only in member star systems of the Doctor Bernd Schneider, PhD. United Federation of Planets, its territories and possessions, affi liated star systems, and select independent or neutral star systems. This document and its entire contents Copyright © 2005 Panda Productions. All rights reserved. We request that no part of this document be reproduced in any form or by any means, or stored on any electronic server (ftp or http) without the written permission of the publishers.
    [Show full text]
  • Environmental Change and the Carbon Balance of Amazonian Forests
    Biol. Rev. (2014), 89, pp. 913–931. 913 doi: 10.1111/brv.12088 Environmental change and the carbon balance of Amazonian forests Luiz E. O. C. Aragao˜ 1,2,∗, Benjamin Poulter3, Jos B. Barlow4,5, Liana O. Anderson2,6, Yadvinder Malhi6, Sassan Saatchi7, Oliver L. Phillips8 and Emanuel Gloor8 1College of Life and Environmental Sciences, Geography University of Exeter, Exeter EX4 4RJ, U.K. 2Remote Sensing Division, National Institute for Space Research, Av. dos Astronautas, 1758, S˜ao Jos´e dos Campos, Sao Paulo 12227-010, Brazil 3Laboratoire des Sciences du Climat et de L’Environment, CEA, UVSQ, CNRS, 91190, Gif-sur Yvette, France 4Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K. 5Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Bel´em, Par´a 66077-830, Brazil 6School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, U.K. 7Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A. 8School of Geography, University of Leeds, Leeds LS2 9JT, U.K. ABSTRACT Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century.
    [Show full text]
  • Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars
    Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars: A Case Study for Local versus Regional Stress Fields. (Under the direction of Dr. Paul K. Byrne). Alba Mons is a large shield volcano on Mars, the development of which appears to be responsible for tectonic landforms oriented radially and circumferentially to the shield. These landforms include those interpreted as extensional structures, such as normal faults and systems of graben. These structures, however, may also be associated with broader, regional stress field emanating from the volcano-tectonic Tharsis Rise, to the south of Alba Mons and centered on the equator. In this study, I report on structural and statistical analyses for normal faults proximal to Alba Mons (in a region spanning 95–120° W and 14–50° N) and test for systematic changes in fault properties with distance from the volcano and from Tharsis. A total of 11,767 faults were mapped for this study, and these faults were all measured for strike, length, and distance from Alba Mons and Tharsis. Additional properties were qualitatively and quantitatively analyzed within a subset of 62 faults, and model ages were obtained for two areas with crater statistics. Distinguishing traits for each structure population include fault properties such as strike, vertical displacement (i.e., throw) distribution profiles, displacement–length (Dmax/L) scaling, and spatial (i.e., cross-cutting) relationships with adjacent faults with different strikes. The only statistically significant correlation in these analyses was between study fault strike with distance from Tharsis. The lack of trends in the data suggest that one or more geological processes is obscuring the expected similarities in properties for these fault systems, such as volcanic resurfacing, mechanical restriction, or fault linkage.
    [Show full text]
  • Mineralogy of the Martian Surface
    EA42CH14-Ehlmann ARI 30 April 2014 7:21 Mineralogy of the Martian Surface Bethany L. Ehlmann1,2 and Christopher S. Edwards1 1Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California 91125; email: [email protected], [email protected] 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 Annu. Rev. Earth Planet. Sci. 2014. 42:291–315 Keywords First published online as a Review in Advance on Mars, composition, mineralogy, infrared spectroscopy, igneous processes, February 21, 2014 aqueous alteration The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The past fifteen years of orbital infrared spectroscopy and in situ exploration 10.1146/annurev-earth-060313-055024 have led to a new understanding of the composition and history of Mars. Copyright c 2014 by Annual Reviews. Globally, Mars has a basaltic upper crust with regionally variable quanti- by California Institute of Technology on 06/09/14. For personal use only. All rights reserved ties of plagioclase, pyroxene, and olivine associated with distinctive terrains. Enrichments in olivine (>20%) are found around the largest basins and Annu. Rev. Earth Planet. Sci. 2014.42:291-315. Downloaded from www.annualreviews.org within late Noachian–early Hesperian lavas. Alkali volcanics are also locally present, pointing to regional differences in igneous processes. Many ma- terials from ancient Mars bear the mineralogic fingerprints of interaction with water. Clay minerals, found in exposures of Noachian crust across the globe, preserve widespread evidence for early weathering, hydrothermal, and diagenetic aqueous environments. Noachian and Hesperian sediments include paleolake deposits with clays, carbonates, sulfates, and chlorides that are more localized in extent.
    [Show full text]