Consume Or Be Consumed: Breaking Down the Structure of a Food Web by National Geographic Society, Adapted by Newsela Staff on 03.12.19 Word Count 1,005 Level 640L

Total Page:16

File Type:pdf, Size:1020Kb

Consume Or Be Consumed: Breaking Down the Structure of a Food Web by National Geographic Society, Adapted by Newsela Staff on 03.12.19 Word Count 1,005 Level 640L Consume or be consumed: breaking down the structure of a food web By National Geographic Society, adapted by Newsela staff on 03.12.19 Word Count 1,005 Level 640L Many organisms make up a food web. Animals like zebras are herbivores, or consumers that eat only plants. Lions are carnivores, or animals that eat other consumers. Every living being is part of a food chain. Food and the animals that eat the food make up a food chain. For example, plants and grasses are food for zebras. Zebras are food for lions. Plants, zebras and lions make up a food chain. There are many different food chains in an ecosystem. All together, the food chains in the ecosystem make a food web. Trophic Levels Organisms in food webs are grouped into categories. These categories are called trophic levels. Producers Organisms in the first trophic level are called producers. Plants are producers. Algae and some bacteria are also producers. Each producer makes its own food. Most producers use This article is available at 5 reading levels at https://newsela.com. photosynthesis. This is a series of chemical reactions. Plants use these reactions to make energy from sunlight, carbon dioxide and water. Consumers The next trophic levels are animals that eat producers. These animals are called consumers. The first level of consumers is made of herbivores. These animals are also called primary consumers. They eat plants, algae and other producers. Deer, mice and elephants are herbivores. They eat grasses, shrubs and trees. In the desert, a mouse is a primary consumer. It eats seeds and fruit. In the ocean, many fish and turtles are herbivores. They eat algae and seagrass. Secondary consumers eat herbivores. In a desert, a secondary consumer may be a snake. It eats mice. In underwater kelp forests, sea otters are secondary consumers. They hunt sea urchins. Animals in the next level are called tertiary consumers. They eat secondary consumers. In the desert, an owl or eagle may hunt snakes. Top predators are also called apex predators. They eat other consumers. No other consumers eat them. Lions are apex predators on the grasslands of Africa. In the ocean, the great white shark is an apex predator. In the desert, bobcats and mountain lions are top predators. Consumers can be carnivores or omnivores. Carnivores only eat meat. Omnivores eat both meat and plants. Detritivores And Decomposers Detritivores and decomposers make up the last part of food chains. Detritivores eat plants and animals that are not alive. For instance, vultures eat dead animals. Some organisms, like fungi and bacteria, are decomposers. They turn decaying plants into soil. Decomposers allow food chains to start over. For example, grass makes its own energy through photosynthesis. A rabbit eats the grass. Then a fox eats the rabbit. When the fox dies, worms and fungi break down its body. The body returns to the soil. There, it leaves nutrients for plants to grow. Biomass Biomass is the energy in living organisms. Producers use the sun's energy to create biomass. The higher the trophic level, the lower the biomass. There is more energy in lower trophic levels than in higher ones. There are always more producers than herbivores in a healthy food web. A healthy food web has many producers and many herbivores. It only has a few carnivores and omnivores. This article is available at 5 reading levels at https://newsela.com. Every part of a food chain is connected to other food chains. When one part is in danger, others are also at risk. If plants are destroyed, herbivores don't have enough to eat. Their numbers go down. The number of plants can decrease because of drought or disease. Humans can also destroy food chains by destroying habitats. People cut down forests. We use the lumber for buildings. We also pave over grasslands to build shopping malls or parking lots. Bioaccumulation Sometimes, pesticides can affect food chains. Pesticides get into the soil and water. Animals eats plants that are covered in pesticides. The pesticides stay in the animals' fat. When a carnivore eats that animal, it also eats the pesticides. This is called bioaccumulation. Bioaccumulation happens in water ecosystems, too. Runoff from cities or farms can be polluted. Algae, bacteria and seagrass absorb the pollutants. Sea turtles and fish eat the seagrass. Then, sharks or tuna eat those fish. When people finally eat the tuna, that meal is full of pesticides. In the 1940s and 1950s, bald eagles began disappearing. One major cause was a pesticide called DDT. The name DDT stands for dichloro-diphenyl-trichloroethane. It was used to kill insects that spread diseases. DDT builds up in soil and water. Worms, grasses, algae and fish ate organisms with DDT. Bald eagles ate the fish. They had high amounts of DDT in their bodies. They got it from their prey. These eagles started laying eggs with thin shells. These shells often broke before the baby birds hatched. The U.S. government decided to ban DDT. Food webs have come back in most parts of the country. Bald eagle chicks are able to hatch. Fast Facts: Lost Energy Higher trophic levels have less biomass. That is because most of an organism's biomass, or energy, is lost as heat or waste. A predator eats only the biomass that is left. A Million To One Marine food webs are usually larger than food webs on land. Scientists have measured how large. If a food web has a million producers, like algae and seagrass, it may only have 10,000 herbivores. This food web may only have 100 secondary consumers, like tuna. At the top of this massive food web, there is only one apex predator. This apex predator could be a human being. Out For Blood One of the first people to talk about food webs was Al-Jahiz. He was a scientist in Baghdad, Iraq. He lived in the early 800s, almost 1,200 years ago. Al-Jahiz wrote about mosquitoes preying on the blood of elephants and hippos. He understood that although mosquitoes preyed on other animals, they were prey, too. They were eaten by animals such as flies and small birds. This article is available at 5 reading levels at https://newsela.com. Quiz 1 Why are fish, snakes, and lions all considered consumers? (A) They eat other organisms to get energy. (B) They all eat plants. (C) They turn dead organisms into soil. (D) Each one is consumed by some other organism. 2 Read the section "Biomass." Which sentence from the section supports the idea that producers are needed for a healthy food chain? (A) Biomass is the energy in living organisms. (B) If plants are destroyed, herbivores don't have enough to eat. (C) The number of plants can decrease because of drought or disease. (D) We also pave over grasslands to build shopping malls or parking lots. 3 How are detritivores and decomposers important in a food chain? (A) They turn dead animals and decaying plants into soil nutrients for plants to use again. (B) They make sure pollutants do not bioaccumulate in the ecosystem. (C) They are eaten by the producers. (D) They balance the biomass when there are too many consumers. 4 Read the following paragraph from the section "A Million To One." Marine food webs are usually larger than food webs on land. Scientists have measured how large. If a food web has a million producers, like algae and seagrass, it may only have 10,000 herbivores. This food web may only have 100 secondary consumers, like tuna. At the top of this massive food web, there is only one apex predator. This apex predator could be a human being. What conclusion can the reader make from this paragraph? (A) There are many more apex predators in the oceans than there are on land. (B) Human beings are the only apex predator in water or on land. (C) Algae and seagrass are less important than tuna and sharks. (D) There are many more producers in the oceans than apex predators. 5 How do producers get their energy? (A) by absorbing it from the soil (B) from the primary consumers that eat them (C) through a process called bioaccumulation (D) through a series of chemical reactions called photosynthesis This article is available at 5 reading levels at https://newsela.com. 6 Complete the sentence. Decomposers cause ____. (A) chemicals that build up in animals in the food chain (B) chemical reactions that make energy from sunlight (C) food chains to start over with nutrients in the soil (D) food chains to have lower biomass near the top 7 How is the sun is the original source of energy for all animals. (A) Animals absorb sunlight through their skin, providing them with energy. (B) Through bioaccumulation, sunlight is passed through the food chain. (C) Plants use sunlight to make their own food and animals eat plants or other animals. (D) When decomposers break down plants they make the sun's energy available for animals to use. 8 How did bioaccumulation hurt bald eagles? (A) It caused pesticides to kill the bugs and creatures that the eagles counted on for food. (B) It caused pesticides to build up in the food chain that made the eagles' egg shells too thin. (C) It caused the forest habitats where the eagles lived to be cut down for buildings. (D) It caused the forest habitats to lose their energy by killing their habitat's producers. This article is available at 5 reading levels at https://newsela.com..
Recommended publications
  • Effects of Human Disturbance on Terrestrial Apex Predators
    diversity Review Effects of Human Disturbance on Terrestrial Apex Predators Andrés Ordiz 1,2,* , Malin Aronsson 1,3, Jens Persson 1 , Ole-Gunnar Støen 4, Jon E. Swenson 2 and Jonas Kindberg 4,5 1 Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91 Riddarhyttan, Sweden; [email protected] (M.A.); [email protected] (J.P.) 2 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432 Ås, Norway; [email protected] 3 Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden 4 Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway; [email protected] (O.-G.S.); [email protected] (J.K.) 5 Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden * Correspondence: [email protected] Abstract: The effects of human disturbance spread over virtually all ecosystems and ecological communities on Earth. In this review, we focus on the effects of human disturbance on terrestrial apex predators. We summarize their ecological role in nature and how they respond to different sources of human disturbance. Apex predators control their prey and smaller predators numerically and via behavioral changes to avoid predation risk, which in turn can affect lower trophic levels. Crucially, reducing population numbers and triggering behavioral responses are also the effects that human disturbance causes to apex predators, which may in turn influence their ecological role. Some populations continue to be at the brink of extinction, but others are partially recovering former ranges, via natural recolonization and through reintroductions.
    [Show full text]
  • Single Gene Locus Changes Perturb Complex Microbial Communities As Much As Apex Predator Loss
    ARTICLE Received 5 Dec 2014 | Accepted 30 Jul 2015 | Published 10 Sep 2015 DOI: 10.1038/ncomms9235 OPEN Single gene locus changes perturb complex microbial communities as much as apex predator loss Deirdre McClean1,2, Luke McNally3,4, Letal I. Salzberg5, Kevin M. Devine5, Sam P. Brown6 & Ian Donohue1,2 Many bacterial species are highly social, adaptively shaping their local environment through the production of secreted molecules. This can, in turn, alter interaction strengths among species and modify community composition. However, the relative importance of such behaviours in determining the structure of complex communities is unknown. Here we show that single-locus changes affecting biofilm formation phenotypes in Bacillus subtilis modify community structure to the same extent as loss of an apex predator and even to a greater extent than loss of B. subtilis itself. These results, from experimentally manipulated multi- trophic microcosm assemblages, demonstrate that bacterial social traits are key modulators of the structure of their communities. Moreover, they show that intraspecific genetic varia- bility can be as important as strong trophic interactions in determining community dynamics. Microevolution may therefore be as important as species extinctions in shaping the response of microbial communities to environmental change. 1 Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin D2, Ireland. 2 Trinity Centre for Biodiversity Research, Trinity College Dublin, Dublin D2, Ireland. 3 Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK. 4 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK. 5 Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin D2, Ireland.
    [Show full text]
  • Hammill, E., & Clements, C. F. (2020
    Hammill, E. , & Clements, C. F. (2020). Imperfect detection alters the outcome of management strategies for protected areas. Ecology Letters, 23(4), 682-691. https://doi.org/10.1111/ele.13475 Peer reviewed version Link to published version (if available): 10.1111/ele.13475 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley at https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13475. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ 1 Imperfect detection alters the outcome of management strategies for protected areas 2 Edd Hammill1 and Christopher F. Clements2 3 1Department of Watershed Sciences and the Ecology Center, Utah State University, 5210 Old 4 Main Hill, Logan, UT, USA 5 2School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK 6 Statement of Authorship. The experiment was conceived by EH following multiple 7 conversations with CFC. EH conducted the experiment and ran the analyses relating to species 8 richness, probability of predators, and number of extinctions. CFC designed and conducted all 9 analyses relating to sampling protocols. EH wrote the first draft
    [Show full text]
  • Novel Trophic Cascades: Apex Predators
    Opinion Novel trophic cascades: apex predators enable coexistence 1 2 3,4 Arian D. Wallach , William J. Ripple , and Scott P. Carroll 1 Charles Darwin University, School of Environment, Darwin, Northern Territory, Australia 2 Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA 3 Institute for Contemporary Evolution, Davis, CA 95616, USA 4 Department of Entomology and Nematology, University of California, Davis, CA 95616, USA Novel assemblages of native and introduced species and that lethal means can alleviate this threat. Eradica- characterize a growing proportion of ecosystems world- tion of non-native species has been achieved mainly in wide. Some introduced species have contributed to small and strongly delimited sites, including offshore extinctions, even extinction waves, spurring widespread islands and fenced reserves [6,7]. There have also been efforts to eradicate or control them. We propose that several accounts of population increases of threatened trophic cascade theory offers insights into why intro- native species following eradication or control of non-na- duced species sometimes become harmful, but in other tive species [7–9]. These effects have prompted invasion cases stably coexist with natives and offer net benefits. biologists to advocate ongoing killing for conservation. Large predators commonly limit populations of poten- However, for several reasons these outcomes can be inad- tially irruptive prey and mesopredators, both native and equate measures of success. introduced. This top-down force influences a wide range Three overarching concerns are that most control efforts of ecosystem processes that often enhance biodiversity. do not limit non-native species or restore native communi- We argue that many species, regardless of their origin or ties [10,11], control-dependent recovery programs typically priors, are allies for the retention and restoration of require indefinite intervention [3], and many control biodiversity in top-down regulated ecosystems.
    [Show full text]
  • Plant Ecology and Biostatistics
    BSCBO- 203 B.Sc. II YEAR Plant Ecology and Biostatistics DEPARTMENT OF BOTANY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 BSCBO-203 PLANT ECOLOGY AND BIOSTATISTICS SCHOOL OF SCIENCES DEPARTMENT OF BOTANY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in UTTARAKHAND OPEN UNIVERSITY Page 1 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Expert Committee Prof. J. C. Ghildiyal Prof. G.S. Rajwar Retired Principal Principal Government PG College Government PG College Karnprayag Augustmuni Prof. Lalit Tewari Dr. Hemant Kandpal Department of Botany School of Health Science DSB Campus, Uttarakhand Open University Kumaun University, Nainital Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Board of Studies Late Prof. S. C. Tewari Prof. Uma Palni Department of Botany Department of Botany HNB Garhwal University, Retired, DSB Campus, Srinagar Kumoun University, Nainital Dr. R.S. Rawal Dr. H.C. Joshi Scientist, GB Pant National Institute of Department of Environmental Science Himalayan Environment & Sustainable School of Sciences Development, Almora Uttarakhand Open University, Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Programme Coordinator Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani UTTARAKHAND OPEN UNIVERSITY Page 2 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Unit Written By: Unit No. 1-Dr. Pooja Juyal 1, 4 & 5 Department of Botany School of Sciences Uttarakhand Open University Haldwani, Nainital 2-Dr. Harsh Bodh Paliwal 2 & 3 Asst Prof. (Senior Grade) School of Forestry & Environment SHIATS Deemed University, Naini, Allahabad 3-Dr.
    [Show full text]
  • Reply to Roopnarine: What Is an Apex Predator?
    LETTER LETTER Reply to Roopnarine: What is an apex predator? Roopnarine (1) suggests that the significance required for food (4). However, these impacts be considered apex predators as they do not of the human trophic level (HTL) (2) is re- are not a result of our being apex preda- consume the total quantity of their catch? duced because it defines the position of tors, and we feel that the fact that we are a,1 a humans in the food web by diet and is not Anne-Elise Nieblas , Sylvain Bonhommeau , not apex predators is a useful observation b c representative of our functional role in the Olivier Le Pape , Emmanuel Chassot , with consequences for our ability to reduce c c ecosystem. He is concerned that humans are Laurent Dubroca ,JulienBarde,andDavid our impacts. c compared with low trophic level omnivores To consider humans as trophic compo- M. Kaplan a and asserts that we are apex predators because nents of ecosystems was the key objective of Institut Français de Recherche pour in marine systems, our extraction of wild fish our paper. Roopnarine’s (1) point regarding l’Exploitation de la MER, Unité Mixte de is linked to high trophic level species. marine systems is indeed interesting, and we Recherche (UMR) Exploited Marine Our report demonstrates that humans are believe that the exploration of the functional Ecosystems (EME-212), 34203 Sète Cedex, low trophic level omnivores because globally role of humans in specific food webs is an France; bEcologie et santé des écosystèmes we eat more plant than meat. This fact re- exciting topic for future research.
    [Show full text]
  • Behavioral Interactions Between Bacterivorous Nematodes and Predatory Bacteria in a Synthetic Community
    microorganisms Article Behavioral Interactions between Bacterivorous Nematodes and Predatory Bacteria in a Synthetic Community Nicola Mayrhofer 1 , Gregory J. Velicer 1 , Kaitlin A. Schaal 1,*,† and Marie Vasse 1,2,*,† 1 Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; [email protected] (N.M.); [email protected] (G.J.V.) 2 MIVEGEC (UMR 5290 CNRS, IRD, UM), CNRS, 34394 Montpellier, France * Correspondence: [email protected] (K.A.S.); [email protected] (M.V.) † Shared last authorship and these authors contributed equally to this work. Abstract: Theory and empirical studies in metazoans predict that apex predators should shape the behavior and ecology of mesopredators and prey at lower trophic levels. Despite the eco- logical importance of microbial communities, few studies of predatory microbes examine such behavioral res-ponses and the multiplicity of trophic interactions. Here, we sought to assemble a three-level microbial food chain and to test for behavioral interactions between the predatory nema- tode Caenorhabditis elegans and the predatory social bacterium Myxococcus xanthus when cultured together with two basal prey bacteria that both predators can eat—Escherichia coli and Flavobacterium johnsoniae. We found that >90% of C. elegans worms failed to interact with M. xanthus even when it was the only potential prey species available, whereas most worms were attracted to pure patches of E. coli and F. johnsoniae. In addition, M. xanthus altered nematode predatory behavior on basal prey, repelling C. elegans from two-species patches that would be attractive without M. xanthus, an effect similar to that of C.
    [Show full text]
  • Shrub Encroachment Is Linked to Extirpation of an Apex Predator
    Journal of Animal Ecology 2017 doi: 10.1111/1365-2656.12607 Shrub encroachment is linked to extirpation of an apex predator Christopher E. Gordon*,1,2,3, David J. Eldridge4, William J. Ripple5, Mathew S. Crowther6, Ben D. Moore1 and Mike Letnic2,4 1Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia; 2Centre for Ecosystem Science, University of New South Wales, Sydney, NSW 2052, Australia; 3Centre for Environmental Risk Management of Bushfires, University of Wollongong, Wollongong, NSW 2522, Australia; 4School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; 5Global Trophic Cascades Program, Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA; and 6School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia Abstract 1. The abundance of shrubs has increased throughout Earth’s arid lands. This ‘shrub encroachment’ has been linked to livestock grazing, fire-suppression and elevated atmospheric CO2 concentrations facilitating shrub recruitment. Apex predators initiate trophic cascades which can influence the abundance of many species across multiple trophic levels within ecosystems. Extirpation of apex predators is linked inextricably to pastoralism, but has not been considered as a factor contributing to shrub encroachment. 2. Here, we ask if trophic cascades triggered by the extirpation of Australia’s largest terres- trial predator, the dingo (Canis dingo), could be a driver of shrub encroachment in the Strz- elecki Desert, Australia. 3. We use aerial photographs spanning a 51-year period to compare shrub cover between areas where dingoes are historically rare and common. We then quantify contemporary pat- terns of shrub, shrub seedling and mammal abundances, and use structural equation modelling to compare competing trophic cascade hypotheses to explain how dingoes could influence shrub recruitment.
    [Show full text]
  • What Is an Apex Predator?
    Oikos 000: 001–009, 2015 doi: 10.1111/oik.01977 © 2015 Th e Authors. Oikos © 2015 Nordic Society Oikos Subject Editor: James D. Roth. Editor-in-Chief: Dries Bonte. Accepted 12 December 2014 What is an apex predator? Arian D. Wallach , Ido Izhaki , Judith D. Toms , William J. Ripple and Uri Shanas A. D. Wallach ([email protected]), School of Environment, Charles Darwin Univ., Darwin, Northern Territory, Australia. – I. Izhaki, Dept of Evolutionary and Environmental Biology, Univ. of Haifa, Haifa, Israel. – J. D. Toms, Eco-Logic Consulting, Victoria, BC, Canada. – W. J. Ripple, Dept of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA. – U. Shanas, Dept of Biology and Environment, Univ. of Haifa - Oranim, Tivon, Israel. Large ‘ apex ’ predators infl uence ecosystems in profound ways, by limiting the density of their prey and controlling smaller ‘ mesopredators ’ . Th e loss of apex predators from much of their range has lead to a global outbreak of mesopredators, a process known as ‘ mesopredator release ’ that increases predation pressure and diminishes biodiversity. While the classifi ca- tions apex- and meso-predator are fundamental to current ecological thinking, their defi nition has remained ambiguous. Trophic cascades theory has shown the importance of predation as a limit to population size for a variety of taxa (top – down control). Th e largest of predators however are unlikely to be limited in this fashion, and their densities are commonly assumed to be determined by the availability of their prey (bottom – up control). However, bottom – up regulation of apex predators is contradicted by many studies, particularly of non-hunted populations.
    [Show full text]
  • Apex Predators and Trophic Cascades in Large Marine Ecosystems: Learning from Serendipity
    COMMENTARY Apex predators and trophic cascades in large marine ecosystems: Learning from serendipity Robert S. Steneck1 Darling Marine Center, School of Marine Sciences, University of Maine, Walpole, ME 04573 he global loss of large predators large, and important benthic predators is undeniable. However, the throughout cold temperate to subarctic T effects of predator depletion on regions of the North Atlantic (Fig. 1) (2, the structure and functioning of 3). In the western North Atlantic pre- ecosystems are far from resolved, espe- historic fishing targeted cod not only be- cially as they apply to large pelagic marine cause of their abundance and size but also ecosystems. Much of what we know about because they are easy to catch and pre- how marine predators function in ecosys- serve (2, 4). Cod became the first impor- tems comes from small-scale studies on tant export from the New World and as relatively small, slow-moving, seafloor- fishing technology and effort escalated, feeding predators that are easy to manip- serial depletion progressed from coastal ulate. Scaling up to consider pelagic regions to the final collapse of Canada and (ocean) ecosystem effects from large US cod stocks in the 1990s. The resulting predatory fish has been challenging for decline in cod predation relaxed popu- several reasons. For one thing, predators lation limitations on several invertebrate have been functionally removed from prey species that live on or near the sea many marine ecosystems due to unsus- floor such as American lobsters, large crab tainable fishing that occurred decades or species (e.g., Jonah and snow crabs), and centuries ago.
    [Show full text]
  • PREDATOR GLOSSARY Published April 29, 2010 by Predator Defense
    PREDATOR GLOSSARY Published April 29, 2010 by Predator Defense www.predatordefense.org Apex predator – A top predator; a predator at the top of its food chain. Wolves, jaguars, whales, and bears are examples of apex predators. Coyotes are apex predators where larger predators are absent. Carnivore – An animal or plant whose diet consists mainly of animal tissue. Cougars and coyotes are carnivores, and the plant Venus flytrap is an example of a carnivorous plant. Ecosystem – An ecosystem is a natural area; a dynamic complex of communities of plants, animals, and all other living organisms, along with their non-living environment, all interacting as a functional unit.1 Food Chain, Food Web – A food chain consists of a set of animals or organisms in which each organism feeds on the one below it (hence is eaten by the one above). A food web is a feeding and nutritional system made up of multiple interrelated food chains. Intraguild predation – This is when a predator, one that competes with another predator for shared prey, kills or preys upon its competitor. Typically, the larger predator kills its smaller competitor.2 Generally, in mammalian carnivore communities, intraguild predation occurs in one direction; for instance, wolves kill coyotes, but coyotes don’t kill wolves.3 Keystone species – A keystone species is a species that has particularly strong and consequential interactions and impacts in an ecosystem, the strength of which is disproportionate to their numbers or densities.4 Most large predators are keystone species, but many smaller, less charismatic species are keystone species as well, such as long-nosed bats, sea otters, prairie dogs, and mountain beavers,5 because their presence or absence has such profound effects on a biological community.
    [Show full text]
  • Reproductive Responses of an Apex Predator to Changing Climatic
    DISSERTATION REPRODUCTIVE RESPONSES OF AN APEX PREDATOR TO CHANGING CLIMATIC CONDITIONS IN A VARIABLE FOREST ENVIRONMENT Submitted by Susan Rebecca Salafsky Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2015 Doctoral Committee: Advisor: Ruth Hufbauer Alan Franklin Richard Reynolds Julie Savidge Copyright by Susan Rebecca Salafsky 2015 All Rights Reserved ABSTRACT REPRODUCTIVE RESPONSES OF AN APEX PREDATOR TO CHANGING CLIMATIC CONDITIONS IN A VARIABLE FOREST ENVIRONMENT Apex predators are ideal subjects for evaluating the effects of changing climatic conditions on the productivity of forested landscapes, because the quality of their breeding habitat depends primarily on the availability of resources at lower trophic levels. Identifying the environmental factors that influence the reproductive output of apex predators can, therefore, enhance our understanding of the ecological relationships that provide the foundation for effective forest management strategies in a variable environment. To identify the determinants of breeding-habitat quality for an apex predator in a forest food web, I investigated the relationships between site-specific environmental attributes and the reproductive probabilities of northern goshawks (Accipiter gentilis) on the Kaibab Plateau, Arizona during 1999-2004. I used dynamic multistate site occupancy models to quantify annual breeding probabilities (eggs laid) and successful reproduction probabilities (≥1 young fledged) relative to temporal and spatial variation in climatic conditions (precipitation and temperature), vegetation attributes (forest composition, structure, and productivity), and prey resources (abundances of 5 mammal and bird species). Climatic conditions during the study period varied extensively, and included extreme drought in 2003 and record-high precipitation in 2004.
    [Show full text]