Dissertacao Poliana Mendes.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats
RESEARCH ARTICLE Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats Beza Ramasindrazana1,2,3*, Koussay Dellagi1,2, Erwan Lagadec1,2, Milijaona Randrianarivelojosia4, Steven M. Goodman3,5, Pablo Tortosa1,2 1 Centre de Recherche et de Veille sur les maladies émergentes dans l’Océan Indien, Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France, 2 Université de La Réunion, UMR PIMIT "Processus Infectieux en Milieu Insulaire Tropical", INSERM U 1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, 97490 Sainte Clotilde, Saint-Denis, La Réunion, France, 3 Association Vahatra, Antananarivo, Madagascar, 4 Institut Pasteur de Madagascar, Antananarivo, Madagascar, 5 The Field Museum of Natural History, Chicago, Illinois, United States of America * [email protected] OPEN ACCESS Abstract Citation: Ramasindrazana B, Dellagi K, Lagadec E, We investigated filarial infection in Malagasy bats to gain insights into the diversity of these Randrianarivelojosia M, Goodman SM, Tortosa P (2016) Diversity, Host Specialization, and Geographic parasites and explore the factors shaping their distribution. Samples were obtained from Structure of Filarial Nematodes Infecting Malagasy 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 Bats. PLoS ONE 11(1): e0145709. doi:10.1371/ species currently recognized on the island. Samples were screened for the presence of journal.pone.0145709 micro- and macro-parasites through both molecular and morphological approaches. Phylo- Editor: Karen E. Samonds, Northern Illinois genetic analyses showed that filarial diversity in Malagasy bats formed three main groups, University, UNITED STATES the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); Received: April 30, 2015 a second group infecting Pipistrellus cf. -
Genetic Diversity of the Chaerephon Leucogaster/Pumilus Complex From
Genetic diversity of the Chaerephon leucogaster/pumilus complex from mainland Africa and the western Indian Ocean islands Theshnie Naidoo 202513500 Submitted in fulfillment of the academic Requirements for the degree of Doctor of Philosophy in the School of Life Sciences, Westville Campus, University of KwaZulu – Natal, Durban. NOVEMBER 2013 Supervisory Committee Prof. JM. Lamb Dr. MC. Schoeman Dr. PJ. Taylor Dr. SM. Goodman i ABSTRACT Chaerephon (Dobson, 1874), an Old World genus belonging to the family Molossidae, is part of the suborder Vespertilioniformes. Members of this genus are distributed across mainland Africa (sample sites; Tanzania, Yemen, Kenya, Botswana, South Africa and Swaziland), its offshore islands (Zanzibar, Pemba and Mozambique Island), Madagascar and the surrounding western Indian Ocean islands (Anjouan, Mayotte, Moheli, Grande Comore, Aldabra and La Reunion). A multifaceted approach was used to elucidate the phylogenetic and population genetic relationships at varying levels amongst these different taxa. Working at the subspecific level, I analysed the phylogenetics and phylogeography of Chaerephon leucogaster from Madagascar, based on mitochondrial cytochrome b and control region sequences. Cytochrome b genetic distances among C. leucogaster samples were low (maximum 0.35 %). Genetic distances between C. leucogaster and C. atsinanana ranged from 1.77 % to 2.62 %. Together, phylogenetic and distance analyses supported the classification of C. leucogaster as a separate species. D-loop data for C. leucogaster samples revealed significant but shallow phylogeographic structuring into three latitudinal groups (13º S, 15 - 17º S, 22 - 23º S) showing exclusive haplotypes which correlated with regions of suitable habitat defined by ecological niche modelling. Population genetic analysis of D-loop sequences indicated that populations from Madagascar have been expanding since 5 842 - 11 143 years BP. -
Siphonaptera)
A peer-reviewed open-access journal ZooKeys 572:Description 7–21 (2016) of two new species of bat fleas of the genusAraeopsylla (Siphonaptera)... 7 doi: 10.3897/zookeys.572.7823 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Description of two new species of bat fleas of the genus Araeopsylla (Siphonaptera) from Kenya and Madagascar with notes on miscellaneous bat fleas Michael W. Hastriter1 1 Monte L. Bean Life Science Museum, Brigham Young University, 290 MLBM, P.O. Box 20200, Provo, Utah 84602-0200, U.S.A. Corresponding author: Michael W. Hastriter ([email protected]) Academic editor: T. Galloway | Received 19 January 2016 | Accepted 25 February 2016 | Published 15 March 2016 http://zoobank.org/2322CF20-1A94-4A0D-BE3F-F8212E737812 Citation: Hastriter MW (2016) Description of two new species of bat fleas of the genus Araeopsylla (Siphonaptera) from Kenya and Madagascar with notes on miscellaneous bat fleas. ZooKeys 572: 7–21.doi: 10.3897/zookeys.572.7823 Abstract The flea genus Araeopsylla Jordan and Rothschild, 1921 contains nine species distributed throughout the Palaearctic, Ethiopian and Oriental Regions primarily on mollosid bats. A new species of bat flea, Araeopsylla goodmani, is described. This new species is represented by three females collected from one male specimen of the mollosid bat Chaerephon jobimena Goodman & Cardiff, 2004 from Fianarantsoa Province, Madagascar. A second new species, Araeopsylla smiti, is described from one male from the Rift Valley, Kenya. It was collected from the molossid bat Chaerephon bivittatus (Heuglin, 1861). This rep- resents the first record of Araeopsylla in Kenya. Previous records of Araeopsylla in the Malagasy region included Araeopsylla martialis (Rothschild, 1903) from Reunion Island and Madagascar. -
Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats
RESEARCH ARTICLE Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats Beza Ramasindrazana1,2,3*, Koussay Dellagi1,2, Erwan Lagadec1,2, Milijaona Randrianarivelojosia4, Steven M. Goodman3,5, Pablo Tortosa1,2 1 Centre de Recherche et de Veille sur les maladies émergentes dans l’Océan Indien, Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France, 2 Université de La Réunion, UMR PIMIT "Processus Infectieux en Milieu Insulaire Tropical", INSERM U 1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, 97490 Sainte Clotilde, Saint-Denis, La Réunion, France, 3 Association Vahatra, Antananarivo, Madagascar, 4 Institut Pasteur de Madagascar, Antananarivo, Madagascar, 5 The Field Museum of Natural History, Chicago, Illinois, United States of America * [email protected] OPEN ACCESS Abstract Citation: Ramasindrazana B, Dellagi K, Lagadec E, We investigated filarial infection in Malagasy bats to gain insights into the diversity of these Randrianarivelojosia M, Goodman SM, Tortosa P (2016) Diversity, Host Specialization, and Geographic parasites and explore the factors shaping their distribution. Samples were obtained from Structure of Filarial Nematodes Infecting Malagasy 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 Bats. PLoS ONE 11(1): e0145709. doi:10.1371/ species currently recognized on the island. Samples were screened for the presence of journal.pone.0145709 micro- and macro-parasites through both molecular and morphological approaches. Phylo- Editor: Karen E. Samonds, Northern Illinois genetic analyses showed that filarial diversity in Malagasy bats formed three main groups, University, UNITED STATES the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); Received: April 30, 2015 a second group infecting Pipistrellus cf. -
Karyotype Evolution in the Horseshoe Bat Rhinolophus Sedulus by Whole-Arm Reciprocal Translocation (WART)
Original Article Cytogenet Genome Res 2014;143:241–250 Accepted: May 5, 2014 DOI: 10.1159/000365824 by M. Schmid Published online: August 16, 2014 Karyotype Evolution in the Horseshoe Bat Rhinolophus sedulus by Whole-Arm Reciprocal Translocation (WART) a b d c Marianne Volleth Klaus-Gerhard Heller Hoi-Sen Yong Stefan Müller a b Department of Human Genetics, Otto von Guericke University, Magdeburg , Department of Biology, Humboldt c University, Berlin , and Institute of Human Genetics, University Hospital, Ludwig Maximilian University, Munich , d Germany; Institute of Biological Sciences, University of Malaya, Kuala Lumpur , Malaysia Key Words tence of a hybrid zone at the sampling locality is thought to Chiroptera · FISH · Karyotype evolution · Mammalia · be rather improbable, the WART may indicate ongoing Rhinolophidae · WART karyotype evolution in this taxon. © 2014 S. Karger AG, Basel Abstract Robertsonian (centric) fusion or fission is one of the predom- Karyotypes may be shaped by different kinds of rear- inant modes of chromosomal rearrangement in karyotype rangements, such as inversions, translocations, and Rob- evolution among mammals. However, in karyotypes com- ertsonian (centric) fissions and fusions. The last type is posed of only bi-armed chromosomes, creation of new chro- thought to be the most common mode within Mammalia, mosomal arm combinations in one step is possible only via at least among rearrangements detected by conventional whole-arm reciprocal translocation (WART). Although this cytogenetic techniques in the past. A relatively rarely re- type of rearrangement has often been proposed to play an ported type of rearrangement is whole-arm reciprocal important role in chromosomal evolution, direct observa- translocation (WART) by which entire chromosomal tions of WARTs remained rare, and, in most cases, were found arms are reciprocally exchanged between 2 chromo- in hybrids of chromosomal races in the genera Mus and somes. -
A New Species of Chaerephon (Molossidae) from Madagascar with Notes on Other Members of the Family
A New Species of Chaerephon (Molossidae) from Madagascar with Notes on Other Members of the Family Authors: Goodman, Steven M., and Cardiff, Scott G. Source: Acta Chiropterologica, 6(2) : 227-248 Published By: Museum and Institute of Zoology, Polish Academy of Sciences URL: https://doi.org/10.3161/001.006.0204 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Acta-Chiropterologica on 13 Jul 2020 Terms of Use: https://bioone.org/terms-of-use Acta Chiropterologica, 6(2): 227–248, 2004 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS A new species of Chaerephon (Molossidae) from Madagascar with notes on other members of the family STEVEN M. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
A Checklist of the Mammals of South-East Asia
A Checklist of the Mammals of South-east Asia A Checklist of the Mammals of South-east Asia PHOLIDOTA Pangolin (Manidae) 1 Sunda Pangolin (Manis javanica) 2 Chinese Pangolin (Manis pentadactyla) INSECTIVORA Gymnures (Erinaceidae) 3 Moonrat (Echinosorex gymnurus) 4 Short-tailed Gymnure (Hylomys suillus) 5 Chinese Gymnure (Hylomys sinensis) 6 Large-eared Gymnure (Hylomys megalotis) Moles (Talpidae) 7 Slender Shrew-mole (Uropsilus gracilis) 8 Kloss's Mole (Euroscaptor klossi) 9 Large Chinese Mole (Euroscaptor grandis) 10 Long-nosed Chinese Mole (Euroscaptor longirostris) 11 Small-toothed Mole (Euroscaptor parvidens) 12 Blyth's Mole (Parascaptor leucura) 13 Long-tailed Mole (Scaptonyx fuscicauda) Shrews (Soricidae) 14 Lesser Stripe-backed Shrew (Sorex bedfordiae) 15 Myanmar Short-tailed Shrew (Blarinella wardi) 16 Indochinese Short-tailed Shrew (Blarinella griselda) 17 Hodgson's Brown-toothed Shrew (Episoriculus caudatus) 18 Bailey's Brown-toothed Shrew (Episoriculus baileyi) 19 Long-taied Brown-toothed Shrew (Episoriculus macrurus) 20 Lowe's Brown-toothed Shrew (Chodsigoa parca) 21 Van Sung's Shrew (Chodsigoa caovansunga) 22 Mole Shrew (Anourosorex squamipes) 23 Himalayan Water Shrew (Chimarrogale himalayica) 24 Styan's Water Shrew (Chimarrogale styani) Page 1 of 17 Database: Gehan de Silva Wijeyeratne, www.jetwingeco.com A Checklist of the Mammals of South-east Asia 25 Malayan Water Shrew (Chimarrogale hantu) 26 Web-footed Water Shrew (Nectogale elegans) 27 House Shrew (Suncus murinus) 28 Pygmy White-toothed Shrew (Suncus etruscus) 29 South-east -
African Bat Conservation News Template
Volume 33 African Bat Conservation News November 2013 ISSN 1812-1268 © ECJ Seamark, 2009 (AfricanBats) © ECJ Seamark, 2007 (AfricanBats) Above: A Egyptian Fruit Bat (Rousettus aegyptiacus) caught in the Pufuri area, Kruger National Park, South Africa. Inside this issue: Recent Literature 2 Conferences 2 Zoological Society of Southern Africa Conference 2 16th International Bat Research Conference 5 Published Books / Reports 16 Published Papers 16 Notice Board 26 Download and subscribe to African Bat Conservation News published by AfricanBats at: www.africanbats.org The views and opinions expressed in articles are no necessarily those of the editor or publisher. Articles and news items appearing in African Bat Conservation News may be reprinted, provided the author’s and newsletter reference are given. African Bat Conservation News November 2013 vol. 33 2 ISSN 1812-1268 Recent Literature Conference Zoological Society of Southern Africa 2013 Below are abstracts that are specifically related to African bat species. Papers The importance of ecology and physiology in a changing world: Wahlberg Epauletted Fruit Bat (Epomophorus wahlbergi) as an example Colleen T. Downs - School of Life Sciences, University of KwaZulu-Natal, Globally the biggest threats to mammal and bird populations in the short-term are human development, population growth, urbanisation, alien invasions and land transformation resulting in habitat loss for species. In addition climate change is another threat in the long- term. However, to assess how these threats impact on a species and how they may survive both ecological and physiological studies are required. The importance of interdisciplinary studies is highlighted using the example of Wahlberg’s epauletted fruit bat Epomophorus wahlbergi. -
Lessons in Conservation Issue No
Center for Biodiversity and Conservation Network of Conservation Educators & Practitioners LESSONS IN CONSERVATION ISSUE NO. 6 MADAGASCAR JANUARY 2016 ISSUE 3 SYNTHÈSES EN FRANÇAIS 1 SYNTHESIS IN ENGLISH ISSN: 1938-7024 Network of Conservation Educators & Practitioners Lessons in Conservation is the official journal of the Network of Conservation Educators and Practitioners (NCEP) and is published as issues become available. Teaching and learning modules presented here in Lessons in Conservation are available in modifiable form for teachers on the NCEP website (ncep.amnh.org). All materials are distributed free of charge. Any opinions, findings and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the American Museum of Natural History or the funders of this project. All components (Syntheses, Exercises, and Case Studies) have been peer–reviewed and approved for publication by NCEP. Editors: Production team: Domoina Rakotobe Ana Luz Porzecanski REPC–MD Vice–President CBC Director Georgina Cullman Eleanor Sterling CBC Postdoctoral Fellow CBC Chief Conservation Scientist Kimberley Landrigan CBC Assistant Director for Capacity Development Suzanne Macey NCEP Science Editorial and Postdoctoral Fellow Kristin Douglas NCEP Production Coordinator Nadav Gazit NCEP and CBC Research and Production Assistant Special thanks to Monique Lores Lessons in Conservation is available online at: ncep.amnh.org/linc All reproduction or distribution must provide full citation of the -
A New Species of Scotophilus (Chiroptera: Vespertilionidae) from Western Madagascar
Acta Chiropterologica, 8(1): 21–37, 2006 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS A new species of Scotophilus (Chiroptera: Vespertilionidae) from western Madagascar STEVEN M. GOODMAN1, 2, FANJA H. RATRIMOMANARIVO2, 3, and FÉLICIEN H. RANDRIANANDRIANINA3, 4 1Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA E-mail: [email protected] 2WWF, B.P. 738, Antananarivo (101), Madagascar 3Département de Biologie Animale, Faculté des Sciences, Université d’Antananarivo, B.P. 906, Antananarivo (101), Madagascar 4Madagasikara Voakajy, B.P. 5181, Antananarivo (101), Madagascar We describe a new species of Scotophilus (Vespertilionidae) from western Madagascar. This bat differs from the other members of this genus known from the island, Africa, and Asia based on its notably diminutive size, pelage coloration, and tragus shape and length. Scotophilus sp. nov. is known from seven different specimens taken at three different sites in the central western portion of the island, in zones with anthropogenic savanna dominated by palms (Bismarckia nobilis) and dry deciduous forest. The holotype was collected in the palm leaf roof of a thatched dwelling, which is the first evidence of the synanthropic occurrence of a member of this genus on Madagascar. Four species of Scotophilus are now known to occur on Madagascar of which three are endemic. Key words: Scotophilus, Vespertilionidae, new species, western Madagascar INTRODUCTION The Old World genus Scotophilus com- prises 13 species (Goodman et al., 2005a; On going biological inventories of Mad- Simmons, 2005) found from the Philip- agascar continue to reveal new information pines, across portions of Asia, to the Middle on the island’s chiropteran fauna, including East, La Réunion, Madagascar, and much species previously unknown to science of Africa. -
Island Bats: Evolution, Ecology, and Conservation
CHA P T E R 1 3 The Ecology and Conservation of Malagasy Bats Paul A. Racey, Steven M. Goodman, and Richard K. B. Jenkins Introduction Despite the important contribution that bats make to tropical biodiversity and ecosystem function, as well as the threatened status of many species, conserva tion initiatives for Madagascar’s endemic mammals have rarely included bats. Until recently, most mammalogical research in Madagascar concerned lemurs, rodents, and tenrecs. This focus resulted in a dearth of information on bat bi ology. However, since the mid1990s considerable advancement has been made following the establishment of capacitybuilding programs for Malagasy bat biologists, and bats are now included in biodiversity surveys and a growing number of field studies are in progress. In this chapter we summarize the advances made in recent years in un derstanding the diversity of Malagasy bats and briefly describe their biogeo graphic affinities and levels of endemism. We draw attention to the importance of understanding the ecology of these animals and why this is a prerequisite to their conservation. In discussing monitoring and hunting, we highlight some of the reasons that make bat conservation notably different from other vertebrate conservation challenges on the island. The Diversity of Malagasy Bats The recent surge of interest in Malagasy bats has resulted in the discovery and description of nine new taxa on the island. The rate of new discoveries quickly makes statements on endemism and species richness out of date. For example, of the 37 bat taxa listed for Madagascar in table 13.1, only 29 were treated in the 2005 Global Mammal Assessment in Antananarivo.