Chemical Prioritization Methods for Nuclear Receptor Modulators at the U.S. EPA

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Prioritization Methods for Nuclear Receptor Modulators at the U.S. EPA Chemical Prioritization Methods for Nuclear Receptor Modulators at the U.S. EPA Keith A. Houck, Ph.D. National Center for Computational Toxicology (NCCT/ORD/EPA) EDTA International Symposium, Dongguk University November 9, 2018 [email protected] The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA Use of commercial names does not constitute endorsement of those brands U.S. Environmental Protection Agency Regulatory Agencies Make a Broad Range of Decisions on Chemicals… Number of Chemicals Lack of Data /Combinations 70 60 • Number of chemicals and 50 40 combinations of chemicals is 30 extremely large (>20,000 substances 20 <1% Percent of Chemicals of Percent 10 on active TSCA inventory) 0 Acute Cancer • Due to historical regulatory Gentox Dev Tox requirements, most chemicals lack Repro Tox EDSP Tier 1 Modified from Judson et al., EHP 2010 traditional toxicity testing data Ethics/Relevance Economics • Traditional toxicology testing is Concerns $10,000,000 expensive and time consuming $1,000,000 • Traditional animal-based testing has $100,000 Cost issues related to ethics and relevance $10,000 $1,000 Toxicology Moving to Embrace 21st Century Methods 3 High-Throughput Assays Used to Screen Chemicals for Potential Toxicity Hundreds High‐ Thousands Throughput of Chemicals ToxCast/Tox21 Assays • Understanding of what cellular processes/pathways may be perturbed by a chemical 4 • Understanding of what amount of a chemical causes these perturbations Broad Success Derived from High- Throughput Screening Approaches Group Chemicals by Provide Mechanistic Prioritization of Chemicals Similar Bioactivity and Support for Hazard ID for Further Testing Predictive Modeling Chemicals FIFRA SAP, Dec 2014 IARC Monographs Assays/Pathways 5 Focus on Nuclear Receptors and Xenobiotics • Family of ligand-regulated nuclear transcription factors (48 human) • Conserved, modular domains – DNA-binding domain – Ligand-binding domain • Binds lipophilic, small molecules • Endogenous ligands: steroid hormones, fatty acids • Regulates genes for key physiological processes: endocrine system, growth and differentiation, metabolism • Endogenous ligand physicochemical properties consistent with cell permeable qualities • Good focus for selective xenobiotic effects http://proteopedia.org/wiki/index.php/Image:3dzy2.png Ligands for Nuclear Hormone Receptors From the EPA’s Endocrine Disruptor Screening Management Plan: “Examine effects of these chemicals on estrogen, androgen and thyroid hormone-related processes” Sex Steroids ER Vitamin D VDR Estrogens, Progestins, Androgens Unknowns PR OH O OH OH AR O HO O HO OH Glucocorticoids GR Lipids PPARs OH O O HO OH OH O O Mineralocorticoids MR Oxysterols LXRs OH HO O O O O HO Thyroid Hormones TR Bile Acids O FXR I I OH NH O 2 H HO O I OH HO OH H Retinoids RARs Xenobiotics PXR O RXRs Cl CAR OH N N 7 The Estrogen Receptor Model • Public solicitation for diverse high-throughput assays to cover broad range of bioactivity/toxicity endpoints • Many estrogen receptor assays included – Binding – Nuclear localization – Transactivation – Cell proliferation • No single assay perfect for a variety of reasons • Decided to develop computational model utilizing all data Targeted Pathways 18 In Vitro Assays Measure ER-Related Activity R3 A1 Receptor (Direct Molecular Interaction) A2 Intermediate Process A3 Assay ER Receptor ER Receptor Binding 3 Binding R2 R1 Noise Process (Antagonist) A4 (Agonist) R4 ER agonist pathway A5 ER antagonist pathway A6 Dimerization N7 N1 Dimerization Interference pathway A7 Cofactor A8 Cofactor N8 N2 Recruitment Recruitment A9 R5 DNA DNA N9 N3 Binding A10 Binding R6 A12 R9 A11 RNA N4 Transcription A13 A17 Antagonist R7 N10 Transcription Protein A14 A18 Suppression Production N5 A15 ER‐induced R8 N6 Judson et al., Tox Sci. 2015 Proliferation A16 Browne et al., ES&T. 2015 Kleinstreuer et al., EHP 2016 ER Model Performance In vivo Comparison Rank Order (ER Agonist AUC) Judson et al., Tox Sci 2015 Browne et al., Environ. Sci. Technol., 2015 ER Minimal Model Combinations of four assays provide good balanced accuracy R.S. Judson et al. / Regulatory Toxicology and Pharmacology 91 (2017) 39e49 Regulatory Applications: EDSP “The approach incorporates validated high-throughput assays and a computational model and, based on current research, can serve as an alternative for some of the current assays in the Endocrine Disruptor Screening Program (EDSP) Tier 1 battery.” Androgen Receptor Screening • Utilize existing ToxCast/Tox21 assays to develop AR model • Cytotoxic chemicals confounded antagonist cell-based assays • Run additional confirmation assay for antagonists – Higher agonist concentration – Competitive antagonists show right-shift in potency ToxCast/Tox21 Assays Antagonist Mode Evaluation of AR Model Summary Reference Data • Model has high sensitivity Literature Review • Antagonist mode specificity improved by considering Reference Chemical antagonist assay with high Classifications agonist concentration • Weakly active chemicals most Model Performance difficult to detect Evaluation • Broad screening suggested cytotoxic compounds not all excluded Validated Model for Chemical Screening Chem Res Toxicol. 30:946-964, 2017. Agonists versus Antagonist Selective receptor modulators behave conditionally as agonists and/or antagonists 17-Estradiol 4-Hydroxytamoxifen Fulvestrant Brzozowski et al., Nature. 389: 753–8, 1997). Tox21 AR Screening Results ⁓ 8,000 chemicals Hydroxyflutamide Bis(tributyltin)oxide • Only 102 chemicals positive Dipyrithione using strictest criteria Ziram NTP Mix21 AR2 2‐EQP • Expanding criteria allows for ranking of chemicals based on 17alpha‐Ethinylestradiol strength of evidence Bis(1‐piperidinylthioxomethyl)hexasulfide Triphenyltin acetate • Chemicals that are confounded Tributyltin benzoate by cytotoxicity are not eliminated Nilutamide but evidence is weaker Triethyltin bromide • Potency not currently considered Equilin but is another important factor 17alpha‐Estradiol (Acryloyloxy)(tributyl)stannane Triphenyltin fluoride Ethylestrenol Copper dimethyldithiocarbamate Vinclozolin Challenges with assessing NR antagonism in vitro • Measuring loss of signal- confounded by cytotoxicity • To address: – Two different assay platforms – Use bootstrapping techniques to determine effect of cytotoxicity – Two concentrations of agonist R1881 – MARCoNI assay for corepressor/activator recruitment Antagonist Reference Chemical Results LUC vs LUC vs Chemical Designation Assay Hitcalls LUC_counterscreen LUC_viability Procymidone Very Weak Antagonist BLA, LUC, LUCcs Yes Yes Fenarimol Very Weak Antagonist BLA, LUC, LUCcs Yes Yes 4-(1,1,3,3- Tetramethylbutyl)phenol Weak Antagonist LUC Yes Yes o,p'-DDT Weak Antagonist BLA, LUC Yes Yes Antagonist p,p'-DDE Weak Antagonist LUC Yes Yes Propiconazole Weak Antagonist BLA, LUC, LUCcs Yes No Screening Zearalenone Weak Antagonist BLA, LUC, LUCcs No No Methoxychlor Weak Antagonist BLA, LUC, LUC2 No No • LUC: R1881 = 0.5 nM Linuron Moderate/Weak Antagonist BLA, LUC Yes No Vinclozolin Moderate/Weak Antagonist BLA, LUC, LUCcs Yes Yes Flutamide Moderate/Weak Antagonist BLA, LUC, LUCcs Yes Yes Bisphenol A Moderate/Weak Antagonist BLA, LUC, LUCcs Yes Yes • LUC_counterscreen: Prochloraz Moderate/Weak Antagonist BLA, LUC, LUCcs Yes Yes Cyproterone acetate Moderate Antagonist BLA, LUC Yes Yes R1881 = 10 nM Nilutamide Moderate Antagonist BLA, LUC, LUCcs Yes Yes Spironolactone Strong/Moderate Antagonist BLA, LUC No Yes Mifepristone Strong/Moderate Antagonist BLA, LUC, LUCcs No Yes Fenitrothion Strong Antagonist BLA, LUC, LUCcs Yes Yes Hydroxyflutamide Strong Antagonist BLA, LUC, LUCcs Yes Yes Bicalutamide Strong Antagonist BLA, LUC, LUCcs Yes Yes 17-Methyltestosterone Negative Antagonist NA NA NA 4-Androstene-3,17-dione Negative Antagonist NA NA No Atrazine Negative Antagonist NA NA NA Daidzein Negative Antagonist BLA NA NA Deltamethrin Negative Antagonist NA NA NA Methomyl Negative Antagonist LUCcs NA No Simazine Negative Antagonist NA NA NA MARCoNI assay Microarray Assay for Real-time Coregulator-Nuclear receptor Interaction • Cell-free assay measuring co-regulator recruitment to AR-LBD – 154 co-regulators – 3 concentrations (1, 10, 100 uM) – log fold-change of binding compared to DMSO • Tested 318 suspected AR antagonists • Reduced variables (co-regulators) to 28 most affected • Goal: to see if patterns of coregulatory recruitment can distinguish between true antagonists and false antagonists (cytotoxicity/artifacts) Image: pamgene.com High confidence: Cluster 1-2 Lower confidence: Cluster 3 2 1 34 No confidence: Clusters 4-7 5 67 7 Cyproterone 6 5 Bicalutamide DHT 4 Hydroxyflutamide Unique 3 chemicals 2 1 Rank Spearman Dissimilarity/Wards Co-regulator Recruitment Patterns • Mean value of cluster 1 2 3 4 5 6 7 plotted per coregulator • Loss of binding seen 1 in cluster 2&3 versus 1 (red oval) 2 • These represent SRC 3 coactivators that have 4 6 histone acetyl 7 5 transferase activity • Selective receptor modulators; likely would influence biological response Thyroid Hormone Receptor Modulators: Tox21 qHTS Campaign Primary Screen Hit Characterization ASSAYS ASSAYS Rat pituitary GH3 cell line* GH3 expressing endogenous TRα GAL4-TR (human) and TRβ, with TRE regulating GAL4-RXR (human) luciferase expression TR/TR coactivator recruitment Cell viability TR nuclear translocation * Developed by Albertinka Murk, Wageningen University, the Netherlands TR Modulator Hit Characterization: TR Coactivator Assay (Invitrogen):
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,394,315 B2 Aicher Et Al
    USOO93943 15B2 (12) United States Patent (10) Patent No.: US 9,394,315 B2 Aicher et al. (45) Date of Patent: Jul.19, 2016 (54) TETRAHYDROI18NAPHTHYRIDINE 6,605,634 B2 8, 2003 Zablocki et al. SULFONAMIDE AND RELATED 6,638,960 B2 10/2003 Assmann et al. 6,683,091 B2 1/2004 Asberomet al. COMPOUNDS FOR USEAS AGONSTS OF 6,828,344 B1 12/2004 Seehra et al. RORY AND THE TREATMENT OF DISEASE 7,084, 176 B2 8, 2006 Morie et al. 7,138.401 B2 11/2006 Kasibhatla et al. (71) Applicant: Lycera Corporation, Ann Arbor, MI 7,329,675 B2 2/2008 Cox et al. 7,420,059 B2 9, 2008 O'Connor et al. (US) 7,482.342 B2 1/2009 D’Orchymont et al. 7,569,571 B2 8/2009 Dong et al. (72) Inventors: Thomas D. Aicher, Ann Arbor, MI (US); 7,696,200 B2 4/2010 Ackermann et al. Peter L. Toogood, Ann Arbor, MI (US); 7,713.996 B2 5/2010 Ackermann et al. Xiao Hu, Northville, MI (US) 7,741,495 B2 6, 2010 Liou et al. 7,799,933 B2 9/2010 Ceccarelli et al. (73) Assignee: Lycera Corporation, Ann Arbor, MI 2006,0004000 A1 1/2006 D'Orchymont et al. 2006/010O230 A1 5, 2006 Bischoff et al. (US) 2007/0010537 A1 1/2007 Hamamura et al. 2007/OO 10670 A1 1/2007 Hirata et al. (*) Notice: Subject to any disclaimer, the term of this 2007/0049556 A1 3/2007 Zhang et al. patent is extended or adjusted under 35 2007/0060567 A1 3/2007 Ackermann et al.
    [Show full text]
  • OSPAR Background Document on Methoxychlor ______
    Hazardous Substances Series --------------------------------------------------------------------------------------------------------------------- Methoxychlor1 OSPAR Commission 2002 (2004 Update) 1 Secretariat’s note: A review statement on methoxychlor (Publication 352d/2008) was adopted in 2008, highlighting new developments since the adoption of the Background Document. OSPAR Commission, 2002: OSPAR Background Document on Methoxychlor _______________________________________________________________________________________________________ The Convention for the Protection of the Marine Environment of the North-East Atlantic (the “OSPAR Convention”) was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Community and Spain. La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l’Irlande, l’Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. © OSPAR Commission, 2002. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated. © Commission OSPAR, 2002.
    [Show full text]
  • (A) Sources, Including As Appropriate (Provide Summary Information
    UNEP/POPS/POPRC.1/4 Format for submitting pursuant to Article 8 of the Stockholm Convention the information specified in Annex E of the Convention Introductory information Name of the submitting Party/observer NGO Observer: Pesticide Action Network on behalf of the International POPs Elimination Network (IPEN) Contact details Clare Butler Ellis PhD, M.Inst.P, C.Env. Pesticide Action Network UK [email protected] Joseph DiGangi, PhD Environmental Health Fund +001-312-566-0985 [email protected] Chemical name Chlordecone Chemical name: 1,1a,3,3a,4,5,5,5a,5b,6-decachloro-octahydro-1,3,4-metheno-2H- cyclobuta[cd]pentalen-2-one CAS=143-50-0 Common trade names: GC 1189, Kepone, Merex Synonyms: Chlordecone, Chlordecone Kepone, Decachloroketone, Decachlorooctahydro-1,3,4-metheno-2H-cyclobuta(cd)pentalen-2-one, Decachloropentacyclo(5.3.0.0.0.0 2,6,4,10,5,9)decane-3-one, Decachlorotetracyclodecanone decachlorooctahydro- , Date of submission 27 January 2006 (a) Sources, including as appropriate (provide summary information and relevant references) (i) Production data: Quantity 1 “Chlordecone is no longer produced commercially in the United States. Between 1951 and 1975, approximately 3.6 million pounds (1.6 million kg) of chlordecone were produced in the United States (Epstein 1978). During this period, Allied Chemical Annex E information on chlordecone 1 UNEP/POPS/POPRC.1/4 Company produced approximately 1.8 million pounds (816,500 kg) of chlordecone at plants in Claymont, Delaware; Marcus Hook, Pennsylvania and Hopewell, Virginia. In 1974, because of increasing demand for chlordecone and a need to use their facility in Hopewell, Virginia, for other purposes, Allied Chemical transferred its chlordecone manufacturing to Life Sciences Products Company (EPA 1978b).
    [Show full text]
  • High-Throughput H295R Steroidogenesis Assay: Utility As an Alternative and a Statistical Approach to Characterize Effects on Steroidogenesis Derik E
    High-throughput H295R steroidogenesis assay: utility as an alternative and a statistical approach to characterize effects on steroidogenesis Derik E. Haggard ORISE Postdoctoral Fellow National Center for Computational Toxicology Computational Toxicology Communities of Practice Dec. 14th, 2017 The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA Outline • Background • Objectives • Assay Background • Methods and Results 1. Evaluation of the HT-H295R assay 2. Development of a quantitative prioritization metric for the HT-H295R assay data • Summary and Conclusions 2 Steroid Hormone Biosynthesis & Metabolism • Proper steroidogenesis is essential: • In utero for fetal development • In adults for reproductive function • Disruption can result in congenital adrenal hyperplasia, sterility, prenatal virilization, salt wasting, etc. • >90% of steroidogenesis occurs in the gonads • Leydig cells (males) or follicular cells (females) • Adrenal gland (corticosteroids) 3 https://www.pharmacorama.com/en/Sections/Androgen_steroid_hormones.php US EPA Endocrine Disruptor Screening Program (EDSP) • EDSP mandated to screen chemicals for endocrine activity (estrogen, androgen, thyroid) • Initial tiered screen relied on low-throughput assays • Modernization of EDSP (EDSP21) to use high-throughput and computational methods • Prioritize the universe of EDSP chemicals for endocrine bioactivity • Altering hormone levels via disruption of biosynthesis or metabolism can also contribute
    [Show full text]
  • Supplemental File 11
    Supplemental File 11 Supplemental Table 11. OECD Reference Chemical Performance in HT H295R versus OECD inter-laboratory results and literature-reported results. Chemical identifiers (chemical name and casn) are provided for the 25 reference chemicals that overlapped between high-throughput (HT) H295R screening and the OECD inter-laboratory validation study (Hecker et al., 2011). Trilostane, glyphosate, and human chorionic gonadotrophin were not screened in the HT H295R assay. The adjusted maxmMd value, quadrants of the steroid synthesis pathway affected (progestagens (P), glucocorticoids (G), androgens (A), and/or estrogens (E)), and the number of steroid hormones affected using the ANOVA-based logic described in the main text are also provided. The OECD inter-laboratory results for estradiol (E2) and testosterone (T) are summarized along with a brief overview of additional information from the reported literature for activity in the H295R assay (if other in vitro assay data are referenced, the assay type is provided). Only 2 of the 25 chemicals with overlapping data were reported as negative for effects on both E2 and T: ethylene dimethanesulfonate and benomyl. NA indicates that no concentration-response screening data were available (only single concentration screening available). # Chemical identifiers Results from HT H295R assay OECD Inter-laboratory and literature-reported Chemical name casn Adjusted maxmMd Quadrants # Steroid results of steroid hormones biosynthesis affected pathway affected 1 Mifepristone 84371-65-3 27 P 2 Used pharmacologically as an abortifacient with antiprogestagen, antiglucocorticoid, and antiandrogen properties. Moderate induction of E2 (2 to 4-fold induction) and T (equivocal) synthesis (Hecker, et al., 2011). Strong modulation of glucocorticoid pathway in H295R cells as a GR antagonist (Asser et al., 2014).
    [Show full text]
  • Hormonal Side Effects in Patients Using Levetiracetam
    Reproductive endocrine side effects of antiepileptic drugs Student Thesis Student: Marte Wendel Gustavsen Class V-03 University of Oslo, Norway Supervisor: Professor Erik Taubøll Department of Neurology, Rikshospitalet University Hospital, Oslo, Norway Contents Contents ...................................................................................................................................... 2 Acknowledgements .................................................................................................................... 3 Abstract ...................................................................................................................................... 4 Introduction ................................................................................................................................ 5 Reproductive endocrine effects of epilepsy ............................................................................... 5 Reproductive hormones can affect epilepsy ............................................................................... 7 Reproductive hormones can influence on AEDs ....................................................................... 9 Reproductive endocrine effects of AEDs ................................................................................... 9 Reproductive endocrine effects of valproate ........................................................................ 11 Women ............................................................................................................................
    [Show full text]
  • December 12, 1995. Title
    AN ABSTRACT OF THE THESIS OF Sirinmas Intharapanith for the degree of Master of Science in Toxicology presented on December 12, 1995.Title:Effect of Xenoestrogen Exposure on The Expression of Cytocluome P450 Isoforms in Rainbow Trout Liver. Redacted for privacy Abstract approved: Donald R. Buhler Experimental evidence revealsthat xenoestrogens such asorganochlorine pesticides, pharmaceuticals, phenolic compounds and phytoestrogen exhibit reproductive effects on the health of human and wildlife populations. In rainbow trout, injection with 1713-estradiol represses expression of cytochrome P450s (CYP2K1, CYP2M1 and P450 LMC5) and reduces hepatic lauric acid hydroxylase activity. The aim of our study was to examine the effect on the regulation of rainbow trout P450s of four xenoestrogenic chemicals from the following categories:pesticides, pharmaceuticals, surfactants and phytoestrogens. Therefore, four chemicals, methoxychlor (20 mg/kg), diethylstilbestrol (15 mg/kg), 4-tert-octylphenol (25 and 50 mg/kg) and biochanin A (25 and 50 mg/kg) were injected (ip) on days 1,4 and 7 into one-year old juvenile rainbow trout using propylene glycol as vehicle. All fish were sacrificed on day 9.Plasma vitellogenin levels were measured by ELISA and used as an indicator of the estrogenic activity of the four chemicals. Plasma vitellogenin increased in all treated trout to varying degrees, ranging from high to low, in response to the test chemicals in the following order of decreasing of activities: diethylstilbestrol (15 mg/kg), 4-tert-octylphenol (50 mg/kg), 4-tert-octylphenol (25 mg/kg), biochanin A (50 mg/kg), biochanin A (25 mg/kg) and methoxychlor (20 mg/kg), respectively. As found upon treatment with estrogens, all four chemicals treated trout liver microsomes markedly repressed expression of P450's in liver microsomes from treated trout as measured by Western blots.Laurie acid hydroxylase activity also was greatly reduced in trout treated with all four chemicals.
    [Show full text]
  • Residue Dynamics and Risk Assessment of Prochloraz and Its Metabolite 2,4,6-Trichlorophenol in Apple
    Article Residue Dynamics and Risk Assessment of Prochloraz and Its Metabolite 2,4,6-Trichlorophenol in Apple Qingkui Fang 1, Gengyou Yao 2, Yanhong Shi 2, Chenchun Ding 1, Yi Wang 2, Xiangwei Wu 2, Rimao Hua 2 and Haiqun Cao 1,* 1 School of Plant Protection, Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China; [email protected] (Q.F.); [email protected] (C.D.) 2 School of Resource & Environment, Provincial Key Laboratory for Agri-Food Safety, Anhui Agricultural University, Hefei 230036, China; [email protected] (G.Y.); [email protected] (Y.S.); [email protected] (Y.W.); [email protected] (X.W.); [email protected] (R.H.) * Correspondence: [email protected] Received: 22 September 2017; Accepted: 19 October 2017; Published: 20 October 2017 Abstract: The residue dynamics and risk assessment of prochloraz and its metabolite 2,4,6- trichlorophenol (2,4,6-TCP) in apple under different treatment concentrations were investigated using a GC-ECD method. The derivatization percent of prochloraz to 2,4,6-TCP was stable and complete. The recoveries of prochloraz and 2,4,6-TCP were 82.9%–114.4%, and the coefficients of variation (CV) were 0.7%–8.6% for the whole fruit, apple pulp, and apple peel samples. Under the application of 2 °C 2.0 g/L, 2 °C 1.0 g/L, 20 °C 2.0 g/L, and 20 °C 1.0 g/L treatment, the half-life for the degradation of prochloraz was 57.8–86.6 d in the whole fruit and apple peel, and the prochloraz concentration in the apple pulp increased gradually until a peak (0.72 mg·kg−1) was reached.
    [Show full text]
  • A Cell-Free Testing Platform to Screen Chemicals of Potential Neurotoxic Concern Across Twenty Vertebrate Species
    Environmental Toxicology and Chemistry, Vol. 36, No. 11, pp. 3081–3090, 2017 # 2017 SETAC Printed in the USA A CELL-FREE TESTING PLATFORM TO SCREEN CHEMICALS OF POTENTIAL NEUROTOXIC CONCERN ACROSS TWENTY VERTEBRATE SPECIES a,b a,b a,c,d a a,e ADELINE ARINI, KRITTIKA MITTAL, PETER DORNBOS, JESSICA HEAD, JENNIFER RUTKIEWICZ, a,b, and NILADRI BASU * aDepartment of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA bFaculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada cDepartment of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA dInstitute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA eToxServices, Ann Arbor, Michigan, USA (Submitted 8 February 2017; Returned for Revision 9 March 2017; Accepted 5 June 2017) Abstract: There is global demand for new in vitro testing tools for ecological risk assessment. The objective of the present study was to apply a set of cell-free neurochemical assays to screen many chemicals across many species in a relatively high-throughput manner. The platform assessed 7 receptors and enzymes that mediate neurotransmission of g-aminobutyric acid, dopamine, glutamate, and acetylcholine. Each assay was optimized to work across 20 vertebrate species (5 fish, 5 birds, 7 mammalian wildlife, 3 biomedical species including humans). We tested the screening assay platform against 80 chemicals (23 pharmaceuticals and personal care products, 20 metal[loid]s, 22 polycyclic aromatic hydrocarbons and halogenated organic compounds, 15 pesticides). In total, 10 800 species–chemical–assay combinations were tested, and significant differences were found in 4041 cases. All 7 assays were significantly affected by at least one chemical in each species tested.
    [Show full text]
  • QSAR Model for Androgen Receptor Antagonism
    s & H oid orm er o t n S f a l o S l c a Journal of i n e Jensen et al., J Steroids Horm Sci 2012, S:2 r n u c o e DOI: 10.4172/2157-7536.S2-006 J ISSN: 2157-7536 Steroids & Hormonal Science Research Article Open Access QSAR Model for Androgen Receptor Antagonism - Data from CHO Cell Reporter Gene Assays Gunde Egeskov Jensen*, Nikolai Georgiev Nikolov, Karin Dreisig, Anne Marie Vinggaard and Jay Russel Niemelä National Food Institute, Technical University of Denmark, Department of Toxicology and Risk Assessment, Mørkhøj Bygade 19, 2860 Søborg, Denmark Abstract For the development of QSAR models for Androgen Receptor (AR) antagonism, a training set based on reporter gene data from Chinese hamster ovary (CHO) cells was constructed. The training set is composed of data from the literature as well as new data for 51 cardiovascular drugs screened for AR antagonism in our laboratory. The data set represents a wide range of chemical structures and various functions. Twelve percent of the screened drugs were AR antagonisms; three out of six statins showed AR antagonism, two showed cytotoxicity and one was negative. The newly identified AR antagonisms are: Lovastatin, Simvastatin, Mevastatin, Amiodaron, Docosahexaenoic acid and Dilazep. A total of 874 (231 positive, 643 negative) chemicals constitute the training set for the model. The Case Ultra expert system was used to construct the QSAR model. The model was cross-validated (leave-groups-out) with a concordance of 78.4%, a specificity of 86.1% and a sensitivity of 57.9%.
    [Show full text]
  • Developmental Reprogramming of Reproductive and Metabolic Dysfunction in Sheep: Native Steroids Vs
    international journal of andrology ISSN 0105-6263 REVIEW ARTICLE Developmental reprogramming of reproductive and metabolic dysfunction in sheep: native steroids vs. environmental steroid receptor modulators V. Padmanabhan, H. N. Sarma, M. Savabieasfahani, T. L. Steckler and A. Veiga-Lopez Department of Pediatrics and the Reproductive Sciences Program, The University of Michigan, Ann Arbor, MI, USA Summary Keywords: The inappropriate programming of developing organ systems by exposure to bisphenol A, endocrine disrupting chemicals, excess native or environmental steroids, particularly the contamination of our foetal programming, infertility, insulin environment and our food sources with synthetic endocrine disrupting chemi- resistance, metabolic programming, cals that can interact with steroid receptors, is a major concern. Studies with methoxychlor, neuroendocrine, ovary native steroids have found that in utero exposure of sheep to excess testoster- Correspondence: one, an oestrogen precursor, results in low birth weight offspring and leads to Vasantha Padmanabhan, Room 1109, 300 N. an array of adult reproductive ⁄ metabolic deficits manifested as cycle defects, Ingalls Building, University of Michigan, Ann functional hyperandrogenism, neuroendocrine ⁄ ovarian defects, insulin resis- Arbor, MI 48109, USA. tance and hypertension. Furthermore, the severity of reproductive dysfunction E-mail: [email protected] is amplified by excess postnatal weight gain. The constellation of adult repro- ductive and metabolic dysfunction in prenatal testosterone-treated sheep is Received 18 August 2009; revised 25 October similar to features seen in women with polycystic ovary syndrome. Prenatal 2009; accepted 27 October 2009 dihydrotestosterone treatment failed to result in similar phenotype suggesting doi:10.1111/j.1365-2605.2009.01024.x that many effects of prenatal testosterone excess are likely facilitated via aroma- tization to oestradiol.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin Et Al
    USOO8486374B2 (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin et al. (45) Date of Patent: Jul. 16, 2013 (54) HYDROPHILIC, NON-AQUEOUS (56) References Cited PHARMACEUTICAL CARRIERS AND COMPOSITIONS AND USES U.S. PATENT DOCUMENTS 1,159,250 A 11/1915 Moulton 1,666,684 A 4, 1928 Carstens (75) Inventors: Dov Tamarkin, Maccabim (IL); Meir 1924,972 A 8, 1933 Beckert Eini, Ness Ziona (IL); Doron Friedman, 2,085,733. A T. 1937 Bird Karmei Yosef (IL); Alex Besonov, 2,390,921 A 12, 1945 Clark Rehovot (IL); David Schuz. Moshav 2,524,590 A 10, 1950 Boe Gimzu (IL); Tal Berman, Rishon 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely LeZiyyon (IL); Jorge Danziger, Rishom 2,767,712 A 10, 1956 Waterman LeZion (IL); Rita Keynan, Rehovot (IL); 2.968,628 A 1/1961 Reed Ella Zlatkis, Rehovot (IL) 3,004,894 A 10/1961 Johnson et al. 3,062,715 A 11/1962 Reese et al. 3,067,784. A 12/1962 Gorman (73) Assignee: Foamix Ltd., Rehovot (IL) 3,092.255. A 6, 1963 Hohman 3,092,555 A 6, 1963 Horn 3,141,821 A 7, 1964 Compeau (*) Notice: Subject to any disclaimer, the term of this 3,142,420 A 7/1964 Gawthrop patent is extended or adjusted under 35 3,144,386 A 8/1964 Brightenback U.S.C. 154(b) by 1180 days. 3,149,543 A 9, 1964 Naab 3,154,075 A 10, 1964 Weckesser 3,178,352 A 4, 1965 Erickson (21) Appl.
    [Show full text]