Martian Meteorites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VI FORSKER PÅ MARS Kort Om Aktiviteten I Mange Tiår Har Mars Vært Et Yndet Objekt for Forskere Verden Over
VI FORSKER PÅ MARS Kort om aktiviteten I mange tiår har Mars vært et yndet objekt for forskere verden over. Men hvorfor det? Hva er det med den røde planeten som er så interessant? Her forsøker vi å gi en oversikt over hvorfor vi er så opptatt av Mars. Hva har vi oppdaget, og hva er det vi tenker å gjøre? Det finnes en planet i solsystemet vårt som bare er bebodd av roboter -MARS- Læringsmål Elevene skal kunne - gi eksempler på dagsaktuell forskning og drøfte hvordan ny kunnskap genereres gjennom samarbeid og kritisk tilnærming til eksisterende kunnskap - utforske, forstå og lage teknologiske systemer som består av en sender og en mottaker - gjøre rede for energibevaring og energikvalitet og utforske ulike måter å omdanne, transportere og lagre energi på VI FORSKER PÅ MARS side 1 Innhold Kort om aktiviteten ................................................................................................................................ 1 Læringsmål ................................................................................................................................................ 1 Mars gjennom historien ...................................................................................................................... 3 Romkappløp mot Mars ................................................................................................................... 3 2000-tallet gir rovere i fleng ....................................................................................................... 4 Hva nå? ...................................................................................................................................................... -
Generate Viewsheds of Mastcam Images from the Curiosity Rover, Using Arcgis® and Public Datasets
TECHNICAL Coupling Mars Ground and Orbital Views: Generate REPORTS: METHODS Viewsheds of Mastcam Images From the Curiosity 10.1029/2020EA001247 Rover, Using ArcGIS® and Public Datasets Key Points: 1 2 1 3 4 • Mastcam images from the Curiosity M. Nachon , S. Borges , R. C. Ewing , F. Rivera‐Hernández , N. Stein , and rover are available online but lack a J. K. Van Beek5 public method to be placed back in the Mars orbital context 1Department of Geology and Geophysics, Texas A&M University, College Station, TX, USA, 2Department of Astronomy • This procedure allows users to and Planetary Sciences—College of Engineering, Forestry, and Natural Sciences, Northern Arizona University, Flagstaff, generate Mastcam image viewsheds: 3 4 locate in a map view the Mars AZ, USA, Department of Earth Sciences, Dartmouth College, Hanover, NH, USA, Division of Geological and Planetary 5 terrains visible in Mastcam images Sciences, California Institute of Technology, Pasadena, CA, USA, Malin Space Science Systems, San Diego, CA, USA • This procedure uses ArcGIS® and publicly available Mars datasets Abstract The Mastcam (Mast Camera) instrument onboard the NASA Curiosity rover provides an Supporting Information: exclusive view of Mars: High‐resolution color images from Mastcam allow users to study Gale crater's • Dataset S1 geologic terrains along Curiosity's path. These ground observations complement the spatially broader • Dataset S2 • Dataset S3 views of Gale crater provided by spacecrafts from orbit. However, for a given Mastcam image, it can be • Table S1 challenging to locate the corresponding terrains on the orbital view. No method for locating Mastcam images • Table S2 onto orbital images had been made publicly available. -
Mariner to Mercury, Venus and Mars
NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions. -
Elements of Astronomy and Cosmology Outline 1
ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the -
Beagle Run Farm Beagle Run Farm
, ~ Farms & Estates Realty ~ ♣ Premier Properties ♣ Beagle Run Farm 4®©≥ ®°§≥ •¨ £≤°¶•§ •≥°• ® • ©≥ ¨ £°•§ ©®© • ¶ 7•§§© ≥ ¶©•≤ £ ©©•≥ , £°•§ © ®• ©±• "•°¨• 2 &°≤ §••¨ • ®©≥ ≥± ¶ ≥ ≤ 7©¨¨©° ≥!≤ ≥ ¨• ≤•≥©§•£• ¶•°≤•≥ " ¢•§≤ ≥ # !®≥ ° ≥°£© ≥ ≤ • $©£®• °§%°£• ®• ! ©§ •§ !•°$¶°≥ ≤ °§ ≤°§©© °¨ ¨©© °§ ≤•° ≤ ≥ &¨°≥≥©£ °≤£®©•£≤°¨ •¨• •≥ °≤• •©§• ! ® ©≥©§• °§ ¶ ®©≥ ≤•≥©§•£• 4®• •'•≤© ≤ ©≥ °®•©£°¨¨ £ ≥≤£•§ °≥ ° 7©¨¨©° ≥!≤ ≤•≤ §£© ≤•∞¨•• ©® (¨• ©≥® ) § !©£$ ≤$ )£$©®° ≥¨°• ≤ ¶ £ ∞∞•≤ ≤ ¶•§ £ ¨ •§ ¶≤ ≤£® °§ ≥ •≤©£°¨¨ ≥©© •§ ©§ ≥ °§ £®© • ≥ 4®• ©•≤© ≤ ©≥ °§ ≤•§ ©® £≥ §•≥©•§ °¨•≥ ¶ ≤ ®• ®≤•• § !≤© ¶©≤•∞¨°£•≥ ≥ ≤ ¶ •≤ ©® •®°£•§ £≤ ¨§© °§ ° ≤°§•§ $©£®• £≥ ≥©•§ ¶ ≤ ° ≤ • £ $ /•≤¨ $© ° ≥®°≤•§ § ©®© ° •¨•° +, °£≤• ≥•© ¶ °©£≤•§ ¨°≥ ! ' §≥ °§ © ° ®• •§ ¶ ° ∞≤©°• ∞°•§ §≤©• ®©≥ ≤ ∞•≤ ¶¶•≤≥ ° •'£¨≥©• £ ≤ ≥•© °§ ©≥ • ¶ ¨ ¶©• ® •≥ ©®© ®©≥ ¨°≤• ≤°£ §••¨ • 4®• •≥°• ©≥ ¨ £°•§ ©®© ®• © ≤•≥≥©• -°≤© .©§• ≥£® ¨ £ ∞¨•' °¨¨ ®≤•• ¶ ®©£® °≤• %≥ ©•≥ °° °§ ©≥ ©®© •°≥ £ • © • &®°≤¨ • 9 ≤ ¶° ©¨ °§ •≥≥ ©¨¨ ¨©• £ ¶ ≤°! ®•≤• ° "•°¨• 2 °§ ©¨¨ ≥ £ • ≤•°¨©0• ®•≤• ©≥ ¶°≤ ≤• ≤• £ ≤ ¨©© ®° £° ¢• ¶ § 1 °£≤• ¨ ≥ Farms & Estates Realty, Inc. www.farmsandestates.com 101 W. South Main Street ~ P. O. Bo 808 Wa haw, NC 28173 704 . 843 . 1107 Fact Sheet ♣ Beagle Run Farm ♣ Multiple Listing: Price: Land: ! ! "! # $ %& & ! ! ! ! $ !! ! '! $ $ '! # && !& # &&( ) # & # $ House: "% $ *C! . - ! # & ! Size: ! # Rooms: Main - . " C ! ! I C 0 12 0 3 ! .$# 0 14a .4t I# .! 2nd Floor - a . ! # ! . . 7 " ! # ! 1 ! 8#48& 0 Attic: -
Phil Liebrecht Assistant Deputy Associate Administrator and Deputy Program Manager Space Communications and Navigation NASA HQ
Phil Liebrecht Assistant Deputy Associate Administrator and Deputy Program Manager Space Communications and Navigation NASA HQ Meeting the Communications and Navigation Needs of Space missions since 1957 “Keeping the Universe Connected” Public University of Navarra, 2010 [email protected] 1 Operations and Communications Customers 2 Space Operations 101 Relation Between Space Segment, Ground System, and Data Users* Ground System Command Commands Requests Spacecraft and Payload Support • Mission Planning Telemetry • Flight Operations • Flight Dynamics • Perf. Assess., Trending & Archiving Space Data Users • Anomaly Support Segment Data Relay and Level (S/C) Mission Zero Data Processing Mission Data Data • Space-to-ground Comm. • Data Capture • Data Processing • Network Management • Data Distribution • Quick Look * Based on Wertz and Wiley; Space Mission Analysis and Design 3 Communications Theory- Basic Concepts Transmitter and Receiver must use the same language Noise causes interference a) Figures it – no errors (Identify and quantify) b) Figures it – corrects Must be loud enough ENERGY! c) Figures it – incorrectly (message in error) d) Cannot figure- recognizes E L an error T M E XP AIN L E e) Cannot figure- ? TRANSMITTER Distance weakens the sound RECEIVER (calculate the loss) CHANNEL Has to correctly interpret the message - the most difficult job The fundamental problem of communications is that of reproducing at one point either exactly or approximately a message selected at another point. 4 Functional - End to End Process -
Getting to Mars How Close Is Mars?
Getting to Mars How close is Mars? Exploring Mars 1960-2004 Of 42 probes launched: 9 crashed on launch or failed to leave Earth orbit 4 failed en route to Mars 4 failed to stop at Mars 1 failed on entering Mars orbit 1 orbiter crashed on Mars 6 landers crashed on Mars 3 flyby missions succeeded 9 orbiters succeeded 4 landers succeeded 1 lander en route Score so far: Earthlings 16, Martians 25, 1 in play Mars Express Mars Exploration Rover Mars Exploration Rover Mars Exploration Rover 1: Meridiani (Opportunity) 2: Gusev (Spirit) 3: Isidis (Beagle-2) 4: Mars Polar Lander Launch Window 21: Jun-Jul 2003 Mars Express 2003 Jun 2 In Mars orbit Dec 25 Beagle 2 Lander 2003 Jun 2 Crashed at Isidis Dec 25 Spirit/ Rover A 2003 Jun 10 Landed at Gusev Jan 4 Opportunity/ Rover B 2003 Jul 8 Heading to Meridiani on Sunday Launch Window 1: Oct 1960 1M No. 1 1960 Oct 10 Rocket crashed in Siberia 1M No. 2 1960 Oct 14 Rocket crashed in Kazakhstan Launch Window 2: October-November 1962 2MV-4 No. 1 1962 Oct 24 Rocket blew up in parking orbit during Cuban Missile Crisis 2MV-4 No. 2 "Mars-1" 1962 Nov 1 Lost attitude control - Missed Mars by 200000 km 2MV-3 No. 1 1962 Nov 4 Rocket failed to restart in parking orbit The Mars-1 probe Launch Window 3: November 1964 Mariner 3 1964 Nov 5 Failed after launch, nose cone failed to separate Mariner 4 1964 Nov 28 SUCCESS, flyby in Jul 1965 3MV-4 No. -
MR PRISM – Spectral Analysis Tool for the CRISM
MR PRISM – Spectral Analysis Tool for the CRISM Adrian J. Brown*a, and Michael Storrie-Lombardib a SETI Institute, 515 N. Whisman Rd, Mountain View, CA 94043 b Kinohi Institute, Pasadena, CA 91101 ABSTRACT We describe a computer application designed to analyze hyperspectral data collected by the Compact Infrared Spectrometer for Mars (CRISM). The application links the spectral, imaging and mapping perspectives on the eventual CRISM dataset by presenting the user with three different ways to analyze the data. One of the goals when developing this instrument is to build in the latest algorithms for detection of spectrally compelling targets on the surface of the Red Planet, so they may be available to the Planetary Science community without cost and with a minimal learning barrier to cross. This will allow the Astrobiology community to look for targets of interest such as hydrothermal minerals, sulfate minerals and hydrous minerals and be able to map the extent of these minerals using the most up-to-date and effective algorithms. The application is programmed in Java and will be made available for Windows, Mac and Linux platforms. Users will be able to embed Groovy scripts into the program in order to extend its functionality. The first collection of CRISM data will occur in September of 2006 and this data will be made publicly available six months later via the Planetary Datasystem (PDS). Potential users in the community should therefore look forward to a release date mid-2007. Although exploration of the CRISM data set is the motivating force for developing these software tools, the ease of writing additional Groovy scripts to access other data sets makes the tools useful for mineral exploration, crop management, and characterization of extreme environments here on Earth or other terrestrial planets. -
Download DARWIN, Beagle Diary.Pdf
CHARLES DARWIN'S BEAGLE DIARY Edited by Richard Darwin Keynes, CBE, ScD, FRS Emeritus Professor of Physiology in the University of Cambridge, and Fellow of Churchill College CAMBRIDGE UNIVERSITY PRESS [page iv] PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, VIC 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org © Cambridge University Press 1988 September 7th, 1835 The Beagle sailed for the Galapagos: 15th on the 15th she was employed in surveying the outer coast of Chatham Isd1 the S. Eastern one of the Archipelago. |604| 1 The Spanish name of Chatham Island now used is Isla San Cristobal. 16th The next day we ran near Hoods Isd1 & there left a Whale boat. — In the evening the Yawl was also sent away on a surveying cruize of some length. — The weather, now & during the passage, has continued as on the coast of Peru, a steady, gentle breeze of wind & gloomy sky. — We landed for an hour on the NW end of Chatham Isd. — These islands at a distance have a sloping uniform outline, excepting where broken by sundry paps & hillocks. — The whole is black Lava, completelycovered by small leafless brushwood & low trees. — The fragments of Lava where most porous are reddish & like cinders; the stunted trees show [page] 352 GALAPAGOS ISDS SEPTEMBER 1835 Chart of the Galapagos Islands (from part of a map in Narrative 1). -
1 Archives of Natural History, 47, 147-165. Accepted Version. Robert
Archives of Natural History, 47, 147-165. Accepted version. Robert McCormick’s geological collections from Antarctica and the Southern Ocean, 1839–1843 PHILIP STONE British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, Scotland, UK (e-mail: [email protected]) ABSTRACT: Robert McCormick (1800–1890) took part in three mid-nineteenth- century British Polar expeditions, two to the Arctic and one to the Antarctic. The latter, from 1839 to 1843 and led by James Clark Ross, is the best known. McCormick served as senior surgeon on HMS Erebus and was responsible for the collection of zoological and geological specimens. Despite the novelty and potential scientific importance of these early geological collections from Antarctica and remote islands in the Southern Ocean, they received surprisingly little attention at the time. Ross deposited an official collection with the British Museum in 1844, soon after the expedition’s return, and this was supplemented by McCormick’s personal collection, bequeathed in 1890. McCormick had contributed brief and idiosyncratic geological notes to the expedition report published by Ross in 1847, but it was not until 1899 that an informed description of the Antarctic rocks was published, and only in 1921 were McCormick’s palaeobotanical specimens from Kerguelen examined. His material from other Southern Ocean islands received even less attention; had it been utilized at the time it would have supplemented the better-known collections made by the likes of Charles Darwin. In later life, McCormick became increasingly embittered over the lack of recognition afforded to him for his work in the Polar regions. -
Back Matter (PDF)
Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. ‘a’a lava 15, 82, 86 Belgica Rupes 272, 275 Ahsabkab Vallis 80, 81, 82, 83 Beta Regio, Bouguer gravity anomaly Aino Planitia 11, 14, 78, 79, 83 332, 333 Akna Montes 12, 14 Bhumidevi Corona 78, 83–87 Alba Mons 31, 111 Birt crater 378, 381 Alba Patera, flank terraces 185, 197 Blossom Rupes fold-and-thrust belt 4, 274 Albalonga Catena 435, 436–437 age dating 294–309 amors 423 crater counting 296, 297–300, 301, 302 ‘Ancient Thebit’ 377, 378, 388–389 lobate scarps 291, 292, 294–295 anemone 98, 99, 100, 101 strike-slip kinematics 275–277, 278, 284 Angkor Vallis 4,5,6 Bouguer gravity anomaly, Venus 331–332, Annefrank asteroid 427, 428, 433 333, 335 anorthosite, lunar 19–20, 129 Bransfield Rift 339 Antarctic plate 111, 117 Bransfield Strait 173, 174, 175 Aphrodite Terra simple shear zone 174, 178 Bouguer gravity anomaly 332, 333, 335 Bransfield Trough 174, 175–176 shear zones 335–336 Breksta Linea 87, 88, 89, 90 Apollinaris Mons 26,30 Brumalia Tholus 434–437 apollos 423 Arabia, mantle plumes 337, 338, 339–340, 342 calderas Arabia Terra 30 elastic reservoir models 260 arachnoids, Venus 13, 15 strike-slip tectonics 173 Aramaiti Corona 78, 79–83 Deception Island 176, 178–182 Arsia Mons 111, 118, 228 Mars 28,33 Artemis Corona 10, 11 Caloris basin 4,5,6,7,9,59 Ascraeus Mons 111, 118, 119, 205 rough ejecta 5, 59, 60,62 age determination 206 canali, Venus 82 annular graben 198, 199, 205–206, 207 Canary Islands flank terraces 185, 187, 189, 190, 197, 198, 205 lithospheric flexure -
Composition of Mars, Michelle Wenz
The Composition of Mars Michelle Wenz Curiosity Image NASA Importance of minerals . Role in transport and storage of volatiles . Ex. Water (adsorbed or structurally bound) . Control climatic behavior . Past conditions of mars . specific pressure and temperature formation conditions . Constrains formation and habitability Curiosity Rover at Mount Sharp drilling site, NASA image Missions to Mars . 44 missions to Mars (all not successful) . 21 NASA . 18 Russia . 1 ESA . 1 India . 1 Japan . 1 joint China/Russia . 1 joint ESA/Russia . First successful mission was Mariner 4 in 1964 Credit: Jason Davis / astrosaur.us, http://utprosim.com/?p=808 First Successful Mission: Mariner 4 . First image of Mars . Took 21 images . No evidence of canals . Not much can be said about composition Mariner 4, NASA image Mariner 4 first image of Mars, NASA image Viking Lander . First lander on Mars . Multispectral measurements Viking Planning, NASA image Viking Anniversary Image, NASA image Viking Lander . Measured dust particles . Believed to be global representation . Computer generated mixtures of minerals . quartz, feldspar, pyroxenes, hematite, ilmenite Toulmin III et al., 1977 Hubble Space Telescope . Better resolution than Mariner 6 and 7 . Viking limited to three bands between 450 and 590 nm . UV- near IR . Optimized for iron bearing minerals and silicates Hubble Space Telescope NASA/ESA Image featured in Astronomy Magazine Hubble Spectroscopy Results . 1994-1995 . Ferric oxide absorption band 860 nm . hematite . Pyroxene 953 nm absorption band . Looked for olivine contributions . 1042 nm band . No significant olivine contributions Hubble Space Telescope 1995, NASA Composition by Hubble . Measure of the strength of the absorption band . Ratio vs.