Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. ‘a’a lava 15, 82, 86 Belgica Rupes 272, 275 Ahsabkab Vallis 80, 81, 82, 83 Beta Regio, Bouguer gravity anomaly Aino Planitia 11, 14, 78, 79, 83 332, 333 Akna Montes 12, 14 Bhumidevi Corona 78, 83–87 Alba Mons 31, 111 Birt crater 378, 381 Alba Patera, flank terraces 185, 197 Blossom Rupes fold-and-thrust belt 4, 274 Albalonga Catena 435, 436–437 age dating 294–309 amors 423 crater counting 296, 297–300, 301, 302 ‘Ancient Thebit’ 377, 378, 388–389 lobate scarps 291, 292, 294–295 anemone 98, 99, 100, 101 strike-slip kinematics 275–277, 278, 284 Angkor Vallis 4,5,6 Bouguer gravity anomaly, Venus 331–332, Annefrank asteroid 427, 428, 433 333, 335 anorthosite, lunar 19–20, 129 Bransfield Rift 339 Antarctic plate 111, 117 Bransfield Strait 173, 174, 175 Aphrodite Terra simple shear zone 174, 178 Bouguer gravity anomaly 332, 333, 335 Bransfield Trough 174, 175–176 shear zones 335–336 Breksta Linea 87, 88, 89, 90 Apollinaris Mons 26,30 Brumalia Tholus 434–437 apollos 423 Arabia, mantle plumes 337, 338, 339–340, 342 calderas Arabia Terra 30 elastic reservoir models 260 arachnoids, Venus 13, 15 strike-slip tectonics 173 Aramaiti Corona 78, 79–83 Deception Island 176, 178–182 Arsia Mons 111, 118, 228 Mars 28,33 Artemis Corona 10, 11 Caloris basin 4,5,6,7,9,59 Ascraeus Mons 111, 118, 119, 205 rough ejecta 5, 59, 60,62 age determination 206 canali, Venus 82 annular graben 198, 199, 205–206, 207 Canary Islands flank terraces 185, 187, 189, 190, 197, 198, 205 lithospheric flexure 219, 229–230, 231, 232, 233 pit craters 205–206, 207 magmatism on slow plates 112–114, 115, self-similar clustering 209–210, 212 116, 119 plumbing system 110–111, 210–211, canyons, Mars 34 213–215 Cape Verde Islands, magmatism on slow-moving topography 207, 228 plates 108, 112–114, 115, 116, 119 asperity, Scathach Fluctus 97, 99, 101 Caravaggio peak-ring basin 294, 295–296, 297 asteroids age 303–305, 307 main belt 1, 2, 423, 430, 433 crater-counting 296, 300 composition 142 size–frequency distribution 300–301 as impactors 163, 165 Ceraunius Tholus 28 near-Earth 2, 423–424 Cerro de la Mica double restraining bend 277, 278 density and structure 424 chasmata 12, 330 lineaments 424, 425, 424–433 chondrites 423–424 S-type 423, 424, 427–428, 430 Circum-Hellas volcanic province 26,30 tectonism and magmatism 423–437 climate change atens 423 SPLD deformation 407, 411–419 Atla Regio, wrinkle ridges 358, 359, 360, 365, wrinkle ridges 357 369, 370, 371 companion shield fields 77–78, 83, 86, 90 cones Beagle Rupes system Mars 28, 31, 32 cross-cutting 315 Moon 22 strike-slip kinematics, lateral ramps 270, coronae 277, 279 Venus 13, 14, 15, 77–93 Becuma radiating graben 14 volcanic features 77–78, 82–83 Beethoven basin 4,7 companion shield fields 77–78, 83, 86, 90 Duyfken Rupes thrust 283 lava flow fields 77, 82, 83, 86 444 INDEX crater-counting fault dip 313–315, 317 Mars 206, 207, 211, 213, 292, 300–301 fault kinematics and geometry 313–315, Mercury 160, 164–169, 296, 297–300, 301, 302 322–324 crater-scaling law 163 estimation 317 craters, faulting 313–324 fault slip 314, 321 Mercury 315, 316, 317–324 measurement 316–317 Crozet Islands, magmatism 108, 112–114, 117, 119 fault strike 314, 317, 322 crustal thickness throw, Rupes Recta 382, 385–388, 390 Lakshmi Planum 332, 334 faulting Venus 332–335 craters 313–324 cryptomaria, Moon 21–22 Mercury 8, 315, 316, 317–324 Moon, Rupes Recta 377–391 dark material 59, 60, 63, 64,70 Venus 330–331 Deception Island volcanic caldera 173–182, 174, 175 see also strike-slip kinematics; thrust faults collapse 181–182 flank terraces faults and fractures 176 fish-scale pattern 185–186, 187, 197, 198, 205 lithology 176, 177 Martian shield volcanoes 185–200 magma chamber 177, 180, 181–182 formation modelling 186, 188–191 pre-collapse palaeoreconstruction 179, 181 comparison with natural examples Riedel shear 178–180, 181–182 197–200 strike-slip shear zone 176, 178–182 flexural troughs, Mars 199, 205 Discovery Rupes 274, 282 flower structures 270 Divalia Fossa 432, 433 Blossom Rupes 277 domes Enterprise Rupes 274, 275 Moon 18,22–23 folds and thrusts, Venus 14, 331 Venus 14, 15, 77, 80, 81, 82, 89 Fossey crater drift 329, 339, 342–346 impact craters and ejecta 372, 373–374 Duyfken Rupes thrust 283 wrinkle ridge detection 365, 366 dykes fractal analysis, wrinkle ridge analysis 361 elastic reservoir models 259–260 graben formation, Mars 395–402 Gala´pagos Islands magma transport 203–204, 209–210, 214 lithospheric flexure 219, 226, 228 self-similar clustering 206, 208–209, 213 Gaspra, lineaments 426, 427 Vesta 434 ghost craters, Mercury 5, 8, 9 graben Earth annular, Mars 28, 34, 198, 199, 205–206 lithospheric flexure 229–230, 232–233 Ascraeus Mons 198, 199, 205–206 lithospheric thickness 220, 221, 226 dyke-induced, analogue modelling 395–402 magma transport 204 Mercury 8, 9, 67, 72, 160 mantle plumes 107–108, 111–117, 337, 338 Moon 18,25 near-stationary plates 107–108, 111–117 Raditladi basin 67, 72 comparison with Tharsis 118–121 Venus 12, 13, 14, 100, 101, 102 volcanic edifices, lithospheric flexure 219, 220, 226 coronae 79, 81, 85 volcanic rock composition 139–140 GRAIL datasets 130 East Africa, mantle plumes 337, 338, 339 ‘gravity worms’, Venus 331, 332, 333, 335, Eistla Regio 344–345 gravity anomaly 332, 333, 334 grooves, asteroids 424, 425 mantle plume 339, 342 Guinevere Planitia 11, 328 Elysium Mons Bouguer gravity anomaly 332, 333, 335, 339 annular graben 198, 199 flank terraces 185, 187, 189, 197, 198 Hadriacus Montes 26, 27, 30 Elysium Planitia 26,30 Hawaii Elysium volcanic province 26,29–30 hotspots 107–108, 113, 114, 115, 119–120 Eminescu Crater, ejecta 305, 308 volcanoes and lithospheric flexure 219, en echelon folds 13, 270, 283–284, 285 220, 228 Enterprise Rupes Hecates Tholus 185, 187, 197, 198 crater counts 167, 169 Hero Rupes, lateral ramp 283, 284 faulted craters 316, 319 hotspot magmatic activity and Rembrandt basin 160, 161, 162, 169–170 Hawaii 107–108, 113, 114, 115, 119–120 strike-slip kinematics 272–275 swell anomalies 112–113 Eros, lineaments 425, 426, 427, 428–430 hydraulic fracture 242–243 INDEX 445 Iceland mantle plume 337, 339, 341 reservoir failure 241–242 Ida, lineaments 425, 426, 428 summit eruptions and edifice growth 258 igneous effusive rocks, VNIR spectroscopy surface deformation 250, 251, 253 142–154 Tharsis volcanic province 110–111 impact structures Venusian coronae 91–93 Mercury 4,5,7,9,36 magma transport 110–111, 203–204, 210–211, Moon 17 213–215 Venus, identification 373–375 and lithospheric flexure 224 inner solar system 1, 2 inhibition 226–227 Ishtar Terra 11, 328, 329 magnesian suite rocks, lunar 20 Bouguer gravity anomaly 332, 333, 335 Mahuela Tholus, wrinkle ridge detection Itokawa 426, 427, 430 363, 364 mantle diapir, coronae 77, 92 Kanykey Planitia 83 mantle flow Kerguelen Island, slow-moving plates 112–114, 116 Earth 337, 339, 342–343 Kofi basin 5, 6 Venus 10, 12, 342, 343, 344, 345–346 KREEP basalts 20, 21, 131, 141 mantle plumes Procellarum KREEP Terrane 132, 133–134 coronae 77, 92 Kunapipi Mons 82 Earth 107–108, 111–117, 337, 338, 340, 341 Mars 107, 109–110 La Dauphine Rupes, strike-slip kinematics and and rifting 339–340, 342 lateral ramps 280 Venus 10, 12, 13, 15, 332, 333, 337, 342 Lakshmi Planum 11, 328, 342, 344 mare, Moon 17, 127–136 crustal thickness 332, 334 Mare Fecunditatis 17, 18 fault and shear zones 328, 329, 335–336 Mare Imbrium 17, 18,21 Late Heavy Bombardment 5, 159, 319 Mare Nubium 377, 378, 379, 380, 381 lateral ramps, Mercury 269–287 Mare Serenitatis, wrinkle ridges 25 lava flows Marius Hills domes 22 Mars 28, 30, 31 Marquesas Islands, lithospheric flexure 219, 230, Mercury 5 231, 232, 233 Moon 21 Mars 2,27–34 Venus 15–16 age dating 292 coronae 77, 82, 83, 86, 89 canyons 34 Lebanon transpressional ranges 275, 276 crater counting 292 lithosphere crustal dichotomy 33–34, 109, 110, 118, 141 flexure faulting 34 containment of volcanic material 223 graben 34 edifice shape 224–226, 228 dyke-induced 395–402 large volcanic edifices 219–233, 220 lava flows 28, 30, 31 magma ascent 224 lithospheric thickness 220, 221, 225–226 inhibition 226–227 one-plate/stagnant-lid regime 33, 107, 117 stress state 222, 223–224 pit craters 205–206 thickness 220–221 self-similar clustering 209–210, 212 lobate flows, Venus 98,99 pyroclastic cones 31 lobate scarps rootless cones 32 Mercury 6, 7, 8, 9, 280–282, 286, 287, 291 shield volcanoes 27, 28, 31, 107 see also Blossom Rupes fold-and-thrust belt annular graben 198, 199 Moon 27 flank terraces 185–200 Lutetia, lineaments 430–431 flexural trough 199, 205 model 210–211, 213–215 Madeira, slow-moving plates 113–114, Tharsis volcanic province 108–111, 116, 203 116, 119 SPLD deformational systems 405–419 magma reservoirs 203–204 tectonic structures 33–34 elastic models 239–262 tephra 31–32 applicability and limitations 260–261 upwelling and downwelling 110 caldera formation 260 volcanic edifice shape 225–226, 228 circumferential intrusions 258–259 and lithospheric flexure 219, 220 dyke swarm formation 259–260 volcanic rock composition 140, 141 edifice loading model 252–253 volcanic structures 26, 27, 28, 29, 30–32 failure location 247–250, 252 volcaniclastic deposits 32 hydraulic fracture 242–243 volcanism 29–33 446 INDEX Mars (Continued) Mid-Continent Rift 339, 340 calderas 28,33 Model Production Function chronology flank deformation 28,33 Mercury 163–164 geochemistry 32–33 Blossom fold-and-thrust system 300–307 tectonic structures 33–34 Rembrandt basin 164–169 volcanic provinces 26,29–30 Moon 2, 16–25, 17,27 volcano morphology
Recommended publications
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • Historia Dela Arquitectura Contemporánea Es Pan
    JUAN DANIEL FULLAONDO MARÍA TERESA MUÑOZ HISTORIA DELA ARQUITECTURA CONTEMPORÁNEA ,...,, ES PAN OLA TOMO 111 Y ORFEO DESCIENDE MOLLY EDITORIAL © Juan Daniel Fullaondo © María Teresa Muñoz Prohibida la reproducción total o parcial sin la autorización de los autores. Portada¡ Montaje sobre una fotografía de María Teresa Muñoz (1996). ' . MOLLY EDITORIAL María Teresa Muñoz. c/ Príncipe de Vergara, 117. 28002 Madrid. I.S.B.N.: 84-922708-0-2 Dep. Legal: M-15340-1997 Impreso en España Fotocomposición e impresión: Tecnovic Arte Gráfico, S.L. Antonio Pérez, 8. Tel. 562 56 43. 28002 Madrid a Carlos Flores, a Bruno Zevi, y a José María Sastres 6 ÍNDICE NOTA PREVIA ...................................................................................... 9 PRÓLOGO.............................................................................................. 11 PRIMERA PARTE Los primeros disidentes.................................................................. 19 Seguimos con los primeros disidentes .... .. .. .. .. .. .. .... .. .. .. .. .... .. .. .. .. .. 25 Otras observaciones .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 31 Más notas sobre la primera generación ........................................ 35 José Antonio Coderch . .. .. .. .. .. ... .. .. .. 41 Más sobre Coderch . .. .. .. .. 65 Miguel Fisac . .. .. .. .. .. .. .. .. .. .. 73 Una cierta, apresurada, recapitulación .. .... .. .. .. .. .... .. .. .. .. .. .. .. .. .. .. .... 93 Últimos suspiros teóricos . 99 Algunos comentarios
    [Show full text]
  • Eminescu and the Transition to Peak-Ring Basins on Mercury
    41st Lunar and Planetary Science Conference (2010) 1263.pdf EMINESCU AND THE TRANSITION TO PEAK-RING BASINS ON MERCURY. S. C. Schon,1 J. W. Head,1 L. M. Prockter2, and the MESSENGER Science Team.3 1Dept. of Geological Sciences, Brown University, Providence, RI 02906 USA; 2JHU/APL, Laurel, MD; 3http://messenger.jhuapl.edu/who_we_are/science_team.html. Introduction: The MESSENGER [1] flybys have yielded a range of new scientific findings for Mercury [2] including evidence of embayment relationships indicative of volcanic plains activity [3,4] and an im- proved size estimate for the Caloris basin [5]. These new data reveal a broad continuum of Mercurian crater morphologies [6] in greater detail than prior studies that relied on Mariner 10 or Earth-based radar observa- tions [7]. This study focuses on mapping the interior deposits of Eminescu, a central peak-ring basin, and is part of a larger comparative analysis of transitional crater morphologies observed on Mercury and the Moon in new data sets [8]. Impacts on Mercury occur at much higher veloci- ties than lunar impacts and correspondingly generate more impact melt. Cintala [9] estimated that for a given projectile, the velocity difference will lead to twice as much impact melt on Mercury than on the Moon. Here we examine images at ~150 m/pixel reso- Figure 1: Eminescu Crater, ~125-km in diameter (10.8°N, lution of the fresh impact crater Eminescu to document 114.1°E), imaged during the first MESSENGER flyby. the nature of fresh crater interiors on Mercury at the transition from complex to peak-ring morphology.
    [Show full text]
  • Book of Abstracts: Studying Old Master Paintings
    BOOK OF ABSTRACTS STUDYING OLD MASTER PAINTINGS ­ TECHNOLOGY AND PRACTICE THE NATIONAL GALLERY TECHNICAL BULLETIN 30TH ANNIVERSARY CONFERENCE 16­18 September 2009, Sainsbury Wing Theatre, National Gallery, London Supported by The Elizabeth Cayzer Charitable Trust STUDYING OLD MASTER PAINTINGS ­ TECHNOLOGY AND PRACTICE THE NATIONAL GALLERY TECHNICAL BULLETIN 30TH ANNIVERSARY CONFERENCE BOOK OF ABSTRACTS 16­18 September 2009 Sainsbury Wing Theatre, National Gallery, London The Proceedings of this Conference will be published by Archetype Publications, London in 2010 Contents Presentations Page Presentations (cont’d) Page The Paliotto by Guido da Siena from the Pinacoteca Nazionale of Siena 3 The rediscovery of sublimated arsenic sulphide pigments in painting 25 Marco Ciatti, Roberto Bellucci, Cecilia Frosinini, Linda Lucarelli, Luciano Sostegni, and polychromy: Applications of Raman microspectroscopy Camilla Fracassi, Carlo Lalli Günter Grundmann, Natalia Ivleva, Mark Richter, Heike Stege, Christoph Haisch Painting on parchment and panels: An exploration of Pacino di 5 The use of blue and green verditer in green colours in seventeenth­century 27 Bonaguida’s technique Netherlandish painting practice Carole Namowicz, Catherine M. Schmidt, Christine Sciacca, Yvonne Szafran, Annelies van Loon, Lidwein Speleers Karen Trentelman, Nancy Turner Alterations in paintings: From non­invasive in­situ assessment to 29 Technical similarities between mural painting and panel painting in 7 laboratory research the works of Giovanni da Milano: The Rinuccini
    [Show full text]
  • The Futurist Moment : Avant-Garde, Avant Guerre, and the Language of Rupture
    MARJORIE PERLOFF Avant-Garde, Avant Guerre, and the Language of Rupture THE UNIVERSITY OF CHICAGO PRESS CHICAGO AND LONDON FUTURIST Marjorie Perloff is professor of English and comparative literature at Stanford University. She is the author of many articles and books, including The Dance of the Intellect: Studies in the Poetry of the Pound Tradition and The Poetics of Indeterminacy: Rimbaud to Cage. Published with the assistance of the J. Paul Getty Trust Permission to quote from the following sources is gratefully acknowledged: Ezra Pound, Personae. Copyright 1926 by Ezra Pound. Used by permission of New Directions Publishing Corp. Ezra Pound, Collected Early Poems. Copyright 1976 by the Trustees of the Ezra Pound Literary Property Trust. All rights reserved. Used by permission of New Directions Publishing Corp. Ezra Pound, The Cantos of Ezra Pound. Copyright 1934, 1948, 1956 by Ezra Pound. Used by permission of New Directions Publishing Corp. Blaise Cendrars, Selected Writings. Copyright 1962, 1966 by Walter Albert. Used by permission of New Directions Publishing Corp. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 1986 by The University of Chicago All rights reserved. Published 1986 Printed in the United States of America 95 94 93 92 91 90 89 88 87 86 54321 Library of Congress Cataloging-in-Publication Data Perloff, Marjorie. The futurist moment. Bibliography: p. Includes index. 1. Futurism. 2. Arts, Modern—20th century. I. Title. NX600.F8P46 1986 700'. 94 86-3147 ISBN 0-226-65731-0 For DAVID ANTIN CONTENTS List of Illustrations ix Abbreviations xiii Preface xvii 1.
    [Show full text]
  • Mercury's Low-Reflectance Material: Constraints from Hollows
    Mercury’s low-reflectance material: Constraints from hollows Rebecca Thomas, Brian Hynek, David Rothery, Susan Conway To cite this version: Rebecca Thomas, Brian Hynek, David Rothery, Susan Conway. Mercury’s low-reflectance material: Constraints from hollows. Icarus, Elsevier, 2016, 277, pp.455-465. 10.1016/j.icarus.2016.05.036. hal-02271739 HAL Id: hal-02271739 https://hal.archives-ouvertes.fr/hal-02271739 Submitted on 27 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Mercury’s Low-Reflectance Material: Constraints from Hollows Rebecca J. Thomas , Brian M. Hynek , David A. Rothery , Susan J. Conway PII: S0019-1035(16)30246-9 DOI: 10.1016/j.icarus.2016.05.036 Reference: YICAR 12084 To appear in: Icarus Received date: 23 February 2016 Revised date: 9 May 2016 Accepted date: 24 May 2016 Please cite this article as: Rebecca J. Thomas , Brian M. Hynek , David A. Rothery , Susan J. Conway , Mercury’s Low-Reflectance Material: Constraints from Hollows, Icarus (2016), doi: 10.1016/j.icarus.2016.05.036 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Shallow Crustal Composition of Mercury As Revealed by Spectral Properties and Geological Units of Two Impact Craters
    Planetary and Space Science 119 (2015) 250–263 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters Piero D’Incecco a,n, Jörn Helbert a, Mario D’Amore a, Alessandro Maturilli a, James W. Head b, Rachel L. Klima c, Noam R. Izenberg c, William E. McClintock d, Harald Hiesinger e, Sabrina Ferrari a a Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, D-12489 Berlin, Germany b Department of Geological Sciences, Brown University, Providence, RI 02912, USA c The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA d Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA e Westfälische Wilhelms-Universität Münster, Institut für Planetologie, Wilhelm-Klemm Str. 10, D-48149 Münster, Germany article info abstract Article history: We have performed a combined geological and spectral analysis of two impact craters on Mercury: the Received 5 March 2015 15 km diameter Waters crater (106°W; 9°S) and the 62.3 km diameter Kuiper crater (30°W; 11°S). Using Received in revised form the Mercury Dual Imaging System (MDIS) Narrow Angle Camera (NAC) dataset we defined and mapped 9 October 2015 several units for each crater and for an external reference area far from any impact related deposits. For Accepted 12 October 2015 each of these units we extracted all spectra from the MESSENGER Atmosphere and Surface Composition Available online 24 October 2015 Spectrometer (MASCS) Visible-InfraRed Spectrograph (VIRS) applying a first order photometric correc- Keywords: tion.
    [Show full text]
  • Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico)
    Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico) by Stephen Alexander Daire A Thesis Presented to the Faculty of the USC Graduate School University of Southern California In Partial Fulfillment of the Requirements for the Degree Master of Science (Geographic Information Science and Technology) May 2019 Copyright © 2019 by Stephen Daire “History is just a 25,000-year dash from the trees to the starship; and while it’s going on its wild and woolly but it’s only like that, and then you’re in the starship.” – Terence McKenna. Table of Contents List of Figures ................................................................................................................................ iv List of Tables ................................................................................................................................. xi Acknowledgements ....................................................................................................................... xii List of Abbreviations ................................................................................................................... xiii Abstract ........................................................................................................................................ xvi Chapter 1 Planetary Sciences, Cave Survey, & Human Evolution................................................. 1 1.1. Topic & Area of Interest: Exploration & Survey ....................................................................12
    [Show full text]
  • Russian Museums Visit More Than 80 Million Visitors, 1/3 of Who Are Visitors Under 18
    Moscow 4 There are more than 3000 museums (and about 72 000 museum workers) in Russian Moscow region 92 Federation, not including school and company museums. Every year Russian museums visit more than 80 million visitors, 1/3 of who are visitors under 18 There are about 650 individual and institutional members in ICOM Russia. During two last St. Petersburg 117 years ICOM Russia membership was rapidly increasing more than 20% (or about 100 new members) a year Northwestern region 160 You will find the information aboutICOM Russia members in this book. All members (individual and institutional) are divided in two big groups – Museums which are institutional members of ICOM or are represented by individual members and Organizations. All the museums in this book are distributed by regional principle. Organizations are structured in profile groups Central region 192 Volga river region 224 Many thanks to all the museums who offered their help and assistance in the making of this collection South of Russia 258 Special thanks to Urals 270 Museum creation and consulting Culture heritage security in Russia with 3M(tm)Novec(tm)1230 Siberia and Far East 284 © ICOM Russia, 2012 Organizations 322 © K. Novokhatko, A. Gnedovsky, N. Kazantseva, O. Guzewska – compiling, translation, editing, 2012 [email protected] www.icom.org.ru © Leo Tolstoy museum-estate “Yasnaya Polyana”, design, 2012 Moscow MOSCOW A. N. SCRiAbiN MEMORiAl Capital of Russia. Major political, economic, cultural, scientific, religious, financial, educational, and transportation center of Russia and the continent MUSEUM Highlights: First reference to Moscow dates from 1147 when Moscow was already a pretty big town.
    [Show full text]
  • P U B L I C a T I E S
    P U B L I C A T I E S 1 JANUARI – 31 DECEMBER 2001 2 3 INHOUDSOPGAVE Centrale diensten..............................................................................................................5 Coördinatoren...................................................................................................................8 Faculteit Letteren en Wijsbegeerte..................................................................................9 - Emeriti.........................................................................................................................9 - Vakgroepen...............................................................................................................10 Faculteit Rechtsgeleerdheid...........................................................................................87 - Vakgroepen...............................................................................................................87 Faculteit Wetenschappen.............................................................................................151 - Vakgroepen.............................................................................................................151 Faculteit Geneeskunde en Gezondheidswetenschappen............................................268 - Vakgroepen.............................................................................................................268 Faculteit Toegepaste Wetenschappen.........................................................................398 - Vakgroepen.............................................................................................................398
    [Show full text]
  • Transactions 1905
    THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. The Royal Astronomical Society of Canada. THE Royal Astronomical Society of Canada TRANSACTIONS FOR 1905 (INCLUDING SELECTED PAPERS AND PROCEEDINGS) EDITED BY C. A CHANT. TORONTO: ROYAL ASTRONOMICAL PRINT, 1906. TABLE OF CONTENTS. The Dominion Observatory, Ottawa (Frontispiece) List of Officers, Fellows and A ssociates..................... - - 3 Treasurer’s R eport.....................--------- 12 President’s Address and Summary of Work ------ 13 List of Papers and Lectures, 1905 - - - - ..................... 26 The Dominion Observatory at Ottawa - - W. F. King 27 Solar Spots and Magnetic Storms for 1904 Arthur Harvey 35 Stellar Legends of American Indians - - J. C. Hamilton 47 Personal Profit from Astronomical Study - R. Atkinson 51 The Eclipse Expedition to Labrador, August, 1905 A. T. DeLury 57 Gravity Determinations in Labrador - - Louis B. Stewart 70 Magnetic and Meteorological Observations at North-West River, Labrador - - - - R. F. Stupart 97 Plates and Filters for Monochromatic and Three-Color Photography of the Corona J. S. Plaskett 89 Photographing the Sun and Moon with a 5-inch Refracting Telescope . .......................... D. B. Marsh 108 The Astronomy of Tennyson - - - - John A. Paterson 112 Achievements of Nineteenth Century Astronomy , L. H. Graham 125 A Lunar Tide on Lake Huron - - - - W. J. Loudon 131 Contributions...............................................J. Miller Barr I. New Variable Stars - - - - - - - - - - - 141 II. The Variable Star ξ Bootis -------- 143 III. The Colors of Helium Stars - - - ..................... 144 IV. A New Problem in Solar Physics ------ 146 Stellar Classification ------ W. Balfour Musson 151 On the Possibility of Fife in Other Worlds A.
    [Show full text]