Mercury Redux
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon
remote sensing Article Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon Paul M. Schenk 1,* , Chloe B. Beddingfield 2,3, Tanguy Bertrand 3, Carver Bierson 4 , Ross Beyer 2,3, Veronica J. Bray 5, Dale Cruikshank 3 , William M. Grundy 6, Candice Hansen 7, Jason Hofgartner 8 , Emily Martin 9, William B. McKinnon 10, Jeffrey M. Moore 3, Stuart Robbins 11 , Kirby D. Runyon 12 , Kelsi N. Singer 11 , John Spencer 11, S. Alan Stern 11 and Ted Stryk 13 1 Lunar and Planetary Institute, Houston, TX 77058, USA 2 SETI Institute, Palo Alto, CA 94020, USA; chloe.b.beddingfi[email protected] (C.B.B.); [email protected] (R.B.) 3 NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] (T.B.); [email protected] (D.C.); [email protected] (J.M.M.) 4 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85202, USA; [email protected] 5 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85641, USA; [email protected] 6 Lowell Observatory, Flagstaff, AZ 86001, USA; [email protected] 7 Planetary Science Institute, Tucson, AZ 85704, USA; [email protected] 8 Jet Propulsion Laboratory, Pasadena, CA 91001, USA; [email protected] 9 National Air & Space Museum, Washington, DC 20001, USA; [email protected] 10 Department of Earth and Planetary Sciences, Washington University in Saint Louis, Saint Louis, MO 63101, USA; [email protected] 11 Southwest Research Institute, Boulder, CO 80301, USA; [email protected] (S.R.); [email protected] (K.N.S.); [email protected] (J.S.); [email protected] (S.A.S.) Citation: Schenk, P.M.; Beddingfield, 12 Johns Hopkins Applied Physics Laboratory, Laurel, MD 20707, USA; [email protected] 13 C.B.; Bertrand, T.; Bierson, C.; Beyer, Humanities Division, Roane State Community College, Harriman, TN 37748, USA; [email protected] R.; Bray, V.J.; Cruikshank, D.; Grundy, * Correspondence: [email protected] W.M.; Hansen, C.; Hofgartner, J.; et al. -
Mariner to Mercury, Venus and Mars
NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions. -
Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus Eric B
Claremont Colleges Scholarship @ Claremont Pomona Faculty Publications and Research Pomona Faculty Scholarship 1-1-2011 Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus Eric B. Grosfils Pomona College Sylvan M. Long Elizabeth M. Venechuk Debra M. Hurwitz Joseph W. Richards See next page for additional authors Recommended Citation Grosfils, E.B., Long, S.M., Venechuk, E.M., Hurwitz, D.M., Richards, J.W., Kastl, Brian, Drury, D.E., and Hardin, Johanna, 2011, Geologic map of the Ganiki Planitia quadrangle (V-14), Venus: U.S. Geological Survey Scientific nI vestigations Map 3121. This Report is brought to you for free and open access by the Pomona Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Pomona Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Authors Eric B. Grosfils, Sylvan M. Long, Elizabeth M. Venechuk, Debra M. Hurwitz, Joseph W. Richards, Brian Kastl, Dorothy E. Drury, and Johanna S. Hardin This report is available at Scholarship @ Claremont: http://scholarship.claremont.edu/pomona_fac_pub/303 Prepared for the National Aeronautics and Space Administration Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus By Eric B. Grosfils, Sylvan M. Long, Elizabeth M. Venechuk, Debra M. Hurwitz, Joseph W. Richards, Brian Kastl, Dorothy E. Drury, and Johanna Hardin Pamphlet to accompany Scientific Investigations Map 3121 75° 75° V–1 V–3 V–6 50° 50° V–4 V–5 V–11 V–16 V–12 V–15 V–13 V–14 25° 25° V–23 V–28 V–24 V–27 V–25 V–26 90° 120° 150° 180° 210° 240° 270° 0° 0° V–37 V–38 V–36 V–39 V–35 V–40 –25° –25° V–49 V–50 V–48 V–51 V–47 V–52 V–58 V–59 –50° –50° V–57 V–60 2011 V–62 –75° –75° U.S. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Late movement of basin-edge lobate scarps on Mercury Journal Item How to cite: Fegan, E. R.; Rothery, D. A.; Marchi, S.; Massironi, M.; Conway, S. J. and Anand, M. (2017). Late movement of basin-edge lobate scarps on Mercury. Icarus, 288 pp. 226–324. For guidance on citations see FAQs. c 2017 Elsevier Inc https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Accepted Manuscript Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.icarus.2017.01.005 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk 1 Late movement of basin-edge lobate scarps on Mercury 2 Fegan E.R.1*, Rothery D.A.1, Marchi S.2, Massironi M.3, Conway S.J.1,4, Anand M.1,5, 3 1Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK. 2NASA 4 Lunar Science Institute, Southwest Research Institute, Boulder, Colorado 80302, USA. 3Dipartimento di 5 Geoscienze, Università di Padova, Via Giotto 1, 35137 Padova, Italy. 4LPG Nantes - UMR CNRS 6112, 2 rue de la 6 Houssinière - BP 92208, 44322 Nantes Cedex 3, France 5Department of Earth Science, The Natural History 7 Museum, Cromwell Road, London, SW7 5BD, UK. 8 9 *Corresponding author (email: [email protected]) 10 Keywords: Planetary; geology; Mercury; tectonics; model ages; lobate scarps; planetary volcanism. -
Torrid Mercury's Icy Poles
Fire and ice The MESSENGER spacecraft reveals water ice lurking in Torrid Mercury’s icy poles deeply shadowed craters near the innermost planet’s poles. by James Oberg Color explodes from Mercury’s surface in this enhanced-color mosaic. The yellow and orange hues signify relatively young volcanic plains, while blue represents older terrain. The planet’s equator runs horizon- he saga of water ice hiding in GEochemistry, and Ranging — started Planetary scientist David Paige of the works best when good observations are tally through the center of this image; the poles lie at top and bottom. NASA/JHUAPL/CIW the shadows on Mercury ranks orbiting Mercury in March 2011 and has University of California, Los Angeles, a guided by theory.” among the most fascinating been returning reams of data ever since. participating scientist on the MESSENGER During the past several decades, scien- chapters in the history of plan- The discovery of ice contains its own sur- project, stresses the wider significance of tists have come to realize that a conspiracy to the planet nearly 40 years ago, could not Untangling Mercury’s web etary exploration. And the prises and new mysteries. the ice story. “The Mercury discoveries of freak accidents involving Mercury’s make the observations necessary to prove It took centuries for astronomers to deci- story didn’t end a year ago Scientists had suspected for decades that demonstrate the power of theory and motion and orientation had created small the case. Still, radar observations from pher Mercury’s physical and dynamic when scientists using NASA’s water ice might survive in corners of the imagination in astronomy and planetary regions on the planet’s surface where it Earth did detect unusually reflective characteristics and to understand their MESSENGER spacecraft con- solar system’s innermost world. -
NASA and Planetary Exploration
**EU5 Chap 2(263-300) 2/20/03 1:16 PM Page 263 Chapter Two NASA and Planetary Exploration by Amy Paige Snyder Prelude to NASA’s Planetary Exploration Program Four and a half billion years ago, a rotating cloud of gaseous and dusty material on the fringes of the Milky Way galaxy flattened into a disk, forming a star from the inner- most matter. Collisions among dust particles orbiting the newly-formed star, which humans call the Sun, formed kilometer-sized bodies called planetesimals which in turn aggregated to form the present-day planets.1 On the third planet from the Sun, several billions of years of evolution gave rise to a species of living beings equipped with the intel- lectual capacity to speculate about the nature of the heavens above them. Long before the era of interplanetary travel using robotic spacecraft, Greeks observing the night skies with their eyes alone noticed that five objects above failed to move with the other pinpoints of light, and thus named them planets, for “wan- derers.”2 For the next six thousand years, humans living in regions of the Mediterranean and Europe strove to make sense of the physical characteristics of the enigmatic planets.3 Building on the work of the Babylonians, Chaldeans, and Hellenistic Greeks who had developed mathematical methods to predict planetary motion, Claudius Ptolemy of Alexandria put forth a theory in the second century A.D. that the planets moved in small circles, or epicycles, around a larger circle centered on Earth.4 Only partially explaining the planets’ motions, this theory dominated until Nicolaus Copernicus of present-day Poland became dissatisfied with the inadequacies of epicycle theory in the mid-sixteenth century; a more logical explanation of the observed motions, he found, was to consider the Sun the pivot of planetary orbits.5 1. -
Large Impact Basins on Mercury: Global Distribution, Characteristics, and Modification History from MESSENGER Orbital Data Caleb I
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E00L08, doi:10.1029/2012JE004154, 2012 Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data Caleb I. Fassett,1 James W. Head,2 David M. H. Baker,2 Maria T. Zuber,3 David E. Smith,3,4 Gregory A. Neumann,4 Sean C. Solomon,5,6 Christian Klimczak,5 Robert G. Strom,7 Clark R. Chapman,8 Louise M. Prockter,9 Roger J. Phillips,8 Jürgen Oberst,10 and Frank Preusker10 Received 6 June 2012; revised 31 August 2012; accepted 5 September 2012; published 27 October 2012. [1] The formation of large impact basins (diameter D ≥ 300 km) was an important process in the early geological evolution of Mercury and influenced the planet’s topography, stratigraphy, and crustal structure. We catalog and characterize this basin population on Mercury from global observations by the MESSENGER spacecraft, and we use the new data to evaluate basins suggested on the basis of the Mariner 10 flybys. Forty-six certain or probable impact basins are recognized; a few additional basins that may have been degraded to the point of ambiguity are plausible on the basis of new data but are classified as uncertain. The spatial density of large basins (D ≥ 500 km) on Mercury is lower than that on the Moon. Morphological characteristics of basins on Mercury suggest that on average they are more degraded than lunar basins. These observations are consistent with more efficient modification, degradation, and obliteration of the largest basins on Mercury than on the Moon. This distinction may be a result of differences in the basin formation process (producing fewer rings), relaxation of topography after basin formation (subduing relief), or rates of volcanism (burying basin rings and interiors) during the period of heavy bombardment on Mercury from those on the Moon. -
First Look at Mercury
PLANETARY SCIENCE Mariner 10 was launched to Mercury by way of Venus on November 3, 1973. It was not the first probe to visit Venus. Both the United States and the Soviet Union previously have sent probes to that mysterious, cloud-shrouded planet. However, Mariner 10 was the first to photographically explore the close-up appearance of the planet, and did so both in visibIe and in ultraviolet light. And Mariner 10 was the first probe of any kind to penetrate interplanetary space beyond the orbit of Venus and to achieve a close look at the planet Mercury. First Look Why go to Mercury? Who needs it? There basically are two kinds of reasons. The first is simple and profound and at Mercury difficult to quantify: The very act of exploration is a positive, cultural activity. No one knows what is going to be found. Finding out what Mercury, what Mars, or BRUCE C. MURRAY what the moon is really like, enlarges the consciousness of all the people who partake of that new reality. TV pictures are of special importance because they provide a way both for the scientist to discover features and concepts he could not have imagined and for the public to directly appreciate and participate in the exploration of a new world. Why go to Mercury? Who needs it? But there are more specific scientific objectives as well. For Mercury, the basic-and anomalous-scientific fact is A planetary scientist that it is a very dense planet: It contains a great amount of tells what the voyage mass for its size. -
Back Matter (PDF)
Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. ‘a’a lava 15, 82, 86 Belgica Rupes 272, 275 Ahsabkab Vallis 80, 81, 82, 83 Beta Regio, Bouguer gravity anomaly Aino Planitia 11, 14, 78, 79, 83 332, 333 Akna Montes 12, 14 Bhumidevi Corona 78, 83–87 Alba Mons 31, 111 Birt crater 378, 381 Alba Patera, flank terraces 185, 197 Blossom Rupes fold-and-thrust belt 4, 274 Albalonga Catena 435, 436–437 age dating 294–309 amors 423 crater counting 296, 297–300, 301, 302 ‘Ancient Thebit’ 377, 378, 388–389 lobate scarps 291, 292, 294–295 anemone 98, 99, 100, 101 strike-slip kinematics 275–277, 278, 284 Angkor Vallis 4,5,6 Bouguer gravity anomaly, Venus 331–332, Annefrank asteroid 427, 428, 433 333, 335 anorthosite, lunar 19–20, 129 Bransfield Rift 339 Antarctic plate 111, 117 Bransfield Strait 173, 174, 175 Aphrodite Terra simple shear zone 174, 178 Bouguer gravity anomaly 332, 333, 335 Bransfield Trough 174, 175–176 shear zones 335–336 Breksta Linea 87, 88, 89, 90 Apollinaris Mons 26,30 Brumalia Tholus 434–437 apollos 423 Arabia, mantle plumes 337, 338, 339–340, 342 calderas Arabia Terra 30 elastic reservoir models 260 arachnoids, Venus 13, 15 strike-slip tectonics 173 Aramaiti Corona 78, 79–83 Deception Island 176, 178–182 Arsia Mons 111, 118, 228 Mars 28,33 Artemis Corona 10, 11 Caloris basin 4,5,6,7,9,59 Ascraeus Mons 111, 118, 119, 205 rough ejecta 5, 59, 60,62 age determination 206 canali, Venus 82 annular graben 198, 199, 205–206, 207 Canary Islands flank terraces 185, 187, 189, 190, 197, 198, 205 lithospheric flexure -
GEOLOGIC MAPS of the OLYMPUS MONS REGION of MARS by Elliot C. Morris and Kenneth L. Tanaka
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY GEOLOGIC MAPS OF THE OLYMPUS MONS REGION OF MARS By Elliot C. Morris and Kenneth L. Tanaka Prepared for the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ..... t\:) a 0 a0 0 0 )> z 0 ..... ..... MISCELLANEOUS INVESTIGATIONS SERIES a 0 Published by the U.S. Geological Survey, 1994 a0 0 0 3: ~ U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I-2327 U.S. GEOLOGICAL SURVEY GEOLOGIC MAPS OF THE OLYMPUS MONS REGION OF MARS By Elliot C. Morris and Kenneth L. Tanaka INTRODUCTION measurements of relief valuable in determining such factors as Olympus Mons is one of the broadest volcanoes and volcano volume, structural offsets, and lava-flow rheology. certainly the tallest in the Solar System. It has been extensively Except for the difference in extent of the areas mapped, the described and analyzed in scientific publications and frequently topographic information, the cartographic control (latitudes noted in the popular and nontechnical literature of Mars. and longitudes of features may differ by as much as a few tenths However, the first name given to the feature-Nix Olympica of a degree), and the greater detail permitted by the larger scale (Schiaparelli, 1879)-was based on its albedo, not its size, base, the two maps are virtually the same. A comparison of our because early telescopic observations of Mars revealed only map units with those of other Viking-based maps is given in albedo features and not topography (lnge and others, 1971). table 1. After Mariner 9 images acquired in 1971 showed that this Unravellng the geology of the Olympus Mons region is not albedo feature coincides with a giant shield volcano (McCauley limited to a simple exercise in stratigraphy.