Mdl Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

Mdl Annual Report 25 YEARS OF INNOVATION National Aeronautics and Space Administration We are proud that for the past 25 years, JPL’s MICRODEVICES LABORATORY (MDL) has made seminal contributions in the areas of diffractive optics, detectors, nano and micro systems, lasers, and focal planes with breakthrough Jet Propulsion Laboratory sensitivity from deep UV to submillimeter, as a result of the dedication and hard California Institute of Technology work of a great number of talented scientists, technologists, and research staff. Through this research and development, MDL has produced novel and unique components and subsystems enabling remarkable achievements in support of Microdevices NASA’s missions and other national priorities. We are excited to have been a part LABORATORY of this important work and look forward to many years of continued success. 02 LETTER FROM DR. ELACHI & DR. ZMUIDZINAS 25 YEARS OF INNOVATION 04 LETTER FROM MICRODEVICES LABORATORY 07 OPTICAL COMPONENTS 12 SEMICONDUCTOR LASERS ADVANCED DETECTORS, 20 SYST EMS & NANOSCIENCE 28 INFRARED PHOTODETECTORS SUPERCONDUCTING 34 MATERIALS & DEVICES SUBMILLIMETER WAVE ADVANCED TECHNOLOGIES 42 NANO & MICRO SYSTEMS 50 MICROFLUIDIC ELECTROSPRAY PROPULSION 56 IN SITU INSTRUMENTS 60 INFRASTRUCTURE & CAPABILITIES 66 APPENDICES: MDL EQUIPMENT COMPLEMENT 76 PUBLICATIONS, PROCEEDINGS, NEW TECHNOLOGY REPORTS, BOOK CONTRIBUTIONS & PATENTS 78 AWARDS & DISTINGUISHED RECOGNITION 85 2014 ANNUAL REPORT MICRODEVICES.JPL.NASA.GOV LETTER FROM CHARLES ELACHI & JONAS ZMUIDZINAS THIS YEAR173JLSLIYH[LZ[^VTHQVYTPSLZ[VULZ![OL[OHUUP]LYZHY`VM4HYPULY»ZÅ`I`VM 4HYZ·[OLÄYZ[L]LY·HUK[OL[OHUUP]LYZHY`VMV\Y4PJYVKL]PJLZ3HIVYH[VY`VY4+3:\YWYPZPUNS` [OLYLPZHJVUULJ[PVU0UHYLJLU[HY[PJSL*HS[LJOWYVMLZZVY@\R@\UNKLZJYPILZ[OLZJPLU[PÄJPTWHJ[ VM[OLPUZP[\KL[LJ[PVUVMTL[OHULVU4HYZI`[OL*\YPVZP[`YV]LY!¸0MP[PZIVYULV\[[OPZKPZJV]LY` ILJVTLZVULVM[OLNYLH[LZ[,\YLRHTVTLU[ZPU[OLOHSMJLU[\Y`VMYVIV[PJL_WSVYH[PVUVM4HYZ ILNPUUPUN^P[O[OLÄYZ[Z\JJLZZVM4HYPULYPU ¯¹;OLKL[LJ[PVU^HZYLWVY[LKI`4+3+PYLJ[VY *OYPZ>LIZ[LYPUHWHWLYW\ISPZOLKPUScienceHUK^HZLUHISLKI`H[\UHISLPUMYHYLKSHZLY KL]LSVWLKHUKWYVK\JLKH[4+3I`[OLNYV\WSLKI`4+3+LW\[`+PYLJ[VY:PHTHR-VYV\OHY (Z^P[OTHU`[YP\TWOZPUZJPLUJL[OLYLPZHSVUNOPZ[VY`;OLIHZPJ[LJOUPX\LVM[\UHISL PUMYHYLKSHZLYZWLJ[YVZJVW`PZHSTVZ[HZVSKHZ4HYPULYHUKL]LUILMVYL4HYPULY»Z4HYZ Å`I`*HYS:HNHU^HZPU[LYLZ[LKPU[OL\ZLVMPUMYHYLKZWLJ[YVZJVW`[VSVVRMVYTVSLJ\SLZ PU[OL4HY[PHUH[TVZWOLYL;O\Z[OLZJPLU[PÄJVWWVY[\UP[`^HZHWWHYLU[X\P[LLHYS`I\[ [OL[LJOUVSVNPJHSHUKLUNPULLYPUNJOHSSLUNLZ^LYLKH\U[PUN;OL4HYPULYYHKPVZJPLUJL L_WLYPTLU[[VSK\Z[OLWYLZZ\YLVM[OL4HY[PHUH[TVZWOLYLHUK[OLYLMVYL[OLZL]LYLKPMÄJ\S[` VMSHUKPUN^OPJOWYVTW[LKHOVZ[VMJSL]LYZVS\[PVUZPU]VS]PUNOLH[ZOPLSKZWHYHJO\[LZHPYIHNZ HUK\S[PTH[LS`*\YPVZP[`»ZZR`JYHUL^OPJOHTHaLK\ZHSSVU[OLL]LUPUNVM(\N\Z[@L[ [OL[HZRVMTHRPUNHUPUMYHYLKSHZLYZ\P[HISLMVY4HYZ^HZUVSLZZJOHSSLUNPUN·[OLZ[HY[PUN WVPU[^HZHKL]PJLJVVSLKI`SPX\PKOLSP\TPUHTL[LYZPaLKJY`VZ[H[(THQVYIYLHR[OYV\NO^HZ 9\P@HUN»Z PU]LU[PVUVMHUL^JVUJLW[[OLPU[LYIHUKJHZJHKLSHZLY0*3^OPJO\ZLZHU PUNLUPV\ZJVTWSL_SH`LYLKZLTPJVUK\J[VYZ[Y\J[\YL[VIVVZ[LMÄJPLUJ`HUKYLHJOT\JOOPNOLY VWLYH[PUN[LTWLYH[\YLZ@HUNJHTL[V1734+3[VKL]LSVW0*3ZMVY4HYZHUKYLJLP]LK[OL ,K:[VUL(^HYKMVYOPZ^VYRILMVYLQVPUPUN[OLMHJ\S[`H[[OL<UP]LYZP[`VM6RSHOVTH;VKH`YVVT [LTWLYH[\YL0*3ZHYLILPUNJVTTLYJPHSPaLKMVYKL[LJ[PUNNHZSLHRZHUKMVYPUZP[\TLHZ\YLTLU[Z VMNYLLUOV\ZLNHZLZ ;OPZSVUNOPZ[VY`·`LHYZVM^VYRH[4+3HUK`LHYZVMYVIV[PJL_WSVYH[PVUVM4HYZ·ZLY]LZ [VLTWOHZPaL[OLKPMÄJ\S[`VM[OLJOHSSLUNLZ^L\UKLY[HRL0UKLLKHZ1VOU-2LUULK`ZHPKPU OPZMHTV\Z ZWLLJO^LJOVVZL[VKV[OLZL[OPUNZ¸UV[ILJH\ZL[OL`HYLLHZ`I\[ILJH\ZL [OL`HYLOHYK¹>LZLLRV\[PTWVY[HU[JOHSSLUNLZMVY^OPJO[OLYLPZHZPNUPÄJHU[YPZRVMMHPS\YL HYPZRVMILPUNZLYPV\ZS`KPZHWWVPU[LKHM[LYHKLJHKLVYTVYLVM]LY`OHYK^VYR@L[^LWLYZPZ[ ILJH\ZL[OLJOHSSLUNLZHUK[OLNVHSZ^LW\YZ\LPU]PNVYH[LHUKTV[P]H[L\ZPU^H`Z[OH[SLZZLY JOHSSLUNLZ^V\SKUV[ *VUNYH[\SH[PVUZ[VHSS^OVOH]LJVU[YPI\[LK[V[OLZ\JJLZZVM[OL4PJYVKL]PJLZ3HIVYH[VY` ;OL4+3OHZJLY[HPUS`THKLP[ZTHYRPUP[ZÄYZ[`LHYZ·TH`[OLUL_[ILLX\HSS`WYVK\J[P]L Dr. Charles Elachi Dr. Jonas Zmuidzinas JPL DIRECTOR JPL CHIEF TECHNOLOGIST 2 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGYGY 2014 ANNUAL REPORT 3 CELEBRATING 25 YEARS OF SPECTACULAR SCIENCE Twenty-five years ago, the Microdevices Laboratory (MDL) was founded at JPL THE CREATIONVM[OL4PJYVKL]PJLZ3HIVYH[VY`4+3 VMJYH[LYZVU[OL4VVU[OH[JV\SKILJVSK[YHWZMVYVYNHUPJ under the auspices of the Center for ^HZPUP[PH[LK`LHYZHNVPUYLZWVUZL[V*HS[LJO»Z)VHYKVM TH[LYPHSKLSP]LYLKI`JVTL[ZHUKV[OLYWYPTP[P]LIVKPLZ Space Microelectronics Technology ;Y\Z[LLZLHYSPLYYLX\LZ[[V[OL5(:((ZZVJPH[L(KTPUPZ[YH[VY :\ITPSSPTL[LY^H]L[LJOUVSVNPLZKL]LSVWLKH[4+3OH]L (CSMT). NASA and several DoD agencies MVY:WHJL:JPLUJLZ+Y)\Y[,KLSZVU[VJVUZPKLYUL^ ILLU\ZLKVUH]HYPL[`VMZWHJLTPZZPVUZILNPUUPUN^P[O with space responsibilities established HYLHZ·V[OLY[OHUYVIV[PJL_WSVYH[PVU·PU^OPJO173JV\SK [OL,HY[OVYIP[PUN4PJYV^H]L3PTI:V\UKLYVU(\YH[OH[ CSMT to create a critical-mass program [HRLSLHKYLZWVUZPIPSP[`MVY5(:(173+PYLJ[VY+Y3L^ in space microelectronics with world- I`THWWPUNU\TLYV\ZJOLTPJHSZWLJPLZ[VNL[OLYYL]LHSLK (SSLUHUK*OPLM;LJOUVSVNPZ[+Y;LYY`*VSL[OLUJYLH[LK class facilities, equipment, and staff. [OLKL[HPSLKTLJOHUPZTZVMVaVULOVSLMVYTH[PVUHUK [OL*LU[LYMVY:WHJL4PJYVLSLJ[YVUPJZHWWVPU[PUN+Y*HYS KPZZPWH[PVUV]LYHKLJHKLVMZ[\K`(K]HUJLTLU[PU[OPZ 2\RRVULUHZP[ZÄYZ[+PYLJ[VY;OLYLZ[PZ[LJOUVSVNPJHSOPZ[VY` Z\ITPSSPTL[LY[LJOUVSVN`HSSV^LK/LYZJOLS»Z/0-0PUZ[Y\TLU[ 5VVULJV\SKOH]LWYLKPJ[LK[OLLUVYTP[`VMPTWHJ[[OH[ [VTLHZ\YL[OLKL\[LYP\TO`KYVNLU+/YH[PVVUJVTL[ 4+3[LJOUVSVNPLZ^V\SKOH]LVU5(:(,HY[OHUKZWHJL /HY[SL`HUK[OLYLI`PKLU[PM`1\WP[LYMHTPS`JVTL[ZHZ ZJPLUJLTPZZPVUZ\JJLZZLZHUKPU[OLHYLHZVMJVTTLYJPHS WV[LU[PHSZV\YJLZVM,HY[O»Z^H[LY;OLSHZ[KLJHKLOHZ HWWSPJH[PVUZPUK\Z[Y`OLHS[OJHYLHUKUH[PVUHSZLJ\YP[` ZLLUZWLJ[HJ\SHYZJPLUJLKPZJV]LYPLZMYVTZLTPJVUK\J[VY ;OL]PZPVUMVY4+3^HZZPTWSL·I\PSKHZ[H[LVM[OLHY[ SHZLYKL]LSVWTLU[PUJS\KPUN[OLKPZJV]LY`I`[OL[\UHISL MHJPSP[`HUKOPYL^VYSKJSHZZYLZLHYJOLYZ^P[OHMYLLYLPU SHZLYZWLJ[YVTL[LYVU*\YPVZP[`VMTL[OHULLTPZZPVUZ [VJVUK\J[M\UKHTLU[HSYLZLHYJOPUHKKP[PVU[V[HYNL[PUN [OLWHY[P[PVUPUNVM[OLPZV[VWLZVMJHYIVUKPV_PKL[OH[ M\[\YL5(:(ULLKZ(ZL_WLJ[LK[OLÄYZ[Ä]L`LHYZ^LYLHU LZ[HISPZOHSVUNOPZ[VY`VU4HYZVMH[TVZWOLYPJSVZZHUK PU]LZ[TLU[PUKL]LSVWPUNJHWHIPSP[`HJX\PYPUNUL^ZRPSSZHUK [OLÄYZ[PUZP[\TLHZ\YLTLU[VM+/PUH4HY[PHUYVJR LX\PWTLU[HUKHYHWPKHJX\PZP[PVUVM[LJOUPJHSRUV^OV^I` 3HZLYZJ\Z[VTTHKLMVY/HY]HYK<UP]LYZP[`[V[HYNL[^H[LY HUL_[YLTLS`JHWHISL[LHT2L`UL^LUKLH]VYZ^LYLIVYUPU PZV[VWLZVU,HY[OOH]LTHWWLK[OLJVUULJ[PVUIL[^LLU Z\WLYJVUK\J[PUNKL[LJ[VYZPUMYHYLKPTHNPUNZ\ITPSSPTL[LY Z[YH[VZWOLYPJ^H[LYPUQLJ[PVUHUKVaVULSVZZ5V[VUS`OH]L KL]PJLZHUKX\HU[\TJVTW\[PUNZV[OH[I`[OLZLJVUKÄ]L YVVT[LTWLYH[\YLIHYYPLYPUMYHYLKKL[LJ[VYZTHKLO\NL `LHYZHUL_WSVZPVUVMÅPNO[KLTVUZ[YH[PVUZ^HZ\UKLY^H` HK]HUJLZMVYUH[PVUHSZLJ\YP[`HUKZPUNSLWOV[VUKL[LJ[VYZ -VY[OL5(:(ZWHJLTPZZPVUZ^LHYLWYV\K[VYLJHSS LUHISLKSHZLYVW[PJHSJVTT\UPJH[PVUZI\[4+3KL[LJ[VYZ [OLPUJYLKPISLZJPLUJLYLZ\S[Z;OLLILHTJHWHIPSP[`PU H[PUMYHYLK]PZPISLHUK\S[YH]PVSL[^H]LSLUN[OZOH]LILLU KPMMYHJ[P]LVW[PJZHSSV^LK[OL*90:4PUZ[Y\TLU[VU[OL \ZLK[V\UYH]LS[OLTLJOHUPZTZVM[OLZVSHY^PUKPU[LYHJ[PVU 4HYZ9LJVUUHPZZHUJL6YIP[LY[VTHWJHYIVUH[LZJSH`Z ^P[O,HY[O»ZTHNUL[PJÄLSK]VSJHUPJHJ[P]P[`^PSKÄYLZWYLHK HUKZ\SMH[LZVU4HYZHUKOLSWZLSLJ[HSHUKPUNZP[LMVY \YIHUPaH[PVUHUKL]HWV[YHUZWPYH[PVU([,HY[O»ZVJLHU *\YPVZP[`;OLU4+3JYLH[LK[HPSVYLKNYH[PUNZ[OH[THWWLK ÅVVYV\Y4+3LSLJ[YVWOVYLZPZTPJYVÅ\PKPJ[LJOUVSVN`OHZ S\UHYTPULYHSZHUKKL[LJ[LKZ\YMHJL^H[LY\ZPUN[OL4 KL[LJ[LKSVUNJOHPUMH[[`HJPKZHZIPVTHYRLYZVMSVJHSPaLK PUZ[Y\TLU[VU0UKPH»Z*OHUKYH`HHUTPZZPVU:WPKLY^LI TPJYVIPHSLJVZ`Z[LTZ IVSVTL[LYZVU[OL/LYZJOLSTPZZPVU»Z:709,YL]LHSLK 6]LY[OLUL_[`LHYZ4+3^PSSTHRL\UPTHNPUHISL [OV\ZHUKZVMUL^KPZ[HU[NHSH_PLZHUK^P[ULZZLKHTHZZP]L JVU[YPI\[PVUZ[VV\YUH[PVUHSLMMVY[ZPUZWHJLKLMLUZLHUK NHZJSV\KMYVT[OLYLKO`WLYNPHU[M\LSPUN[OLPU[LYZ[LSSHY TLKP\T6U[OL7SHUJRTPZZPVUZWPKLY^LIIVSVTL[LYZVU ZLJ\YP[`·JVU[YPI\[PVUZ[OH[HYLPUZWPYLKHUKTHKLHYLHSP[`I` /-0THWWLKK\Z[HUK[OLJVZTPJTPJYV^H]LIHJRNYV\UK V\Y^VYSKJSHZZYLZLHYJOZ[HMM^OVHSVUN^P[OTHUHNLTLU[ *4)YL]LHSPUN[OLWHY[P[PVUPUNVMLULYN`HUKTH[[LYHUK [HRLNYLH[WYPKLPU[OLW\YZ\P[VM[LJOUPJHSL_JLSSLUJLHUK WYV]PKPUNHJVYULYZ[VULVMJVZTVSVNPJHSTVKLSZMVY[OLUL_[ PUUV]H[PVU>P[O5(:(HUK*HS[LJO173+PYLJ[VY+Y*OHYSLZ KLJHKL4VYLYLJLU[S`Z\WLYJVUK\J[PUNKL[LJ[VYHYYH`ZPUH ,SHJOPHUK*OPLM;LJOUVSVNPZ[+Y1VUHZAT\PKaPUHZ^L NYV\UK[LSLZJVWLH[[OL:V\[O7VSLOH]LKL[LJ[LKJOHUNLZ QVPUV\Y\UP]LYZP[`PUK\Z[YPHSKLMLUZLHUKJVTTLYJPHS PU)TVKLWVSHYPaH[PVUVM[OL*4)[OH[TH`WYV]PKL[OLÄYZ[ WHY[ULYZPUJLSLIYH[PUNV\YPUJYLKPISLHJOPL]LTLU[ZV]LY L]PKLUJLVMYHWPKL_WHUZPVUMVSSV^PUN[OL)PN)HUN6U[OL [OLSHZ[`LHYZHJYVZZHKP]LYZLYHUNLVMHWWSPJH[PVUZ6\Y +P]PULYPUZ[Y\TLU[VM[OL3\UHY9LJVUUHPZZHUJL4PZZPVU [YHKLTHYRHUKPUZWPYH[PVUMVY[OLM\[\YLYLTHPUPUJYLH[P]L TPJYV[OLYTVWPSLHYYH`Z^LYL\ZLK[VZLUZLL_[YLTLS`SV^ PUUV]H[PVUZPUTPUPH[\YPaLK[LJOUVSVNPLZ[OH[JVU[YPI\[L[V [LTWLYH[\YLZ2PU[OLWLYTHULU[S`ZOHKV^LKYLNPVUZ [OLUH[PVUHSPU[LYLZ[ Dr. Christopher Webster Dr. Thomas S. Luchik DIRECTOR MANAGER JPL Microdevices JPL Instruments Laboratory Division 4 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 5 A variety of JPL flight missions and research projects rely on CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) searches for our capability to fabricate special- the residue of minerals that form in the presence of water, perhaps in association purpose components for NASA with ancient hot springs, thermal vents, lakes, or ponds that may have existed and non-NASA instruments. on the surface of Mars. Sand dunes are among the most widespread aeolian features present on Mars. DAN WILSON Lead, Diffractive Optics 20 YEARS AT JPL Capabilities across wavelengths from the ultraviolet to far-infrared. Optical COMPONENTS THE MICRODEVICES LABORATORYKL]LSVWZ LSLJ[YVUILHTSP[OVNYHWO`[LJOUPX\LZ[VMHIYPJH[L\UPX\L
Recommended publications
  • VI FORSKER PÅ MARS Kort Om Aktiviteten I Mange Tiår Har Mars Vært Et Yndet Objekt for Forskere Verden Over
    VI FORSKER PÅ MARS Kort om aktiviteten I mange tiår har Mars vært et yndet objekt for forskere verden over. Men hvorfor det? Hva er det med den røde planeten som er så interessant? Her forsøker vi å gi en oversikt over hvorfor vi er så opptatt av Mars. Hva har vi oppdaget, og hva er det vi tenker å gjøre? Det finnes en planet i solsystemet vårt som bare er bebodd av roboter -MARS- Læringsmål Elevene skal kunne - gi eksempler på dagsaktuell forskning og drøfte hvordan ny kunnskap genereres gjennom samarbeid og kritisk tilnærming til eksisterende kunnskap - utforske, forstå og lage teknologiske systemer som består av en sender og en mottaker - gjøre rede for energibevaring og energikvalitet og utforske ulike måter å omdanne, transportere og lagre energi på VI FORSKER PÅ MARS side 1 Innhold Kort om aktiviteten ................................................................................................................................ 1 Læringsmål ................................................................................................................................................ 1 Mars gjennom historien ...................................................................................................................... 3 Romkappløp mot Mars ................................................................................................................... 3 2000-tallet gir rovere i fleng ....................................................................................................... 4 Hva nå? ......................................................................................................................................................
    [Show full text]
  • Generate Viewsheds of Mastcam Images from the Curiosity Rover, Using Arcgis® and Public Datasets
    TECHNICAL Coupling Mars Ground and Orbital Views: Generate REPORTS: METHODS Viewsheds of Mastcam Images From the Curiosity 10.1029/2020EA001247 Rover, Using ArcGIS® and Public Datasets Key Points: 1 2 1 3 4 • Mastcam images from the Curiosity M. Nachon , S. Borges , R. C. Ewing , F. Rivera‐Hernández , N. Stein , and rover are available online but lack a J. K. Van Beek5 public method to be placed back in the Mars orbital context 1Department of Geology and Geophysics, Texas A&M University, College Station, TX, USA, 2Department of Astronomy • This procedure allows users to and Planetary Sciences—College of Engineering, Forestry, and Natural Sciences, Northern Arizona University, Flagstaff, generate Mastcam image viewsheds: 3 4 locate in a map view the Mars AZ, USA, Department of Earth Sciences, Dartmouth College, Hanover, NH, USA, Division of Geological and Planetary 5 terrains visible in Mastcam images Sciences, California Institute of Technology, Pasadena, CA, USA, Malin Space Science Systems, San Diego, CA, USA • This procedure uses ArcGIS® and publicly available Mars datasets Abstract The Mastcam (Mast Camera) instrument onboard the NASA Curiosity rover provides an Supporting Information: exclusive view of Mars: High‐resolution color images from Mastcam allow users to study Gale crater's • Dataset S1 geologic terrains along Curiosity's path. These ground observations complement the spatially broader • Dataset S2 • Dataset S3 views of Gale crater provided by spacecrafts from orbit. However, for a given Mastcam image, it can be • Table S1 challenging to locate the corresponding terrains on the orbital view. No method for locating Mastcam images • Table S2 onto orbital images had been made publicly available.
    [Show full text]
  • Ubiquitous Argonium \(Arh+\) in the Diffuse Interstellar Medium: A
    A&A 566, A29 (2014) Astronomy DOI: 10.1051/0004-6361/201423727 & c ESO 2014 Astrophysics Ubiquitous argonium (ArH+) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas P. Schilke1, D. A. Neufeld2, H. S. P. Müller1, C. Comito1, E. A. Bergin3, D. C. Lis4;5, M. Gerin6, J. H. Black7, M. Wolfire8, N. Indriolo2, J. C. Pearson9, K. M. Menten10, B. Winkel10, Á. Sánchez-Monge1, T. Möller1, B. Godard6, and E. Falgarone6 1 I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany e-mail: [email protected] 2 The Johns Hopkins University, Baltimore, MD 21218, USA 3 Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042, USA 4 California Institute of Technology, Pasadena, CA 91125, USA 5 Sorbonne Universités, Université Pierre et Marie Curie, Paris 6, CNRS, Observatoire de Paris, UMR 8112 LERMA, Paris, France 6 LERMA, CNRS UMR 8112, Observatoire de Paris & École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France 7 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden 8 Astronomy Department, University of Maryland, College Park, MD 20742, USA 9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 10 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 28 February 2014 / Accepted 29 March 2014 ABSTRACT Aims. We describe the assignment of a previously unidentified interstellar absorption line to ArH+ and discuss its relevance in the + context of hydride absorption in diffuse gas with a low H2 fraction.
    [Show full text]
  • Mariner to Mercury, Venus and Mars
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions.
    [Show full text]
  • Elements of Astronomy and Cosmology Outline 1
    ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the
    [Show full text]
  • Ubiquitous Argonium, Arh+, in the Diffuse Interstellar Medium
    Ubiquitous Argonium, ArH+, in the Interstellar Medium P. Schilke, Holger S. P. Müller, C. Comito, Á. Sánchez-Monge, D. A. Neufeld, N. Indriolo, E. A. Bergin, D. C. Lis, M. Gerin, J. H. Black, M. G. Wolfire, J. C. Pearson, K. M. Menten, B. Winkel V.6, 13th International HITRAN Conference, CfA, Cambridge, MA, USA, June 23–25, 2014 What is Argonium? ArH+, 1Σ+, isoelectronic to HCl + + Formation: Ar + H2 → ArH + H + + Destruction (e.g.): ArH + H2 → Ar + H3 Isotopic ratio: 36Ar : 38Ar : 40Ar terrestrial: 84.2 : 15.8 : 25018.8 (from decay of 40K) solar/ISM: ~84.6 : ~15.4 : 0.025 36ArH+ toward Crab Nebula SNR: J = 1 – 0 & 2 – 1 in emission (w. OH+ N = 1 – 0); SPIRE/Herschel M. J. Barlow et al., Science 342 (2013) 1343 On the Spectroscopy of ArH+ 40ArH+; rotational spectroscopy: K. B. Laughlin et al., PRL 58 (1987) 996: J" = 0 J. M. Brown et al., JMSp 128 (1988) 587: J" = 1 – 6 D. J. Liu et al., JCP 87 (1987) 2442: J" = 20 – 24; v ≤ 4 (MIR) 40ArD+; rotational spectroscopy: W. C. Bowman et al., JCP 79 (1983) 2093: J" = 0 (+ 36ArD+ & 38ArD+ H. Odashima et al., JMSp 195 (1999) 356: J" = 2 – 14 rovibrational spectroscopy: J. W. Brault & S. P. Davis, Phys. Sript. 25 (1982) 268: 40ArH+ J. W. C. Johns, JMSp 106 (1984) 124: 40ArH+, 40ArD+ R. R. Filueira & C. E. Blom, JMSp 127 (1988) 279: 36ArH+, 38ArH+ M. Cueto et al., ApJ 783 (2014) L5: 36ArH+, 38ArH+ ArH+ toward Sagittarius B2(M) – HIFI Line Survey Absorption toward Sgr B2(M) massive star-forming regions as background sources with approximate origins Sagittarius B2(M) Interstellar Chemistry of ArH+ I + + + + Ar + H2 → ArH + H exothermic (endo.
    [Show full text]
  • Detection of Extragalactic Argonium, Arh+, Toward PKS 1830−211⋆
    A&A 582, L4 (2015) Astronomy DOI: 10.1051/0004-6361/201527254 & c ESO 2015 Astrophysics Letter to the Editor Detection of extragalactic argonium, ArH+, toward PKS 1830−211 Holger S. P. Müller1, Sébastien Muller2, Peter Schilke1, Edwin A. Bergin3, John H. Black2, Maryvonne Gerin4, Dariusz C. Lis5,6, David A. Neufeld7, and Sümeyye Suri1 1 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany e-mail: [email protected] 2 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 43992 Onsala, Sweden 3 Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042, USA 4 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, 75005 Paris, France 5 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 75014 Paris, France 6 Cahill Center for Astronomy and Astrophysics 301-17, California Institute of Technology, Pasadena, CA 91125, USA 7 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA Received 26 August 2015 / Accepted 22 September 2015 ABSTRACT Context. Argonium has recently been detected as a ubiquitous molecule in our Galaxy. Model calculations indicate that its abundance peaks at molecular fractions in the range of 10−4 to 10−3 and that the observed column densities require high values of the cosmic ray ionization rate. Therefore, this molecular cation may serve as an excellent tracer of the very diffuse interstellar medium (ISM), as well as an indicator of the cosmic ray ionization rate.
    [Show full text]
  • Phil Liebrecht Assistant Deputy Associate Administrator and Deputy Program Manager Space Communications and Navigation NASA HQ
    Phil Liebrecht Assistant Deputy Associate Administrator and Deputy Program Manager Space Communications and Navigation NASA HQ Meeting the Communications and Navigation Needs of Space missions since 1957 “Keeping the Universe Connected” Public University of Navarra, 2010 [email protected] 1 Operations and Communications Customers 2 Space Operations 101 Relation Between Space Segment, Ground System, and Data Users* Ground System Command Commands Requests Spacecraft and Payload Support • Mission Planning Telemetry • Flight Operations • Flight Dynamics • Perf. Assess., Trending & Archiving Space Data Users • Anomaly Support Segment Data Relay and Level (S/C) Mission Zero Data Processing Mission Data Data • Space-to-ground Comm. • Data Capture • Data Processing • Network Management • Data Distribution • Quick Look * Based on Wertz and Wiley; Space Mission Analysis and Design 3 Communications Theory- Basic Concepts Transmitter and Receiver must use the same language Noise causes interference a) Figures it – no errors (Identify and quantify) b) Figures it – corrects Must be loud enough ENERGY! c) Figures it – incorrectly (message in error) d) Cannot figure- recognizes E L an error T M E XP AIN L E e) Cannot figure- ? TRANSMITTER Distance weakens the sound RECEIVER (calculate the loss) CHANNEL Has to correctly interpret the message - the most difficult job The fundamental problem of communications is that of reproducing at one point either exactly or approximately a message selected at another point. 4 Functional - End to End Process
    [Show full text]
  • Getting to Mars How Close Is Mars?
    Getting to Mars How close is Mars? Exploring Mars 1960-2004 Of 42 probes launched: 9 crashed on launch or failed to leave Earth orbit 4 failed en route to Mars 4 failed to stop at Mars 1 failed on entering Mars orbit 1 orbiter crashed on Mars 6 landers crashed on Mars 3 flyby missions succeeded 9 orbiters succeeded 4 landers succeeded 1 lander en route Score so far: Earthlings 16, Martians 25, 1 in play Mars Express Mars Exploration Rover Mars Exploration Rover Mars Exploration Rover 1: Meridiani (Opportunity) 2: Gusev (Spirit) 3: Isidis (Beagle-2) 4: Mars Polar Lander Launch Window 21: Jun-Jul 2003 Mars Express 2003 Jun 2 In Mars orbit Dec 25 Beagle 2 Lander 2003 Jun 2 Crashed at Isidis Dec 25 Spirit/ Rover A 2003 Jun 10 Landed at Gusev Jan 4 Opportunity/ Rover B 2003 Jul 8 Heading to Meridiani on Sunday Launch Window 1: Oct 1960 1M No. 1 1960 Oct 10 Rocket crashed in Siberia 1M No. 2 1960 Oct 14 Rocket crashed in Kazakhstan Launch Window 2: October-November 1962 2MV-4 No. 1 1962 Oct 24 Rocket blew up in parking orbit during Cuban Missile Crisis 2MV-4 No. 2 "Mars-1" 1962 Nov 1 Lost attitude control - Missed Mars by 200000 km 2MV-3 No. 1 1962 Nov 4 Rocket failed to restart in parking orbit The Mars-1 probe Launch Window 3: November 1964 Mariner 3 1964 Nov 5 Failed after launch, nose cone failed to separate Mariner 4 1964 Nov 28 SUCCESS, flyby in Jul 1965 3MV-4 No.
    [Show full text]
  • MR PRISM – Spectral Analysis Tool for the CRISM
    MR PRISM – Spectral Analysis Tool for the CRISM Adrian J. Brown*a, and Michael Storrie-Lombardib a SETI Institute, 515 N. Whisman Rd, Mountain View, CA 94043 b Kinohi Institute, Pasadena, CA 91101 ABSTRACT We describe a computer application designed to analyze hyperspectral data collected by the Compact Infrared Spectrometer for Mars (CRISM). The application links the spectral, imaging and mapping perspectives on the eventual CRISM dataset by presenting the user with three different ways to analyze the data. One of the goals when developing this instrument is to build in the latest algorithms for detection of spectrally compelling targets on the surface of the Red Planet, so they may be available to the Planetary Science community without cost and with a minimal learning barrier to cross. This will allow the Astrobiology community to look for targets of interest such as hydrothermal minerals, sulfate minerals and hydrous minerals and be able to map the extent of these minerals using the most up-to-date and effective algorithms. The application is programmed in Java and will be made available for Windows, Mac and Linux platforms. Users will be able to embed Groovy scripts into the program in order to extend its functionality. The first collection of CRISM data will occur in September of 2006 and this data will be made publicly available six months later via the Planetary Datasystem (PDS). Potential users in the community should therefore look forward to a release date mid-2007. Although exploration of the CRISM data set is the motivating force for developing these software tools, the ease of writing additional Groovy scripts to access other data sets makes the tools useful for mineral exploration, crop management, and characterization of extreme environments here on Earth or other terrestrial planets.
    [Show full text]
  • Primordially Hydridic Earth Viacheslav Zgonnik, Hervé Toulhoat, Vladimir Larin, Nikolay Larin
    Primordially hydridic Earth Viacheslav Zgonnik, Hervé Toulhoat, Vladimir Larin, Nikolay Larin Abundances of elements on Earth’s crust relative to Sun’s photosphere and Si plotted versus first ionization potential (IP) • Clearly shows separation of elements by their IP • Outliers are due to use of only Earth’s crust composition • Tested with success for other planets, Moon and asteroids • Described by a Boltzmann distribution depending on the distance to the protosun • Predicts high initial content of hydrogen • Earth currently has about 4% by weight of hydrogen. • It is mainly combined as hydrides and partly dissolved into other phases http://arxiv.org/abs/1208.2909v2 Non-Ionizing UV (< 7 eV) Photochemistry of Cosmic Ice Analogs of Ammonia Radiolysis involves electron Photochemistry involves electron excitation due to particle radiation excitation without ionization in addition to all ionization – reactions initiated by cations – production of low-energy electron cascade – non-uniform distribution of reaction intermediates, non-selective chemistry leading to multiple reaction products We see production of N2 and N3 species with high- energy electrons and < 8 eV photons, but not with < 6 eV photons Islem Bouhali Soumaya Bezzaouia Mourad Telmini Theoretical study of Rydberg states of HeH+ ion using the Halfium model Christian Jungen Presented by: Islem Bouhali 2 HeH+ molecular ion in Born-Oppenheimer approximation e2 r12 Max(extern region e1 r2a GMQDT r r 1a 2b r1b Max(reaction surface R MATCHING ++ + He H Max( : reaction volume R-MATRIX Combination of the Variational R-matrix method and of the Generalized Multichannel Quantum Defect Theory Telmini and Jungen, Phys. Rev. A 68 062704 (2003).
    [Show full text]
  • The Prospects for Petroleum Exploration in the Eastern Sector of Southern Baltic As Revealed by Sea Bottom Geochemical Survey Correlated with Seismic Data
    Przegl¹d Geologiczny, vol. 52, no. 8/2, 2004 The prospects for petroleum exploration in the eastern sector of Southern Baltic as revealed by sea bottom geochemical survey correlated with seismic data Jerzy Dom¿alski*, Wojciech Górecki**, Andrzej Mazurek*, Andrzej Myœko**, Wojciech Strzetelski**, Krzysztof Szama³ek*** A b s t r a c t . In the Polish offshore £eba (B) tectonic block in the southeastern part of the Baltic Sea the oil and gas fields are accumu- lated in Middle Cambrian quartzose sandstone, often fractured and diagenetically sealed at depth by advanced silification developed in reservoir around the petroleum deposit. Petroleum traps are mainly of structure-tectonic type, i.e., anticlines closed with strike-slip faults. At least four gas-condensate and four oil deposits of total reserves more than 10 Gm3 gas and 30 Mt oil were discovered by the “Petrobaltic” Co. in the Polish Baltic sector. The subsurface petroleum deposits in the Cambrian reservoir are the source of secondary vertical hydrocarbon migration to the surface which produces surface microseepages and hydrocarbon anomalies. Geochemical survey of the sea bottom sediments and waters run along seismic profiles was completed in 1999–2002 within a joint project of “Petrobaltic” Co. Gdañsk and the Fossil Fuels Dept., AGH University of Science and Technology, Kraków, approved by the Ministry of Environmental Protection, Natural Resources and Forestry. It was found that seafloor hydrocarbon anomalies are closely related to subsurface geologic structure and location of petroleum deposits. Particularly the faults as principal venues for vertical hydrocarbon migration are reflected in high-magnitude seafloor anomalies. Above petroleum field there occurs a “halo” effect of high-magnitude anomalies contouring the deposit with damping related to productive zone situated inbetween.
    [Show full text]