25 YEARS OF INNOVATION National Aeronautics and Space Administration We are proud that for the past 25 years, JPL’s MICRODEVICES LABORATORY (MDL) has made seminal contributions in the areas of diffractive optics, detectors, nano and micro systems, lasers, and focal planes with breakthrough Jet Propulsion Laboratory sensitivity from deep UV to submillimeter, as a result of the dedication and hard California Institute of Technology work of a great number of talented scientists, technologists, and research staff. Through this research and development, MDL has produced novel and unique components and subsystems enabling remarkable achievements in support of Microdevices NASA’s missions and other national priorities. We are excited to have been a part LABORATORY of this important work and look forward to many years of continued success.

02 LETTER FROM DR. ELACHI & DR. ZMUIDZINAS

25 YEARS OF INNOVATION 04 LETTER FROM MICRODEVICES LABORATORY

07 OPTICAL COMPONENTS

12 SEMICONDUCTOR LASERS

ADVANCED DETECTORS, 20 SYST EMS & NANOSCIENCE

28 INFRARED PHOTODETECTORS

SUPERCONDUCTING 34 MATERIALS & DEVICES

SUBMILLIMETER WAVE ADVANCED TECHNOLOGIES 42

NANO & MICRO SYSTEMS 50

MICROFLUIDIC ELECTROSPRAY PROPULSION 56

IN SITU INSTRUMENTS 60

INFRASTRUCTURE & CAPABILITIES 66

APPENDICES: MDL EQUIPMENT COMPLEMENT 76

PUBLICATIONS, PROCEEDINGS, NEW TECHNOLOGY REPORTS, BOOK CONTRIBUTIONS & PATENTS 78

AWARDS & DISTINGUISHED RECOGNITION 85

2014 ANNUAL REPORT MICRODEVICES.JPL.NASA.GOV

LETTER FROM CHARLES ELACHI & JONAS ZMUIDZINAS

THIS YEAR173JLSLIYH[LZ[^VTHQVYTPSLZ[VULZ![OL[OHUUP]LYZHY`VM4HYPULY»ZÅ`I`VM 4HYZ·[OLÄYZ[L]LY·HUK[OL[OHUUP]LYZHY`VMV\Y4PJYVKL]PJLZ3HIVYH[VY`VY4+3:\YWYPZPUNS` [OLYLPZHJVUULJ[PVU0UHYLJLU[HY[PJSL*HS[LJOWYVMLZZVY@\R@\UNKLZJYPILZ[OLZJPLU[PÄJPTWHJ[ VM[OLPUZP[\KL[LJ[PVUVMTL[OHULVU4HYZI`[OL*\YPVZP[`YV]LY!¸0MP[PZIVYULV\[[OPZKPZJV]LY` ILJVTLZVULVM[OLNYLH[LZ[,\YLRHTVTLU[ZPU[OLOHSMJLU[\Y`VMYVIV[PJL_WSVYH[PVUVM4HYZ ILNPUUPUN^P[O[OLÄYZ[Z\JJLZZVM4HYPULYPU ¯¹;OLKL[LJ[PVU^HZYLWVY[LKI`4+3+PYLJ[VY *OYPZ>LIZ[LYPUHWHWLYW\ISPZOLKPUScienceHUK^HZLUHISLKI`H[\UHISLPUMYHYLKSHZLY KL]LSVWLKHUKWYVK\JLKH[4+3I`[OLNYV\WSLKI`4+3+LW\[`+PYLJ[VY:PHTHR-VYV\OHY

(Z^P[OTHU`[YP\TWOZPUZJPLUJL[OLYLPZHSVUNOPZ[VY`;OLIHZPJ[LJOUPX\LVM[\UHISL PUMYHYLKSHZLYZWLJ[YVZJVW`PZHSTVZ[HZVSKHZ4HYPULYHUKL]LUILMVYL4HYPULY»Z4HYZ Å`I`*HYS:HNHU^HZPU[LYLZ[LKPU[OL\ZLVMPUMYHYLKZWLJ[YVZJVW`[VSVVRMVYTVSLJ\SLZ PU[OL4HY[PHUH[TVZWOLYL;O\Z[OLZJPLU[PÄJVWWVY[\UP[`^HZHWWHYLU[X\P[LLHYS`I\[ [OL[LJOUVSVNPJHSHUKLUNPULLYPUNJOHSSLUNLZ^LYLKH\U[PUN;OL4HYPULYYHKPVZJPLUJL L_WLYPTLU[[VSK\Z[OLWYLZZ\YLVM[OL4HY[PHUH[TVZWOLYLHUK[OLYLMVYL[OLZL]LYLKPMÄJ\S[` VMSHUKPUN^OPJOWYVTW[LKHOVZ[VMJSL]LYZVS\[PVUZPU]VS]PUNOLH[ZOPLSKZWHYHJO\[LZHPYIHNZ HUK\S[PTH[LS`*\YPVZP[`»ZZR`JYHUL^OPJOHTHaLK\ZHSSVU[OLL]LUPUNVM(\N\Z[@L[ [OL[HZRVMTHRPUNHUPUMYHYLKSHZLYZ\P[HISLMVY4HYZ^HZUVSLZZJOHSSLUNPUN·[OLZ[HY[PUN WVPU[^HZHKL]PJLJVVSLKI`SPX\PKOLSP\TPUHTL[LYZPaLKJY`VZ[H[(THQVYIYLHR[OYV\NO^HZ 9\P@HUN»Z PU]LU[PVUVMHUL^JVUJLW[[OLPU[LYIHUKJHZJHKLSHZLY0*3^OPJO\ZLZHU PUNLUPV\ZJVTWSL_SH`LYLKZLTPJVUK\J[VYZ[Y\J[\YL[VIVVZ[LMÄJPLUJ`HUKYLHJOT\JOOPNOLY VWLYH[PUN[LTWLYH[\YLZ@HUNJHTL[V1734+3[VKL]LSVW0*3ZMVY4HYZHUKYLJLP]LK[OL ,K:[VUL(^HYKMVYOPZ^VYRILMVYLQVPUPUN[OLMHJ\S[`H[[OL

;OPZSVUNOPZ[VY`·`LHYZVM^VYRH[4+3HUK`LHYZVMYVIV[PJL_WSVYH[PVUVM4HYZ·ZLY]LZ [VLTWOHZPaL[OLKPMÄJ\S[`VM[OLJOHSSLUNLZ^L\UKLY[HRL0UKLLKHZ1VOU-2LUULK`ZHPKPU OPZMHTV\Z ZWLLJO^LJOVVZL[VKV[OLZL[OPUNZ¸UV[ILJH\ZL[OL`HYLLHZ`I\[ILJH\ZL [OL`HYLOHYK¹>LZLLRV\[PTWVY[HU[JOHSSLUNLZMVY^OPJO[OLYLPZHZPNUPÄJHU[YPZRVMMHPS\YL HYPZRVMILPUNZLYPV\ZS`KPZHWWVPU[LKHM[LYHKLJHKLVYTVYLVM]LY`OHYK^VYR@L[^LWLYZPZ[ ILJH\ZL[OLJOHSSLUNLZHUK[OLNVHSZ^LW\YZ\LPU]PNVYH[LHUKTV[P]H[L\ZPU^H`Z[OH[SLZZLY JOHSSLUNLZ^V\SKUV[

*VUNYH[\SH[PVUZ[VHSS^OVOH]LJVU[YPI\[LK[V[OLZ\JJLZZVM[OL4PJYVKL]PJLZ3HIVYH[VY` ;OL4+3OHZJLY[HPUS`THKLP[ZTHYRPUP[ZÄYZ[`LHYZ·TH`[OLUL_[ILLX\HSS`WYVK\J[P]L

Dr. Charles Elachi Dr. Jonas Zmuidzinas JPL DIRECTOR JPL CHIEF TECHNOLOGIST

2 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGYGY 2014 ANNUAL REPORT 3 CELEBRATING 25 YEARS OF SPECTACULAR SCIENCE Twenty-five years ago, the Microdevices Laboratory (MDL) was founded at JPL THE CREATIONVM[OL4PJYVKL]PJLZ3HIVYH[VY`4+3 VMJYH[LYZVU[OL4VVU[OH[JV\SKILJVSK[YHWZMVYVYNHUPJ under the auspices of the Center for ^HZPUP[PH[LK`LHYZHNVPUYLZWVUZL[V*HS[LJO»Z)VHYKVM TH[LYPHSKLSP]LYLKI`JVTL[ZHUKV[OLYWYPTP[P]LIVKPLZ Space Microelectronics Technology ;Y\Z[LLZLHYSPLYYLX\LZ[[V[OL5(:((ZZVJPH[L(KTPUPZ[YH[VY :\ITPSSPTL[LY^H]L[LJOUVSVNPLZKL]LSVWLKH[4+3OH]L (CSMT). NASA and several DoD agencies MVY:WHJL:JPLUJLZ+Y)\Y[,KLSZVU[VJVUZPKLYUL^ ILLU\ZLKVUH]HYPL[`VMZWHJLTPZZPVUZILNPUUPUN^P[O with space responsibilities established HYLHZ·V[OLY[OHUYVIV[PJL_WSVYH[PVU·PU^OPJO173JV\SK [OL,HY[OVYIP[PUN4PJYV^H]L3PTI:V\UKLYVU(\YH[OH[ CSMT to create a critical-mass program [HRLSLHKYLZWVUZPIPSP[`MVY5(:(173+PYLJ[VY+Y3L^ in space microelectronics with world- I`THWWPUNU\TLYV\ZJOLTPJHSZWLJPLZ[VNL[OLYYL]LHSLK (SSLUHUK*OPLM;LJOUVSVNPZ[+Y;LYY`*VSL[OLUJYLH[LK class facilities, equipment, and staff. [OLKL[HPSLKTLJOHUPZTZVMVaVULOVSLMVYTH[PVUHUK [OL*LU[LYMVY:WHJL4PJYVLSLJ[YVUPJZHWWVPU[PUN+Y*HYS KPZZPWH[PVUV]LYHKLJHKLVMZ[\K`(K]HUJLTLU[PU[OPZ 2\RRVULUHZP[ZÄYZ[+PYLJ[VY;OLYLZ[PZ[LJOUVSVNPJHSOPZ[VY` Z\ITPSSPTL[LY[LJOUVSVN`HSSV^LK/LYZJOLS»Z/0-0PUZ[Y\TLU[ 5VVULJV\SKOH]LWYLKPJ[LK[OLLUVYTP[`VMPTWHJ[[OH[ [VTLHZ\YL[OLKL\[LYP\TO`KYVNLU+/YH[PVVUJVTL[ 4+3[LJOUVSVNPLZ^V\SKOH]LVU5(:(,HY[OHUKZWHJL /HY[SL`HUK[OLYLI`PKLU[PM`1\WP[LYMHTPS`JVTL[ZHZ ZJPLUJLTPZZPVUZ\JJLZZLZHUKPU[OLHYLHZVMJVTTLYJPHS WV[LU[PHSZV\YJLZVM,HY[O»Z^H[LY;OLSHZ[KLJHKLOHZ HWWSPJH[PVUZPUK\Z[Y`OLHS[OJHYLHUKUH[PVUHSZLJ\YP[` ZLLUZWLJ[HJ\SHYZJPLUJLKPZJV]LYPLZMYVTZLTPJVUK\J[VY ;OL]PZPVUMVY4+3^HZZPTWSL·I\PSKHZ[H[LVM[OLHY[ SHZLYKL]LSVWTLU[PUJS\KPUN[OLKPZJV]LY`I`[OL[\UHISL MHJPSP[`HUKOPYL^VYSKJSHZZYLZLHYJOLYZ^P[OHMYLLYLPU SHZLYZWLJ[YVTL[LYVU*\YPVZP[`VMTL[OHULLTPZZPVUZ [VJVUK\J[M\UKHTLU[HSYLZLHYJOPUHKKP[PVU[V[HYNL[PUN [OLWHY[P[PVUPUNVM[OLPZV[VWLZVMJHYIVUKPV_PKL[OH[ M\[\YL5(:(ULLKZ(ZL_WLJ[LK[OLÄYZ[Ä]L`LHYZ^LYLHU LZ[HISPZOHSVUNOPZ[VY`VU4HYZVMH[TVZWOLYPJSVZZHUK PU]LZ[TLU[PUKL]LSVWPUNJHWHIPSP[`HJX\PYPUNUL^ZRPSSZHUK [OLÄYZ[PUZP[\TLHZ\YLTLU[VM+/PUH4HY[PHUYVJR LX\PWTLU[HUKHYHWPKHJX\PZP[PVUVM[LJOUPJHSRUV^OV^I` 3HZLYZJ\Z[VTTHKLMVY/HY]HYKP[O5(:(HUK*HS[LJO173+PYLJ[VY+Y*OHYSLZ KLJHKL4VYLYLJLU[S`Z\WLYJVUK\J[PUNKL[LJ[VYHYYH`ZPUH ,SHJOPHUK*OPLM;LJOUVSVNPZ[+Y1VUHZAT\PKaPUHZ^L NYV\UK[LSLZJVWLH[[OL:V\[O7VSLOH]LKL[LJ[LKJOHUNLZ QVPUV\Y\UP]LYZP[`PUK\Z[YPHSKLMLUZLHUKJVTTLYJPHS PU)TVKLWVSHYPaH[PVUVM[OL*4)[OH[TH`WYV]PKL[OLÄYZ[ WHY[ULYZPUJLSLIYH[PUNV\YPUJYLKPISLHJOPL]LTLU[ZV]LY L]PKLUJLVMYHWPKL_WHUZPVUMVSSV^PUN[OL)PN)HUN6U[OL [OLSHZ[`LHYZHJYVZZHKP]LYZLYHUNLVMHWWSPJH[PVUZ6\Y +P]PULYPUZ[Y\TLU[VM[OL3\UHY9LJVUUHPZZHUJL4PZZPVU [YHKLTHYRHUKPUZWPYH[PVUMVY[OLM\[\YLYLTHPUPUJYLH[P]L TPJYV[OLYTVWPSLHYYH`Z^LYL\ZLK[VZLUZLL_[YLTLS`SV^ PUUV]H[PVUZPUTPUPH[\YPaLK[LJOUVSVNPLZ[OH[JVU[YPI\[L[V [LTWLYH[\YLZ 2PU[OLWLYTHULU[S`ZOHKV^LKYLNPVUZ [OLUH[PVUHSPU[LYLZ[

Dr. Christopher Webster Dr. Thomas S. Luchik DIRECTOR MANAGER JPL Microdevices JPL Instruments Laboratory Division

4 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 5 A variety of JPL flight missions and research projects rely on CRISM (Compact Reconnaissance for ) searches for our capability to fabricate special- the residue of minerals that form in the presence of , perhaps in association purpose components for NASA with ancient hot springs, thermal vents, lakes, or ponds that may have existed and non-NASA instruments. on the surface of Mars. Sand dunes are among the most widespread aeolian features present on Mars. DAN WILSON Lead, Diffractive Optics

20 YEARS AT JPL

Capabilities across wavelengths from the ultraviolet to far-infrared. Optical COMPONENTS THE MICRODEVICES LABORATORYKL]LSVWZ LSLJ[YVUILHTSP[OVNYHWO`[LJOUPX\LZ[VMHIYPJH[L\UPX\L UHUVZ[Y\J[\YLZHUKVW[PJZ[OH[LUHISL173PUZ[Y\TLU[Z [VWLYMVYTUV]LSTLHZ\YLTLU[ZHUKHJOPL]L\UTH[JOLK WLYMVYTHUJL(]HYPL[`VM173ÅPNO[HUKYLZLHYJOWYVQLJ[ZYLS`VU V\YJHWHIPSP[`[VMHIYPJH[LZWLJPHSW\YWVZLJVTWVULU[ZMVY5(:(HUK UVU5(:(PUZ[Y\TLU[Z>LOH]LKL]LSVWLKUHUVWH[[LYUPUNWYVJLZZLZ MVYMHIYPJH[PUNIV[OIPUHY`SH`LYLKHUKNYH`ZJHSLZ\YMHJLYLSPLMZ[Y\J[\YLZ PUH]HYPL[`VMWVS`TLYZKPLSLJ[YPJZTL[HSZHUKZ\IZ[YH[LTH[LYPHSZ;OPZ HSSV^ZJYLH[PVUVMULHYS`HYIP[YHY`[YHUZTPZZP]LHUKYLÅLJ[P]LKPMMYHJ[P]L VW[PJZZ\JOHZISHaLKNYH[PUNZSLUZLZHUKJVTW\[LYNLULYH[LKOVSVNYHTZ MVY^H]LSLUN[OZYHUNPUNMYVT\S[YH]PVSL[[VSVUN^H]LPUMYHYLK-\Y[OLY^LOH]L KL]LSVWLKJ\Z[VTLILHTJHSPIYH[PVU[LJOUPX\LZZ\IZ[YH[LTV\U[PUNÄ_[\YLZ HUKWH[[LYUWYLWHYH[PVUZVM[^HYL[VHSSV^MHIYPJH[PVUVM[OLZLKPMMYHJ[P]LVW[PJZVU UVUÅH[JVU]L_VYJVUJH]LZ\IZ[YH[LZ^P[OZL]LYHSTPSSPTL[LYZVMOLPNO[]HYPH[PVU;OPZ OHZLUHISLK[OLMHIYPJH[PVUVMOPNOWLYMVYTHUJLJVU]L_HUKJVUJH]LKPMMYHJ[PVUNYH[PUNZ MVY6MMULYHUK+`ZVU[`WLPTHNPUNZWLJ[YVTL[LYZ[OH[OH]LILLU\ZLKMVYTHU`HPYIVYUL HUKZWHJLIVYULPUZ[Y\TLU[Z»

2014 ANNUAL REPORT 7 01 |

C D optical components

To address the need for larger DIFFRACTION GRATINGS computer-generated holograms for Extreme Environments & Expanded Wavelength Operation (CGHs) than are available from commercial sources, MDL JPL’S IMAGING SPECTROMETERPUZ[Y\TLU[ZHYLILPUNKL]LSVWLKMVY developed new electron-beam VWLYH[PVUPUH]HYPL[`VMOPNOYHKPH[PVUZWHJLLU]PYVUTLU[ZPUJS\KPUN,\YVWH lithography capability to fabricate CGHs up to 9-inch diameter with :\JOPUZ[Y\TLU[ZT\Z[HSZVNV[OYV\NOOPNO[LTWLYH[\YL[OLYTHSJ`JSLZMVY pattern placement accuracy WSHUL[HY`WYV[LJ[PVU;VWYV]PKLÅPNO[X\HSPÄLKNYH[PUNZMVY[OLZLPUZ[Y\TLU[Z in the tens of nanometers. ^LOH]LKL]LSVWLKHUKX\HSPÄLKUL^WYVJLZZLZ[OH[HSSV^\Z[VLILHT MHIYPJH[LV\YOPNOWLYMVYTHUJLZOHWLKNYVV]LKPMMYHJ[PVUNYH[PUNZPUK\YHISL YHKPH[PVUOHYKWVS`TLYZHUKZ\IZ[YH[LTH[LYPHSZ E F

0UHKKP[PVU^LHYLKL]LSVWPUNNYH[PUNZMVY\S[YH]PVSL[HUKOPNOYLZVS\[PVU PUMYHYLKZWLJ[YVTL[LYZ[OH[YLX\PYL]LY`ÄULWP[JOISHaLKNYVV]LZ^P[O L_[YLTLWSHJLTLU[WYLJPZPVU;OPZJVTIPUH[PVUVMYLX\PYLTLU[ZW\ZOLZ[OL SPTP[ZVMLSLJ[YVUILHTSP[OVNYHWO`LZWLJPHSS`^OLU^YP[PUNVUJVU]L_VY JVUJH]LZ\IZ[YH[LZ;OPZ`LHY^LZ\JJLZZM\SS`KLTVUZ[YH[LKZ\JONYH[PUNZ LUHISPUN[OLUL_[NLULYH[PVUVMTVYLJVTWHJ[HUKOPNOLYWLYMVYTHUJL \S[YH]PVSL[[OYV\NOSVUN^H]LPUMYHYLKPTHNPUNZWLJ[YVTL[LYZ

IMAGE A!E-beam-fabricated blazed convex grating (12 mm diameter) for an ultraviolet Offner imaging spectrometer. IMAGE B!E-beam-fabricated blazed immersion grating (55 mm diameter) etched into an infrared transmissive silicon prism for a high-resolution, wide-field imaging spectrometer for atmospheric gas measurement. A IMAGE C–D!Microscope photo and atomic force microscope surface profile of an e-beam-fabricated occulting mask for the AFTA hybrid Lyot coronagraph (HLC). IMAGE E–F!Microscope photo and atomic force microscope surface profile of an e-beam-fabricated occulting mask for the phase-induced amplitude apodization complex mask coronagraph (PIAACMC).

CORONAGRAPH OCCULTING Masks for the WFIRST-AFTA Mission JPL IS DEVELOPINGJVYVUHNYHWO[LJOUVSVN`[VLUHISLKPYLJ[ PTHNPUNHUKZWLJ[YVZJVW`VML_VWSHUL[Z\ZPUN[OL(Z[YVWO`ZPJZ-VJ\ZLK B 2 mm ;LSLZJVWL(ZZL[Z(-;(VU[OL5(:(>PKL-PLSK0UMYHYLK:\Y]L` ;LSLZJVWL>-09:;4+3PZKL]LSVWPUN[LJOUPX\LZMVYMHIYPJH[PUN[^V [`WLZVMZ[HYSPNO[VJJ\S[PUNTHZRZVULMVY[OLO`IYPK3`V[JVYVUHNYHWO /3*KLZPNUHUKHUV[OLYMVY[OLWOHZLPUK\JLKHTWSP[\KLHWVKPaH[PVU JVTWSL_THZRJVYVUHNYHWO70((*4*KLZPNU;OL/3*THZRPZH JPYJ\SHYTL[HSZWV[^P[OHWYLJPZLS`HSPNULKNYH`ZJHSLLILHTWYVÄSLK KPLSLJ[YPJWH[[LYUVU[VW;OL70((*4*THZRPZHUHYYH`VMJPYJ\SHY ZLJ[PVUZ^P[OWYLJPZLS`KLZPNULKNYH`ZJHSLKLW[OZ)V[O[`WLZVMTHZRZ ^VYRPUJVUQ\UJ[PVU^P[O[OLYLZ[VM[OLPYYLZWLJ[P]LJVYVUHNYHWOVW[PJZ [VZ\WWYLZZ[OLSPNO[VMHZ[HYI`ULHYS`VYKLYZVMTHNUP[\KL[VLUHISL 10 mm KPYLJ[PTHNPUNHUKZWLJ[YVZJVW`VM[OLZ[HY»ZL_VWSHUL[ZHUKKLIYPZKPZR (M[LYHUPUP[PHSWYVJLZZKL]LSVWTLU[WOHZL^LZ\JJLZZM\SS`MHIYPJH[LK WYLJPZLS`JOHYHJ[LYPaLKHUKKLSP]LYLKWYV[V[`WLZVMIV[O[`WLZVMTHZRZ [V[OL173JVYVUHNYHWO[LHTZMVYVW[PJHSWLYMVYTHUJLL]HS\H[PVU

8 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 9 01 |

optical components

PAST 25 YEARS E-beam Highlights

MDL fabricated shaped-groove gratings for Mineralogy MDL developed novel grayscale Mapper, which flew aboard the JEOL JBX-5DII e-beam lithography techniques for MDL fabricated two convex Chandrayaan-1 . MDL’s first e-beam fabricating three-dimensional surface relief profiles in e-beam dual-blaze flight gratings for the tool was installed. Compact Reconnaissance Imaging resist. This enabled precise MDL fabricated triple-blaze convex Spectrometer for Mars (CRISM) fabrication of general diffractive gratings for the National Ecological —still operational aboard Mars optical elements, including high- Observatory Network () and the Reconnaissance Orbiter (MRO). efficiency blazed gratings. Carnegie Airborne Observatory (CAO).

’89 ’90s ’96 ’00 ’03 ’04 ’06 ’09 ’10 ’12

JEOL JBX-9300FS MDL fabricated our first flight- MDL designed and fabricated a At the request of JPL imaging spectrometer designers, MDL JPL’s second e-beam qualified, shaped-groove grating shaped-groove, low-polarization developed e-beam techniques for fabricating our blazed tool was installed. for the ARTEMIS spectrometer concave grating for the gratings on convex spherical substrates. This enabled (flew aboard TacSat-3 - Portable Remote Imaging demonstration of high-efficiency, very-low-distortion Offner orbiting satellite), a collaborative Spectrometer (PRISM). imaging spectrometer designs. MDL fabricated our first space- effort between JPL and Raytheon. qualified convex grating and it was integrated into and flew in the Hyperion spectrometer (aboard the Earth Observing 1 satellite). MDL fabricated concave long-wave infrared gratings Utilizing JPL R&TD funding, MDL for the Hyperspectral Thermal developed shaped-groove grating Emission Spectrometer (HyTES) technology. We developed groove-design —still flying airborne campaigns. algorithms that enable a grating to produce tailored spectral efficiency that equalizes a spectrometer’s signal-to-noise ratio over a very broad multi-octave wavelength range. A narrow barrier island protects the Lagoon of Venice from storm waves in the northern Adriatic Sea, and breakwaters protect inlets to the lagoon. Red tiles on the roofs of Venice contrast with the grays of the sister city of Mestre, and the cities are joined by a prominent causeway.

10 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 11 Pioneering MDL work in semiconductor lasers has enabled a new era of laser for space.

SIAMAK FOROUHAR Lead, Semiconductor Lasers and Optoelectronics

28 YEARS AT JPL

Using the MDL-developed IC laser Semiconductor LASERS OVER[OLSHZ[[^VKLJHKLZZLTPJVUK\J[VY at 3.27 μm, TLS detected SHZLYZOH]LPTWYV]LKPUWLYMVYTHUJL[VHIV]L YVVT[LTWLYH[\YLVWLYH[PVU^P[OOPNOV\[W\[WV^LY on Mars. [LUZVMTPSSP^H[[ZSV^WV^LYJVUZ\TW[PVUSLZZ[OHUH ^H[[HUKJV]LYH^PKLYHUNLVM^H]LSLUN[OZ+\L[V[OLZL HK]HUJLTLU[Z[\UHISLSHZLYZWLJ[YVTL[LYZOH]LILJVTL [OLPUZ[Y\TLU[VMJOVPJLMVYWYLJPZLTLHZ\YLTLU[ZVMNHZ HI\UKHUJLZHUK[OLPYPZV[VWLYH[PVZPU,HY[OHUKWSHUL[HY`NHZLZ HYPZPUNMYVTLP[OLY[OLH[TVZWOLYLVYL]VS]PUNMYVTYVJRW`YVS`ZPZ

+\YPUN[OL`LHYZVM4+3»ZL_PZ[LUJL^LOH]LW\[PUWSHJLHSS[OL ULJLZZHY`PUMYHZ[Y\J[\YLHUKL_WLY[PZLYLX\PYLK[VKLZPNUMHIYPJH[LHUK ZWHJLX\HSPM`ZLTPJVUK\J[VYSHZLYZ;VKH`4+3ZWLJPHSPaLZPUJ\Z[VT KL]LSVWTLU[HUKZWHJLX\HSPÄJH[PVUVMH^PKLYHUNLVMZLTPJVUK\J[VYSHZLY

A Martian dust devil roughly 12 miles (20 km) PLKPVKLZPU[LYIHUKHUKPU[LYZ\IIHUKX\HU[\TJHZJHKL8*KLZPNUZTHKL high was captured winding its way along the MYVTH]HYPL[`VMTH[LYPHSZ`Z[LTZPUJS\KPUNNHSSP\THYZLUPKLNHSSP\THU[PTVUPKL Amazonis Planitia region of northern Mars on March 14, 2012, by the High-Resolution HUKPUKP\TWOVZWOPKLMVY^H]LSLUN[OZYHUNPUNMYVT[V›T Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. >P[OPU[OLSHZ[`LHY4+3KL]LSVWLKHUKKLSP]LYLKYLJVYKOPNOV\[W\[WV^LYPU[LYIHUK Despite its height, the plume is little more than JHZJHKL0*SHZLYZLTP[[PUNPU[OL¶›T^H]LSLUN[OYHUNLLUHISPUN[OLÄYZ[ three-quarters of a football field wide. HWWSPJH[PVUZVMPU[LNYH[LKJH]P[`V\[W\[ZWLJ[YVZJVW`0*6:PUZ[Y\TLU[Z[VZ[\K`[OL JOLTPZ[Y`VMRL`OHSVNLUZZ\JOHZ/*SHUK*S6PU[OLZ[YH[VZWOLYLHUKJH]P[`YPUNKV^U ZWLJ[YVZJVW`*9+PUZ[Y\TLU[ZMVYKL[LJ[PVUVML[OHULH[WWISL]LSZ»

12 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 13 02 |

semiconductor lasers 8\HU[\TJHZJHKLSHZLYZ A B 0U[LYIHUKJHZJHKLSHZLYZ IMAGE :IIHZLKKPVKLSHZLYZ [Spectrometer >H]LSLUN[OȝT to be photographed] 3PUL:[YLUN[OJTTVSLJ\SL

>H]LU\TILYJT¶

C D

IMAGE A!Several infrared absorption features of interest in planetary science and environmental monitoring are shown in comparison to the capabilities of existing infrared laser technologies. IMAGE B!Scanning electron micrograph of a sidewall-grating distributed-feedback QC laser fabricated at MDL. IMAGE C!1 mm x 0.5 mm QC laser chips produced at MDL. The lasers are soldered into a temperature-controlled package for integration with laser spectroscopy instruments. IMAGE D!A semiconductor QC laser wafer processed in the MDL cleanroom. After cleaving into individual devices, this small section will produce more than 100 individual lasers.

LASER-BASED SENSORS for Environmental Monitoring and Spacecraft Fire Safety LOW-POWER, LONG-WAVELENGTH MDL IS DEVELOPINGJVTI\Z[PVUWYVK\J[TVUP[VYPUNPUZ[Y\TLU[Z[VHKKYLZZ Infrared Lasers for Planetary Science Spectrometers THUULKZWHJLJYHM[ÄYLZHML[`MVYM\[\YL5(:(TPZZPVUZ;OLZL MDL maintains advanced laser KL]PJLZ^PSSLUHISL[OLKL]LSVWTLU[VM[\UHISLSHZLYZWLJ[YVTL[LYZKLZPNULK packaging capabilities, including MVYPTWVY[HU[TLHZ\YLTLU[ZPUJS\KPUNZ[\KPLZVM[OLHI\UKHUJLHUKPZV[VWPJ this die bonder that enables precise placement and soldering JVTWVZP[PVUVMZ\SM\YKPV_PKLPU[OLH[TVZWOLYLVM=LU\ZHZ^LSSHZHTTVUPH of semiconductor laser chips. HUKWOVZWOPULPU[OLH[TVZWOLYLZVM[OLV\[LYWSHUL[Z

14 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 15 02 |

A semiconductor lasers

 WWT*/PU;VYY9VVT(PY 3PULJLU[LYLKH[ JT¶  MID-IR LASERS FOR HIGH Ultra-Precision Spectroscopy Instruments  MDL LASERS HAVE ENABLEDTLHZ\YLTLU[Z  

VMNYLLUOV\ZLNHZLZ[OLPYPZV[VWLZHUKYLHJ[P]LPU[LYTLKPH[LZ 

PU[OL[YVWVZWOLYLHUK[OLZ[YH[VZWOLYL6//6/+6*/ 4LHU3VZZWWT  /*SHUK* /VU[OLVYKLYVMWHY[ZWLY[YPSSPVUWW[JVUJLU[YH[PVUZ

]PHPU[LNYH[LKJH]P[`V\[W\[ZWLJ[YVZJVW`0*6:HUKJH]P[`YPUNKV^U  ZWLJ[YVZJVW`[LJOUPX\LZ;\UHISLSHZLYHIZVYW[PVUZWLJ[YVZJVW`;3(:     PZH]LYZH[PSLHUKYVI\Z[TL[OVKMVYNHZZLUZPUN^P[OHWWSPJH[PVUZYHUNPUN -YLX\LUJ`:WHJPUNJT¶ MYVTPUK\Z[Y`[V,HY[OHUKWSHUL[HY`ZJPLUJL;VNL[OLY^P[O[LJOUPX\LZ B C Z\JOHZ^H]LSLUN[OTVK\SH[PVUZWLJ[YVZJVW`;3(:^P[OZPTWSLHIZVYW[PVU JLSSZPZJHWHISLVMKL[LJ[PVUSPTP[ZVU[OLVYKLYVMWHY[ZWLYTPSSPVU^OPJO

PZZ\MÄJPLU[MVYTHU`HWWSPJH[PVUZVMPU[LYLZ[/V^L]LYMVY^LHRLYHIZVYIPUN :DYHOHQJWK ѥP TVSLJ\SLZVYTLHZ\YLTLU[Z[OH[YLX\PYLOPNOLYZLUZP[P]P[`HJH]P[`LUOHUJLK TL[OVKZ\JOHZJH]P[`YPUNKV^UZWLJ[YVZJVW`PZVM[LU\ZLKHUKYLX\PYLZ SPNO[ZV\YJLZJHWHISLVMLTP[[PUN[LUZVMTPSSP^H[[ZVMZPUNSLTVKLWV^LYK\L [V[OLSV^JV\WSPUNVM[OLSPNO[PU[VHOPNOÄULZZLJH]P[`0UJVSSHIVYH[PVU ^P[O[OLLWP[H_PHSNYV^[OL_WLY[PZLVM5H]HS9LZLHYJO3HIVYH[VY`HUK

4+3»ZZLTPJVUK\J[VYSHZLYMHIYPJH[PVUL_WLY[PZL173OHZKLSP]LYLKOPNO Optical output power (mV) WV^LYPU[LYIHUKJHZJHKLSHZLYZLTP[[PUNH[ ›TMVYPU[LNYH[PVUPU Drive current (mA) /HY]HYK7YVMLZZVY(UKLYZVU»Z0*6:PUZ[Y\TLU[HUK*HS[LJO7YVMLZZVY 6R\T\YH»ZJH]P[`YPUNKV^UZWLJ[YVTL[LY7YVMLZZVY(UKLYZVU»Z D E YLZLHYJOPZMVJ\ZLKVUPU]LZ[PNH[PUN[OLYLSH[PVUZOPWIL[^LLUJSPTH[L 1.00 800 JOHUNLHUKZ[YH[VZWOLYPJVaVULKLWSL[PVUH[TPKSH[P[\KLZI` 5ppmv HCI H O=5ppmv TLHZ\YPUNWW[SL]LSZVM/*SHUK/+6^OPSL7YVMLZZVY6R\T\YH»Z 2 0.95 600 ZWLJ[YVTL[LY[HYNL[ZM\NP[P]LUH[\YHSNHZLTPZZPVUZZ\JOHZ

L[OHUL[VKL[LYTPULPM[OLZOPM[[V^HYKZUH[\YHSNHZLULYN` 0.90 400 NO2 WYVK\J[PVUL_HJLYIH[LZJSPTH[LJOHUNL;OL[LJOUVSVNPJHS 12 ppmv NO Unperturbed 0.85 200 CIONO2

HJJVTWSPZOTLU[VM4+3SHZLYZOHZLUHISLKJ\[[PUN Mixing Ratio (pptv)

P=90 mb Impact on T=200 k CIO LKNLZJPLUJLUltimately, the lasers developed at MDL 0.80 0 have bridged the long-standing gap in commercially Fraction of Starting Ozone 0 20 40 60 80 0.75 0 20 40 60 80 available laser technologies and have enabled Time (hr) state-of-the-art spectroscopy techniques for F atmospheric science IMAGE A!Absorption spectra of ethane measured 800 H2O=12 ppmv with Caltech’s cavity ring-down tunable laser HCI spectrometer using an MDL laser. This is the first 600 time a semiconductor laser has been used to CIO measure ethane via cavity ring-down. IMAGE B–C! 400 Electron micrograph of a double-ridge interband NO Perturbed NASA’s ER-2 high-altitude Earth science cascade laser with a lateral Bragg grating with 2 200 CIONO2 CI2 aircraft is used for environmental corresponding output power and spectrum Mixing Ratio (pptv) NO CIOOCI science, atmospheric sampling, and designed for single-frequency emission at 3.38 μm. 0 satellite data verification missions. IMAGE D–F!Calculations by Professor Anderson’s 0 20 40 60 80 Harvard Professor Anderson has a history group showing how warmer surface temperatures of using this aircraft for stratospheric can lead to a wetter and cooler stratosphere, which measurements in his research. can lead to ozone loss at mid-latitudes. Anderson, CREDIT: NASA Photo/Tony Landis J. G., et al. (2012), “UV Dosage Levels in Summer: Increased Risk of Ozone Loss from Convectively Injected Water Vapor,” Science, 337 (6096), 835– 839 [DOI:10.1126/science.1222978].

16 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 17 02 |

semiconductor lasers

SEMICONDUCTOR LASERS Have Enabled a New Era of Laser Spectroscopy That Can Make Precise Measurements of Gas Abundance and Their Isotope Ratios in Earth and Planetary Gases Mars methane detection: Using the MDL-invented IC laser at 3.27 μm, TLS-SAM on MSL detected methane on Mars in two distinct regimes: at background levels of 0.7 PPBV generated by UV degradation of infalling meteorites and in bursts of methane at 7 PPBV—10 times above background—that rapidly come and go.

The Mars Volatiles and Climate Surveyor (MVACS) is an integrated scientific payload containing a Stereo Surface High-accuracy stratospheric Imager, robotic arm, robotic arm water measurements using camera, meteorology package, and a MDL 1.87-μm lasers on Thermal and Evolved Gas Analyzer. NASA’s DC-8, ER-2, and Demonstration and delivery of unprecedented WB-57F aircraft. performance semiconductor lasers at wavelengths 2.65 μm, 3.38 μm to JPL scientists, Harvard University, and California Institute of Technology.

This work has revolutionized the application of integrated cavity output Licensing and commercialization spectroscopy and cavity ring-down of the semiconductor laser spectroscopy techniques for Room-temperature technology by Spectrasensors, measurement of isotopes and InGaAs strained- a leading global provider of Major capital Delivery of 1.87-μm reactive intermediates in the lasers for balloon layer lasers Delivery of space- laser-based on-line analyzers equipment Demonstration of Developed and delivered the first troposphere and stratosphere. experiment. demonstrated qualified 2-μm for process control and investment: 250-K interband interband cascade laser with the beyond 1.7 μm. lasers for Mars ’98. monitoring applications. GaSb MBE. cascade laser emission wavelength of 3.27 μm at 3.27 μm. for detection of methane on Mars.

’92 ’95 ’96 ’98 ’00 ’04 ’05 ’06 ’12 ’14

Developed the world’s first Delivery of space-qualified Interband cascade TLS successfully CW InGaAs strained-layer 1.37-μm laser for Deep lasers selected for activated on Mars semiconductor laser in Mars TLS. Space 2 mission. Pascal complete TDLS rover . the 1.8–2.1 μm range. The first delivery of instrument with 1.87-μm semiconductor lasers for tunable laser diode inside. laser spectrometers on Mars: Mars Volatiles and Climate Surveyor and .

Several proposals developed for Discovery missions to the Moon, , and for Mars atmospheric probes.

18 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 19 Our work is primarily in high- performance ultraviolet/visible/near infrared and low-energy particle detector arrays, and the systems they enable.

SHOULEH NIKZAD Lead, Advanced Detectors, Systems and Nanoscience

23 YEARS AT JPL

Broad-spectrum detectors ADVANCED Detectors, Systems & Nanoscience for on-sky observation. THIS YEAR MARKEDHUL_JP[PUNWLYPVKMVY4+3PUHK]HUJLK KL[LJ[VYZZ`Z[LTZHUKUHUVZJPLUJLZ:VSHYISPUKZPSPJVUKL[LJ[VYZ ^LYLKLTVUZ[YH[LKHZKLS[HKVWLKHUKZ\WLYSH[[PJLKVWLKKL[LJ[VYZ ^P[OPU[LNYH[LKÄS[LYZHUKHK]HUJLZ^LYLTHKL^P[OZVSHYISPUKKL]PJLZ IHZLKVU.H5HUKP[ZHSSV`Z+LS[HKVWLKHYYH`Z^PSSILVUZR`ZVVUHZ KLSP]LYPLZ^LYLTHKL[V*HS[LJO6W[PJHS6IZLY]H[VYPLZ*66MVY\ZLH[[OL 7HSVTHY6IZLY]H[VY`HZ^LSSHZ[OL:[L^HYK6IZLY]H[VY`VU4V\U[)PNLSV^ (YPaVUH:[H[L

This Hubble image shows the spiral galaxy SH\UJO^PUKV^ZWSHUULK^P[OPU[OLUL_[`LHY Messier 83, also known as the Southern Pinwheel Galaxy. In 2008, using UV +LS[HKVWPUN^HZPU]LU[LKH[173PU :PUJL[OLUKLS[HKVWPUNOHZILLUHWWSPLK[VH images collected by the Galex spacecraft, T\S[P[\KLVMKL]PJLMVYTH[ZHUKZL]LYHSWH[LU[ZOH]LILLUNYHU[LKMVYO`IYPKHUKTVUVSP[OPJ astronomers discovered the birth of new stars in the spiral arms of Messier 83. <=]PZPISL509HUKV[OLYZWPUVMMKL]PJLZ9LJLU[PU]LU[PVUZZ\JOHZZ\WLYSH[[PJLKVWPUN At 15 million light-years from Earth, this J\Z[VTH[VTPJSH`LYKLWVZP[PVU(3+¶PU[LNYH[LKHU[PYLÅLJ[PVU(9JVH[PUNZHUKPU[LNYH[LK galaxy has also presented many supernova explosions and may have a double nucleus ]PZPISLISPUKÄS[LYZPTWYV]L[OLWLYMVYTHUJLHUKL_[LUK[OLYHUNLVMHWWSPJH[PVUZ^OPSLI\PSKPUN at its core. VU[OLZ\JJLZZVM[OLÄYZ[KLS[HKVWLK**+KLTVUZ[YH[LK^P[O PU[LYUHSX\HU[\TLMÄJPLUJ` CREDIT: NASA, ESA, and the Hubble Heritage Team /VLURL[HS(73 

20 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 21 03 |

A advanced detectors, systems & nanoscience

;OLLMMVY[[OH[ILNHU^P[OZPUNSLKPLWLY^LLRLUK[VLUK WYVK\J[PVUOHZUV^L]VS]LK[VWYVK\JLOPNOWLYMVYTHUJL KL]PJLZH[HYH[L[OH[JHUILHMMVYKHISLMVYPUJVYWVYH[PVU PU[VMVYL_HTWSLHTL[LYHWLY[\YL[LSLZJVWL<=VW[PJHS 09SurveyorTPZZPVU\UKLYZ[\K`HZ^LSSHZExplorersplanetary TPZZPVUZHUKZ\IVYIP[HSTPZZPVUZ;OLLMMVY[OHZILLUL_WHUKLKPU[V KL]LSVWPUNJVH[PUNZMVYVW[PJHSJVTWVULU[ZHZ^LSSHZJYLH[PUNJVTWHJ[ OPNOWLYMVYTHUJL<=PUZ[Y\TLU[ZPTHNPUNHUKZWLJ[YVTL[Y`\ZPUN173»Z HK]HUJLKKL[LJ[PVUHUKKPZWLYZPVUJVTWVULU[ZHUKZ`Z[LTKLZPNU 

KECK INSTITUTE for Space Studies Technology BC Development — Single-Photon-Counting Detectors THE KECK INSTITUTE FOR SPACE STUDIES20::M\UKLKH[LJOUVSVN` KL]LSVWTLU[WYVNYHTMVYUL_[NLULYH[PVU\S[YH]PVSL[PUZ[Y\TLU[[LJOUVSVNPLZ

[V[OLZ[YH[VZWOLYPJIHSSVVU^PUKV^ ¶UT;OPZJVTIPUH[PVUYLZ\S[ZPUH D 100 E 90 WOV[VUJV\U[PUNKL[LJ[VY^P[OX\HU[\TLMÄJPLUJ`8,% H[UTULHYS` ›T  80 HUVYKLYVMTHNUP[\KLOPNOLY[OHU[OLWYL]PV\ZS`ÅV^U-09,)HSSKL[LJ[VY 70 IHZLKVUTPJYVJOHUULSWSH[L[LJOUVSVN`  60 50 40  30 20 ON-SKY Observation with Broadband Detectors  10

MDL RECENTLY DEVELOPEDHUKKLSP]LYLKIYVHKIHUKZPSPJVU 8\HU[\T,MÄJPLUJ`  0  300 400 500 600 700 800 900 1000 **+HYYH`ZMVY[OL>HMLY:JHSLJHTLYHH[7YPTLMVJ\Z>H:7PUZ[Y\TLU[ 0 5000 15000 30000 ›T >H]LSLUN[OUT HU\WNYHKL[V[OLJ\YYLU[WYPTLMVJ\ZPTHNLYH[Palomar Observatory’s PUJO/HSL[LSLZJVWL;OLZLKLKPJH[LKTLNHWP_LSN\PKLHUK F MVJ\Z**+ZHYLYLX\PYLK[VTHPU[HPUIV[O[LSLZJVWL[YHJRPUN K\YPUNSVUNL_WVZ\YLZHUKMVJ\ZK\YPUNHUPNO[»ZVIZLY]PUN 173»ZZ\WLYSH[[PJLKVWPUN[LJOUVSVN`JVTIPULK^P[OT\S[PSH`LY (9JVH[PUNZWYLWHYLKI`(3+KLSP]LYZLUOHUJLKIS\LZLUZP[P]P[` ^P[OOPNOX\HU[\TLMÄJPLUJ`VW[PTPaLKV]LY¶UT ;OPZPZOPNOS`HK]HU[HNLV\Z^OLUVIZLY]PUN[OYV\NOZOVY[ ^H]LSLUN[OÄS[LYZ^OLYLZ\P[HISLN\PKLZ[HYZMVY[YHJRPUNHUK N\PKPUNILJVTLMHPU[HUK**+[OYV\NOW\[[`WPJHSS`KYVWZ MDL uses atomic layer ;OLZLR_R›TWP_LSKLLWKLWSL[PVU**+HYYH`ZHYL deposition to prepare single- and multi-layer thin KLZPNULKI`:;(HUKMHIYPJH[LKH[;LSLK`UL+(3:(*\Z[VT films with subnanometer- WHJRHNPUNHUK^PYLIVUKPUN[LJOUPX\LZ^LYLKLZPNULKH[ scale precision. ALD allows 173[VTLL[[OLZWLJPHSULLKZVM[OL>H:7PUZ[Y\TLU[MVY fabrication of device- integrated antireflection HJSVZLS`WHJRLKJHTLYH coatings and filters, as well as robust protective coatings IMAGE A&C : Four-side buttable, ultraflat WaSP guide and focus CCD for Palomar. IMAGE B&D : for stand-alone optics. The exceptional surface flatness of our detectors is measured in single μm. IMAGE E: The plot shows measured QE data for one of the superlattice-doped, AR-coated WaSP detectors (145 K). IMAGE F: Two packaged EMCCDs (e2v) that have been delta doped and AR coated for the FIREBall experiment. The different colors (dark purple and light blue) result from differences in the AR coating design.

22 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 23 03 |

A advanced detectors, systems & nanoscience

Solar-Blind Silicon and APPLICATIONS ULTRAFAST SCINTILLATION DETECTORSHYLULLKLK MVYM\UKHTLU[HSZJPLU[PÄJKPZJV]LYPLZPUWHY[PJSLWO`ZPJZHUK HZ[YVUVT`)HYP\TÅ\VYPKL)H-OHZ[OLWV[LU[PHSMVYKL[LJ[PUN NHTTHYH`Z^P[OZ\IUHUVZLJVUK[PTPUNYLZVS\[PVU"OV^L]LY[OL MHZ[ZJPU[PSSH[PVUVM)H-H[UTPZHJJVTWHUPLKI`HSHYNLYZSV^LY JVTWVULU[H[UT4+3KL]LSVWLKPU[LNYH[LKPU[LYMLYLUJLÄS[LYZVU Z\WLYSH[[PJLKVWLKH]HSHUJOLWOV[VKPVKLZ(7+Z[VKL[LJ[[OLUT SPNO[^OPSLYLQLJ[PUN[OLUTSPNO[^OLUJVTIPULK^P[OH)H-ZJPU[PSSH[VY ;OPZWYVQLJ[PZHJVSSHIVYH[PVU^P[O9HKPH[PVU4VUP[VYPUN+L]PJLZ94+HUK WO`ZPJZ7YVMLZZVY+H]PK/P[SPU*HS[LJO^OVIYPUNZL_[LUZP]LL_WLYPLUJL^P[O ZJPU[PSSH[PVUKL[LJ[VYZMVYOPNOLULYN`WO`ZPJZL_WLYPTLU[Z B D (7+ZVMMLYOPNONHPUHUK[OLWV[LU[PHSMVYZPUNSLWOV[VUJV\U[PUNHZHU HS[LYUH[L[VPTHNL[\ILKL]PJLZ4+3KLTVUZ[YH[LK[OH[Z\WLYSH[[PJL KVWLK(7+ZOH]LHUVYKLYVMTHNUP[\KLMHZ[LYYLZWVUZL[OHUZ[HUKHYK (7+ZHUKHYLYVI\Z[HNHPUZ[PYYHKPH[PVU^P[OOPNOLULYN`WHY[PJSLZHUK WOV[VUZ6\YTL[HSKPLSLJ[YPJJVH[PUNLUHISLZ[OLKL[LJ[VY[VHJOPL]L OPNO8,H[UT^OPSLYLQLJ[PUNV\[VMIHUKSPNO[>LOH]LZOV^U [OLYLQLJ[PVUVMV\[VMIHUKUTSPNO[^P[OHU\UWYLJLKLU[LK MVYZPSPJVUMV\YVYKLYZVMTHNUP[\KL-VYJVTWHYPZVU[OLYLZWVUZL VMZ\WLYSH[[PJLKVWLK(7+Z^P[OKPLSLJ[YPJVUS`JVH[PUNZKVLZ C UV[L_OPIP[[OPZZLSLJ[P]LYLZWVUZLZLLWSV[ILSV^

IMAGE A: Ultraviolet spectrometer prototype based on JPL’s UV technologies. IMAGE B: The UVS mirror was prepared using advanced ALD coating technologies developed in MDL. IMAGE C: The convex grating for UVS was fabricated using electron beam 60 :3(7+Z^P[O on a curved substrate. Advanced ALD coatings ensure high performance well into TL[HSKPLSLJ[YPJJVH[PUN the UV. IMAGE D: The delta-doped detector for JPL’s UVS includes a customized AR coating deposited by ALD. 40

:3(7+Z^P[OKPLSLJ[YPJ ULTRAVIOLET SPECTROMETER 20 VUS`JVH[PUN

Based on JPL’s Ultraviolet Technologies 8\HU[\T,MÄJPLUJ`  THE ULTRAVIOLET SPECTROMETER<=:WYVQLJ[PZWHY[VM 2000 300 400 500 [OLLMMVY[[VJYLH[LHJVTWHJ[OPNOWLYMVYTHUJLPUZ[Y\TLU[\[PSPaPUN >H]LSLUN[OUT ZL]LYHSRL`[LJOUVSVNPLZWPVULLYLKH[4+3;OLÄYZ[[LJOUVSVN`PZOPNO WLYMVYTHUJL\S[YH]PVSL[KL[LJ[VYZ\ZPUNKLS[HKVWPUNHUKZ\WLYSH[[PJL KVWPUNKL]LSVWLKH[173;OLZLJVUK[LJOUVSVN`PZLSLJ[YVUILHT MHIYPJH[LKNYH[PUNZVUJ\Y]LKZ\IZ[YH[LLUHISPUNJVTWHJ[HUK

LMÄJPLU[VW[PJHSKLZPNUZZ\JOHZHJVTWHJ[6MMULYPTHNPUN Installation of the assembled UVS prototype ZWLJ[YVTL[LY;OL[OPYK[LJOUVSVN`PZPU[OLKL]LSVWTLU[VM in a test chamber where it will undergo [\ULKVW[PJHSÄS[LYZHUKJVH[PUNZKPYLJ[S`KLWVZP[LKVUKL[LJ[VYZ performance characterization. The prototype design allows individual components HZ^LSSHZLMÄJPLU[OPNOYLÅLJ[P]P[`JVH[PUNZVUVW[PJHSZ\YMHJLZ to be exchanged easily, permitting Z\JOHZZWLJ[YVTL[LYTPYYVYZHUKNYH[PUNZ\ZPUN(3+;OPZWYVJLZZ rapid development of the underlying LUHISLZÄULYJVU[YVSV]LYZWLJ[YHSWHYHTL[LYZHUKPTWYV]LKVW[PJHS technologies without costly redesigns. LMÄJPLUJ`;OLJVTIPUH[PVUVM[OLZL[LJOUVSVNPLZPUHU6MMULYKLZPNU PZZOV^UPU[OLÄN\YLHZHSHIVYH[VY`KLTVUZ[YH[PVU

24 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 25 03 |

advanced detectors, systems & nanoscience

MDL MILESTONES Background image: A delta-doped, frame- thinned Cassini imager is launched into Twenty-Five Years of Enabling Innovations the Aurora Borealis to measure charged particles (Poker Flats, Alaska).

A frame-thinned Cassini imager shows the characteristic clover-like surface variations resulting from the device thickness being thinned to less than 20 μm. Red light reflected from the mirror surface below is transmitted through the thin membrane.

Production of flat membrane and supported imagers.

Isotopic resolution of low-energy molecular fragments using a delta- doped Cassini imager integrated A 1-cm diagonal, delta-doped, CMOS micro- with JPL’s miniature imaging array hybridized to a CMOS ROIC with mass spectrometer. 7000 indium bump bonds. A plano-convex lens is directly attached to the imager.

First spaceflight on Nike-Orion sounding rocket. The High-Altitude Ozone Measuring and Educational Rocket (HOMER) A flat Cassini imager (above) instrument suite included an advanced together with a curved Acquisition of Veeco Gen200 MBE, with the delta-doped CCD from MDL that Cassini imager (below). Work capacity to process wafers up to 8 inches JPL developed four-side buttable measured the ozone concentration. with curved arrays helped Johns Hopkins University flew in diameter. Ultra-flat detector packaging packaging for mosaicked detectors determine the fundamental a delta-doped CCD in the developed for large-format arrays. that were delivered to Palomar limits of this detector format. Long-Slit Imaging Dual Order End-to-end high-throughput Observatory. The 2kx2k, 15-μm- Delta-doping technology Demonstration of in-house die- Spectrograph (LIDOS) on three processing of UV/VI/NIR format detectors (STA) were delta extended to 1kx1k detector level thinning with a 1kx1k, 12-μm- separate sounding rocket scientific imagers. Successful demonstration of doped and include device- format; demonstrated format Cassini imager. Production of missions spanning 2003–2008. wafer-level delta doping for integrated antireflection Record-breaking sensitivity improved stability flat-membrane and supported imagers. The UV-sensitive detector thick, high-purity wafers as well coatings deposited by ALD. to low- energy electrons and uniformity. successfully returned data on as bonded epi-layer wafers. Demonstrated first curved focal plane array. demonstrated. several celestial objects.

’92 ’94 ’98 ’99 ’02 ’03 ’08 ’09 ’10 ’11 ’12 ’14

Delta-doped CCD First demonstration of n-type Magnetosphere-Ionosphere Coupling Superlattice-doped detectors first demonstrated: a delta doping, as well as in the Alfvén (MICA) sounding rocket demonstrate unprecedented stability 100x100 pixel region successful hybridization flight of a delta-doped CCD array as against damaging radiation. Successful is tested to have of delta-doped imagers the detector for a compact low-energy demonstration of device-integrated 100% internal QE. to CMOS ROIC. electron scattering (LEES ) instrument. antireflection coatings and bandpass filters prepared by atomic layer deposition.

26 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 27 JPL is recognized as one of the world’s leading JPL developed a mid-infrared camera based on 256x256 quantum well infrared institutions in infrared photodetector (QWIP) focal plane arrays. The camera is designed to operate from the detector technology prime focus of the Hale 200-inch (5-meter) telescope at Palomar with a wide 2'x2' development. field of view and diffraction-limited 0.5"

pixels. QWICPIC is designed to observe at 8.5 and 12.5 μm simultaneously to map SARATH GUNAPALA comparatively large regions of the sky in Director, Center for thermal dust emission or to survey highly Infrared Photodetectors confused regions for reddened embedded objects. The Hale telescope (f/3.3) was the world’s largest effective telescope 23 YEARS AT JPL for 45 years (1948–1993).

Cutting-edge infrared photodetectors for space and terrestrial applications.

Infrared PHOTODETECTORS

VISIBLE LIGHT SPANNING[OL^H]LSLUN[OYHUNLMYVT IS\L[VYLKPZH[PU`ZSPJLVM[OLLSLJ[YVTHNUL[PJZWLJ[Y\T>OPSL HULUVYTV\Z^LHS[OVMZJPLU[PÄJPUMVYTH[PVUJHUILHUKPZVI[HPULK [OYV\NOPTHNPUNHUKZWLJ[YVZJVW`PU]PZPISLSPNO[[OLPU]PZPISL WVY[PVUVM[OLZWLJ[Y\TJHUILOHY]LZ[LK[V`PLSKIV[OTVYLKL[HPSLK HUKUL^PUMVYTH[PVU(UVIQLJ[H[YVVT[LTWLYH[\YLHUKPUJVTWSL[L KHYRULZZTH`ILWLYMLJ[S`PU]PZPISL[V[OLO\THUL`LI\[P[Z[LTWLYH[\YL ^PSSTHRLP[NSV^PU[OLPUMYHYLKZOPUPUNIYPNO[LZ[H[PUMYHYLK^H]LSLUN[OZ0U [OLLHYS`UPUL[PLZ173MVYTLKHU4+3NYV\W[VKL]LSVWUV]LSPUMYHYLKKL[LJ[VY [LJOUVSVNPLZ[OH[JHULUHISLUL^VIZLY]H[PVUHSPUZ[Y\TLU[Z4+3»ZJVTWYLOLUZP]L LUK[VLUKJHWHIPSP[PLZPUJS\KLJVUJLW[KL]LSVWTLU[ZPT\SH[PVUHUKKLZPNUVM An 8.5-μm, mid-infrared image, obtained with a QWICPIC at the X\HU[\TZ[Y\J[\YLKL]PJLZTH[LYPHSZNYV^[OHUKJOHYHJ[LYPaH[PVUHYYH`MHIYPJH[PVU primary focus of the Palomar Observatory’s Hale telescope, shows HUKJOHYHJ[LYPaH[PVUVMKL[LJ[VYHYYH`Z4+3OHZTHKLU\TLYV\ZHK]HUJLZPUPUMYHYLK high-mass star-forming regions. KL[LJ[PVU[LJOUVSVN`PUJS\KPUN[OLOPNOVWLYH[PUN[LTWLYH[\YLIHYYPLYPUMYHYLKKL[LJ[VYZ JV]LYPUN[OLLU[PYLPUMYHYLKZWLJ[Y\T0UYLJVNUP[PVUVMJVU[PU\PUN^VYRPU[OPZHYLH173 JYLH[LK[OL*LU[LYMVY0UMYHYLK7OV[VKL[LJ[VYZPU»

28 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 29 04 |

infrared photodetectors :RPUJHUJLY A 5VYTHSZRPU B

COMPLEMENTARY BARRIER Infrared Detectors (CBIRDs) ONE OF THE LATESTKL]PJLZ4+3OHZ 093>09HUK]LY`SVUN^H]LSLUN[O09=3>09 KL]LSVWLKIHZLKVUZ\WLYSH[[PJLOL[LYVZ[Y\J[\YL ZWLJ[YHSYLNPVUZ^P[OOPNOX\HU[\TLMÄJPLUJ`HUK PZRUV^UHZ[OLJVTWSLTLU[HY`IHYYPLYPUMYHYLK KPMM\ZPVUSPTP[LKKHYRJ\YYLU[;OLHU[PTVUPKLIHZLK KL[LJ[VY*)09+;OL*)09+\[PSPaLZ\UPWVSHY Z\WLYSH[[PJL*)09+ZHYLNYV^UVUSV^JVZ[TT IHYYPLYZ[VYLK\JL[OLTPUVYP[`JHYYPLYZPU[OL .H:IZ\IZ[YH[LZ*)09+[LJOUVSVN`OHZHSYLHK` C ¢- D HIZVYILYYLNPVU[OYV\NOJHYYPLYL_JS\ZPVUHUKJHYYPLY KLTVUZ[YH[LKHJSLHYWH[OMVYSV^JVZ[OPNOWP_LS ¢- L_[YHJ[PVU;OPZHSSV^Z[OL*)09+[VVWLYH[LILSV^ VWLYHIPSP[`OPNOS`\UPMVYTOPNOWLYMVYTHUJL/6; ¢- ¢- [OLLX\PSPIYP\TTPUVYP[`JHYYPLYSL]LSHUKH[OPNOLY PUMYHYLKMVJHSWSHULHYYH`ZMVYHWWSPJH[PVUZPU4>09 ¢- VWLYH[PUN[LTWLYH[\YL/6;;OL*)09+ZJV]LY 3>09HUK=3>09ZWLJ[YHSYLNPVUZ ¢- ¢- [OLTPK^H]LSLUN[O094>09SVUN^H]LSLUN[O ¢- ¢- ¢-  ¢- HIGH-RESOLUTION IR IMAGERS ¢- for Planetary Missions IMAGE A!This clearly shows the tip of the nose is warmer than its surrounding tissues due to the enhanced BOTH VENUS AND SATURN’S MOON TITAN ^PKLHWWSPJHIPSP[`[V5(:(»ZWSHUL[HY`TPZZPVUZPU metabolic activity (angiogenesis) of a skin cancer. IMAGE B!A face with no skin cancer on the nose. Usually, OH]L[OPJRVWHX\LH[TVZWOLYLZ[OH[WYL]LU[PTHNPUN HKKP[PVU[V;P[HUHUK=LU\ZZWLJPÄJHSS`;OL)09+ZVMMLY nose and ears are colder relative to the other parts of the face, because those are extending out of the body. IMAGE C–D!This figure shows the temperature variation of the toes and elbows of a leprosy patient. VM[OLPYZ\YMHJLZH[TVZ[]PZPISLHUKULHYPUMYHYLK U\TLYV\ZWV[LU[PHSHK]HU[HNLZV]LYL_PZ[PUNKL[LJ[VY ^H]LSLUN[OZ-VSSV^PUN[OL=LU\Z,_WYLZZHUK[OL [LJOUVSVN`PUJS\KPUNSV^KHYRJ\YYLU[IYVHKZWLJ[YHS *HZZPUP¶/\`NLUZTPZZPVUZP[PZUV^RUV^U[OH[IV[O JV]LYHNLHUKOPNOX\HU[\TLMÄJPLUJ`0UWHY[PJ\SHY High Operating Temperature (HOT BIRD TECHNOLOGY) VM[OLZLH[TVZWOLYLZOH]L¸^PUKV^Z¹H[ZWLJPÄJ )09+KL[LJ[VYZL_OPIP[]LY`SV^MUVPZLHUKOPNO IN THE LAST FEW YEARS173OHZKL]LSVWLKUV]LSOPNOVWLYH[PUN[LTWLYH[\YL ^H]LSLUN[OZ^OLYL[OLZ\YMHJLPZ]PL^HISL(OPNO [LTWVYHSZ[HIPSP[`[O\ZLUHISPUNSVUNPU[LNYH[PVU[PTLZ /6;IHYYPLY09KL[LJ[VY)09+[LJOUVSVN`/6;)09+PZHIYLHR[OYV\NO[LJOUVSVN` YLZVS\[PVUPTHNPUNZ`Z[LT^P[OZLUZP[P]P[`PU[OLZLRL` HUKLSPTPUH[PUNMYLX\LU[JHSPIYH[PVUZ)09+[LJOUVSVN` WYV]PKPUNHSLHKPUNLKNLMVY09PUZ[Y\TLU[H[PVUI`SV^LYPUN[OL^LPNO[ZPaLHUK]VS\TL PUMYHYLK^H]LSLUN[OZ^V\SKILHWV^LYM\S[LJOUPX\LMVY VMMLYZYVI\Z[THU\MHJ[\YHIPSP[`HUKSV^LYKL]LSVWTLU[ ^OPSLPUJYLHZPUN[OLYLSPHIPSP[`K\L[VHYLK\JLKJVVSPUNYLX\PYLTLU[;OPZ^PSSOH]LHO\NL YLZVS]PUNWSHUL[HY`Z\YMHJLMLH[\YLZILULH[OVW[PJHSS` JVZ[;OLYLJLU[WYVNYLZZPU)09+[LJOUVSVN`PUJS\KPUN HK]HU[HNLMVYZWHJLIHZLK09PUZ[Y\TLU[ZILJH\ZL/6;)09+HYYH`ZJHUILWHZZP]LS` [OPJRH[TVZWOLYLZ0[^V\SKHSZVILJHWHISLVMWYVIPUN KLTVUZ[YH[PVUVMSHYNLMVYTH[ZTHSSWP_LSWP[JO4>09 JVVSLKPUZWHJL;OL5(:(6MÄJLVM[OL*OPLM;LJOUVSVNPZ[^OLUIYPLMLKVU/6;)09+ KPMMLYLU[KLW[OZPUNPHU[WSHUL[H[TVZWOLYLZHUKJV\SK HUK3>09-7(ZJSLHYS`KLTVUZ[YH[LZ[OH[[OPZ[LJOUVSVN` [LJOUVSVN`WYV]PKLKM\UKPUNH[173]PHH.HTL*OHUNPUN;LJOUVSVN`7YVNYHT[VPUM\ZL WYV]PKLPUMYHYLKJVSVYPLJVTWVZP[PVUPUMVYTH[PVU OHZYLHJOLK[OLTH[\YP[`SL]LSYLX\PYLKMVYPUM\ZPVUPU[V [OPZ[LJOUVSVN`PU[V5(:(PUZ[Y\TLU[Z  VUHPYSLZZIVKPLZ;OPZPTHNPUNZ`Z[LT[OLYLMVYLOHZ WSHUL[HY`PUZ[Y\TLU[Z

A Background image: Cory Hill prepares to remove the substrate of a BIRD FPA using the diamond point turning process. 1-megapixel C HOT-BIRD camera.

B

Infrared image of Infrared images taken with a BIRD camera: a helicopter taken A: Griffith Observatory with a BIRD camera. B: Pasadena City Hall C: Boeing 737 approaching for landing

30 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 31 04 |

infrared photodetectors

QUANTUM WELL INFRARED Photodetectors (QWIPs) JPL IS RECOGNIZEDHZVULVM[OL^VYSK»ZSLHKPUN WSHULHYYH`ZPU[VVIZLY]H[PVUHSPUZ[Y\TLU[Z0U[OL PUZ[P[\[PVUZPUPUMYHYLKKL[LJ[VY[LJOUVSVN`KL]LSVWTLU[ UPUL[PLZ173WPVULLYLK[OLKL]LSVWTLU[VM8>07MVJHS 4+3WLYMVYTZJ\[[PUNLKNLYLZLHYJOHUKKL]LSVWTLU[ WSHULHYYH`[LJOUVSVN`MVYPTHNPUNHWWSPJH[PVUZHUK PUPUUV]H[P]LPUMYHYLK09KL[LJ[VYZMVJHSWSHULHYYH`Z KLTVUZ[YH[LK[OLÄYZ[3>09OHUKOLSKJHTLYHIHZLK HUK09JHTLYHZMVYZWHJLHUK[LYYLZ[YPHSHWWSPJH[PVUZ VU8>07[LJOUVSVN`HUKHSZVKLTVUZ[YH[LK[OLÄYZ[ 173»ZZ[YLUN[OYLZPKLZPUP[ZJVTWYLOLUZP]LLUK TLNHWP_LSK\HSIHUK¶›T4>09HUK¶ ›T [VLUKJHWHIPSP[PLZLUJVTWHZZPUNKL]PJLJVUJLW[ 3>09WP_LSJVSVJH[LKZPT\S[HULV\ZS`YLHKHISL8>07 Developed and delivered KL]LSVWTLU[ZPT\SH[PVUHUKKLZPNUVMX\HU[\T -7(173»Z^VYRPU[OLHYLHZVM8>07ZX\HU[\TKV[ 7.5–12 μm dual-broadband Z[Y\J[\YLKL]PJLZLWP[H_PHSNYV^[OVM09TH[LYPHS PUMYHYLKWOV[VKL[LJ[VYZ8+07ZHUKHU[PTVUPKL QWIP focal plane array to Hyperspectral Thermal HUKKL[LJ[VYZ[Y\J[\YLZTH[LYPHSJOHYHJ[LYPaH[PVU IHZLKZ\WLYSH[[PJLIHYYPLYPUMYHYLKKL[LJ[VYZ)09+ZPZ Emission Spectrometer MHIYPJH[PVUHUKJOHYHJ[LYPaH[PVUVMPUMYHYLKKL[LJ[VYZ ^LSSKVJ\TLU[LKPU[OLZJPLU[PÄJSP[LYH[\YLPUV]LY (HyTES) airborne spectral HUKMVJHSWSHULHYYH`ZHUKPUJVYWVYH[PVUVMMVJHS W\ISPJH[PVUZHUKWH[LU[Z imager, in operation since 2011. First megapixel simultaneously readable and pixel co-registered dual-band QWIP focal plane PAST 25 YEARS array flown on Big Crow aircraft Pivotal Devices from MDL for a missile detection experiment.

An early version of the breast cancer screening device “BioScan System” developed by Omni- Corder Technologies, which licensed the JPL QWIP technology. This instrument received ’02 ’06 ’10 ’12 A revolutionary portable infrared U.S. Food and Drug Administration video camera opened new vistas for clearance to market in January 2001. doctors, pilots, environmental scientists, and law enforcement. This camera helped doctors detect tumors A: Visible image of a brain tumor JPL’s newest invention: a high using heat signatures and helped (most of the cancerous cells are operating temperature (HOT) pilots make better landings with dead due to cancer-sensitive drugs). mid-infrared VGA format BIRD improved night vision. B: The thermal infrared image camera. The focal plane array clearly discriminate the healthy operates at 150 K with NEDT tissues from dead tissues. of 27 mK at 300 K background with f/2 aperture. ’94 ’95 ’00 ’01

B

Demonstrated the first portable The four-band QWIP FPA can see up long-wavelength QWIP camera, to 15.4 μm. This camera was flown opening up myriad applications in over and imaged parts of Africa as A the civilian sector. Systems based on a part of an international project this technology have been deployed to study the environmental im- by FLIR Systems as the next-generation pact of vegetation burning and advanced infrared sensors for related ecological effects. military applications. Background image: MDL’s John Liu prepares for the focal plane array hybridization process.

32 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 33 Balloon-borne observations represent an important milestone for advancing the readiness of CMB detector technology.

WARREN HOLMES Lead,Superconducting Materials and Devices

20 YEARS AT JPL

Superconducting MDL exploring the quantum MATERIALS & DEVICES world & developing quantum THE POSSIBLE DETECTIONVMHUPTWYPU[I`PUÅH[PVU VU[OLWVSHYPaH[PVUVM[OLJVZTPJTPJYV^H]LIHJRNYV\UK*4) computers. L_JP[LKIV[OHZ[YVWO`ZPJPZ[ZHUK[OLNLULYHSW\ISPJHYV\UK[OL^VYSK PU4HYJO^OLU)0*,7W\ISPZOLKP[ZYLZ\S[Z0UÅH[PVUTH`WYVK\JL HIHJRNYV\UKVMNYH]P[H[PVUHS^H]LZ[OH[WYVK\JLHJOHYHJ[LYPZ[PJ¸Z^PYS`¹ *4)WVSHYPaH[PVUZPNUHSJHSSLKH)TVKLWH[[LYU;OL)0*,7[LSLZJVWL SLKI`YLZLHYJOLYZH[*HS[LJO/HY]HYK<4PUULZV[HHUK:[HUMVYKYLWVY[LK H)TVKLWH[[LYUH[./a;OLL_[YLTLZLUZP[P]P[`ULLKLK[VTHRL[OPZ TLHZ\YLTLU[^HZWYV]PKLKI`1734+3[YHUZP[PVULKNLZLUZVY;,:IVSVTL[LY HYYH`ZHUKHUL_[LUZP]L[OYLL`LHYVIZLY]H[PVUJHTWHPNUMYVT[OL:V\[O7VSL ;OPZSLK[VHJVSSHIVYH[P]LLMMVY[[VKL[LYTPUL[OLUH[\YLVM[OLZPNUHSI`THU`PU[OL HZ[YVWO`ZPJZJVTT\UP[`PUJS\KPUNHJVSSHIVYH[PVUIL[^LLU)0*,7HUK[OL,:(5(:(

This image from the European Space Agency’s 7SHUJRZH[LSSP[L^OPJOVIZLY]LK[OLZR`\ZPUNLHYSPLYNLULYH[PVUZVM4+3KL]PJLZ+LLW Planck satellite shows the space observatory’s T\S[PMYLX\LUJ`KH[HHYLULLKLK[VZLWHYH[L[OLZPNUHSPU[V*4)HUK.HSHJ[PJJVTWVULU[Z view of the same region observed by the Antarctica-based BICEP2 project. The conclusion is [OLTVZ[ZPNUPÄJHU[.HSHJ[PJZPNUHSHYPZPUNMYVTLTPZZPVUMYVTPU[LYZ[LSSHYK\Z[^OPJOPZUV[ the result of a collaborative analysis by scientists ^LSSTLHZ\YLKPUWVSHYPaH[PVU0U1HU\HY`[OLZLHYJOMVYPUÅH[PVUHY`WVSHYPaH[PVU[VVR[V with both BICEP2 and Planck, using data from both telescopes as well as the Keck Array at the South [OLZR`;OL:70+,9IHSSVVUL_WLYPTLU[SH\UJOLKJHYY`PUNZP_MVJHSWSHULHYYH`ZLHJO[OLZPaL Pole. All three instruments employed bolometric VM)0*,7^P[O[OYLLVIZLY]PUNH[./aHUK[OYLLMVJHSWSHULZH[ ./a(SSZP_MVJHSWSHULZ detector arrays made in MDL. LTWSV`J\YYLU[;,:IVSVTL[LYHYYH`Z;OL:70+,9IHSSVVUTPZZPVU^PSSPUJYLHZL[OLJV]LYHNLHYLH CREDIT: Steffen Richter (Harvard University) VU[OLZR`H[[OLZL[^VMYLX\LUJPLZ)HSSVVUIVYULVIZLY]H[PVUZYLWYLZLU[[OLJSVZLZ[LU]PYVUTLU[ [VHZH[LSSP[L^P[OZPTPSHYZJHUUPUNTLHZ\YLTLU[ZHUKHOVZ[PSLYHKPH[PVULU]PYVUTLU[YLWYLZLU[PUNHU PTWVY[HU[TPSLZ[VULMVYHK]HUJPUN[OLYLHKPULZZVM*4)KL[LJ[VY[LJOUVSVN`»

34 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 35 05 |

A B superconducting materials & devices

*VUJ\YYLU[S`[^VKPMMLYLU[:V\[O7VSL[LSLZJVWLZ2LJR ;OL)0*,7[LSLZJVWLPZHSZVILPUNÄLSKLKMVYP[ZÄYZ[ (YYH`HUK)0*,7HYL\[PSPaPUN;,:IVSVTL[LYHYYH`Z ZLHZVUVMVIZLY]H[PVUZPU)0*,7\ZLZTVK\SHY ;OL2LJR[LSLZJVWLHYYH`OHZILLUVIZLY]PUN[OLZHTL IVSVTL[LY\UP[ZKL]LSVWLKH[173[VI\PSKH[Y\S`LUVYTV\Z JV]LYHNLVMZR`[OH[)0*,7VIZLY]LKH[IV[O./a MVJHSWSHULJVSSLJ[PUN[^PJLHZT\JOSPNO[HZHSSÄ]L HUK ./aMVY[OLSHZ[[OYLL`LHYZ;OL2LJR(YYH` 2LJR(YYH`[LSLZJVWLZJVTIPULK)0*,7^PSS\ZL[OPZ JVTIPULZÄ]L)0*,7Z[`SL[LSLZJVWLZPUHJVTTVU [LJOUVSVN`[VTHRLZLUZP[P]LVIZLY]H[PVUZH[ ./a IHYYLSTHRPUN2LJRHTVYLZLUZP[P]LT\S[PMYLX\LUJ` L_WLJ[LK[VIL[OL^VYSK»ZTVZ[ZLUZP[P]LPUZ[Y\TLU[H[ C D Z`Z[LT;OL2LJR(YYH`^PSSYLWVY[VU[OLZPNUHSVIZLY]LK [OPZMYLX\LUJ`^OLU[OLZ`Z[LTPZM\SS`VWLYH[PVUHS;OL I`)0*,7PU[OLZHTLYLNPVUVMZR`PULHYS`HUKUL^ ZHTLTVK\SHY[LJOUVSVN`ZOV\SKILPKLHSMVYHZZLTISPUN YLZ\S[ZH[ ./aSH[LYPU[OL`LHY;^VUL^MVJHSWSHUL\UP[Z HUK[LZ[PUNHSHYNLT\S[PMYLX\LUJ`MVJHSWSHUL[OH[^PSS ^LYLPUZ[HSSLKK\YPUN[OLZOVY[(U[HYJ[PJZ\TTLY[VHKK ILULLKLKPUHM\[\YLZH[LSSP[LTPZZPVU[VTLHZ\YL*4) TLHZ\YLTLU[ZH[H[OPYKMYLX\LUJ`IHUKH[./a WVSHYPaH[PVU[VM\UKHTLU[HSSPTP[Z

TRAVELING-WAVE KINETIC INDUCTANCE Parametric (TKIP) Amplifier EF0 THE TRAVELING-WAVERPUL[PJPUK\J[HUJL 3HIVYH[VY`MVY7O`ZPJHS:JPLUJLZ37:^HZZ[HY[LKSHZ[ WHYHTL[YPJ;207HTWSPÄLYPZHUL^Z\WLYJVUK\J[PUN `LHY^P[O[OLNVHSVM\ZPUN[OL;207[VYLHKV\[HYYH`ZVM -5 TPJYV^H]LHTWSPÄLY[LJOUVSVN`ÄYZ[KLTVUZ[YH[LK X\IP[Z(X\HU[\TJVTW\[LYIHZLKVUZ\WLYJVUK\J[PUN -10 H[173PU,VTL[HSNature Physics   [LJOUVSVN`^V\SKYLX\PYLHUHTWSPÄLY[OH[PZIV[O >OPSLWYL]PV\ZZ\WLYJVUK\J[PUNTPJYV^H]LHTWSPÄLYZ X\HU[\TSPTP[LKHUK^PKLIHUKZV[OL;207PZHU -15

OH]LKLTVUZ[YH[LKX\HU[\TSPTP[LKZLUZP[P]P[`[OLPY LUHISPUN[LJOUVSVN`MVY[OH[UL^JVTW\[PUNWHYHKPNT -20 \ZLM\SULZZOHZILLUSPTP[LKI`]LY`UHYYV^IHUK^PK[O (OPNOLYMYLX\LUJ`]LYZPVUVM[OL;207VWLYH[PUNPU Normalized Transmission (dB) Normalized Transmission -25 ;OL;207ZVS]LZ[OH[WYVISLTI`\ZPUNH^PKLIHUK [OLTPSSPTL[LYHUKZ\ITPSSPTL[LYIHUKZ^V\SKILVM 715 720 725 Frequency (GHz) [YH]LSPUN^H]LKLZPNU>VYROHZILLUVUNVPUNM\UKLK NYLH[PU[LYLZ[MVYOL[LYVK`ULYLJLP]LYZ`Z[LTZIHUK;207 IMAGE A!MAKO on sky, May 2014, at the Caltech Submillimeter Observatory (CSO). Simultaneous readout was demonstrated with two arrays imaging at 350 μm and 850 μm. The low-frequency (< 250 MHz) FPGA SV^[LTWLYH[\YLKL[LJ[VYHYYH`ZMVYHZ[YVUVT`;OL HTWSPÄLY^HZKLZPNULKHUKMHIYPJH[LK-\UKPUNPZ readout demonstrated robust performance and successful integration with the telescope. IMAGE B!The YLHKV\[VMH]PZPISLWOV[VUZLUZPUN420+HYYH`^HZ J\YYLU[S`ILPUNZV\NO[PUJVSSHIVYH[PVU^P[O*HS[LJO¶ MAKO cryostat utilizes both 4He and 3He systems to obtain base temperatures of 250 mK at the detector stage. IMAGE C!A 350-μm MAKO device fabricated using a novel interdigitated electrode coupling scheme YLJLU[S`HJJVTWSPZOLKKLTVUZ[YH[PUNPTWYV]LK:59 6^LUZ=HSSL`9HKPV6IZLY]H[VY`6=96HUK(:<[V developed at Caltech/JPL. The detectors and readout circuitry consist of a superconducting inductor and V]LYH/,4;YLHKV\[(UL^WYVQLJ[M\UKLKI`[OL Z\WWVY[[LZ[PUN capacitor and are defined in only a single lithography step. IMAGE D!Fully packaged MAKO detector array. Detectors are back illuminated through silicon microlenses that appear as bumps in this picture. Left is the 350-μm array with pixel area of 1 mm2, while on the right is the 850-μm array with pixel area 4 mm2. IMAGE E! Silicon spectrometer wafer prototype assembled onto fixture for testing using a submillimeter vector IMMERSION GRATING SPECTROMETER network analyzer. The next milestone will be to use QCDs to read out the spectral channels. IMAGE F: Transmission with Quantum Capacitance Detector Readout between input feed and 720 GHz output port showing a spectral resolution R~600. DEVELOPMENT CONTINUESVU[OLX\HU[\T ZPSPJVU^HMLY(KL]PJLJV]LYPUN[V ./aHUK JHWHJP[HUJLKL[LJ[VY^P[O[OLVIQLJ[P]LVMKL]LSVWPUNH WYV]PKPUNHYLZVS]PUNWV^LYV]LYHJYVZZ[OPZM\SSIHUK MULTIPLE Applications for MKIDs ^HMLYSL]LSZWLJ[YVTL[LY^P[OTVKLYH[L9$ZWLJ[YHS ^HZYLJLU[S`KLTVUZ[YH[LK;OL\ZLVMZPSPJVUHZHWYVWH 2014ZH^HK]HUJLTLU[ZPU[OYLLWYVQLJ[ZSHYNLS`M\UKLK[OYV\NO5(:(NYHU[Z;OL YLZVS\[PVUHUKWOV[VUZOV[UVPZLSPTP[LKWLYMVYTHUJL NH[PVUTLKP\TTHRLZ[OPZUL^ZWLJ[YVTL[LYHMHJ[VYVM MHYPUMYHYLKZ\ITPSSPTL[LY^H]LWOV[VTL[LY4(26YL[\YULK[V[OL*HS[LJO:\ITPS ;OLX\HU[\TJHWHJP[HUJLKL[LJ[VYPZUV^TH[\YLJVU eZTHSSLYPUHSSKPTLUZPVUZHUKHMHJ[VYVMH[SLHZ[ SPTL[LY6IZLY]H[VY`*:6PU(\N\Z[KLTVUZ[YH[PUNULHYS`IHJRNYV\UKSPTP[LK ZPZ[LU[S``PLSKPUN¶>/aUVPZLLX\P]HSLU[WV^LY SV^LYTHZZ[OHUHJVTWHYHISLMYLLZWHJLKL]PJL;OPZ WLYMVYTHUJL^P[OH WP_LS›THYYH`HUKZPT\S[HULV\ZYLHKV\[VUHZPUNSL 5,7^P[OLUK[VLUKLMÄJPLUJ`VM[OLVYKLYVM  WHSTZPaLKKL]PJLVMMLYZUL^VWWVY[\UP[PLZMVYZWHJL JVH_PHSSPUL^P[OHÄYZ[NLULYH[PVUWP_LS ›THYYH`;OLZPUNSLSH`LYSP[OVNYHWO` ;OL8*+Z^PSSILPU[LNYH[LKVU[VH;/aMHY09^H]LN\PKL IVYULMHY09ZWLJ[YVZJVW`VM[OLLHYSPLZ[NHSH_PLZHUK HUKSV^JVZ[-7.(YLHKV\[KL]LSVWLKH[173^PSSTHRLSHYNLZJHSLHYYH`ZWVZZPISLPU NYH[PUNZWLJ[YVTL[LYTPJYVTHJOPULKMYVTHZPUNSLPUJO V\YOVTLWSHUL[ MDL’s superconducting parametric [OLMHYPUMYHYLK(K]HUJLTLU[PUOPNOZLUZP[P]P[`KL]PJLZMVYZWHJLHZ[YVWO`ZPJZTPZZPVUZ amplifier continues development toward testing at the Atacama OHZMVJ\ZLKVUYLK\JPUNHIZVYILY]VS\TL[VPUJYLHZLKL[LJ[VYYLZWVUZP]P[`7\ZOPUN Large Millimeter Array. ALMA is an Z[LWWLYSP[OVNYHWO`KV^U[VUT^PKLHS\TPU\TSPULZ^PSSHSSV^THZZWYVK\J[PVU astronomical interferometer of radio VMHYYH`Z^P[OZPNUPÄJHU[S`OPNOLYZLUZP[P]P[`;OLZ\WLYJVUK\J[PUNTPJYVZ[YPWZWLJ[YV telescopes in northern Chile. TL[LY:\WLYZWLJOHZOHKPUSHIKLTVUZ[YH[PVUZVMLMÄJPLU[JOHUULSPaH[PVUHUK5,7Z CREDIT: ESO/José Francisco Salgado HWWYVHJOPUNWOV[VUUVPZL;OPZ`LHY4+3YLK\JLK[OLPUK\J[VYSPUL^PK[OI`HMHJ[VY VM[^VKLJYLHZPUN[OLPUK\J[VY]VS\TLHUKPUJYLHZPUN[OLYLZWVUZP]P[`

36 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 37 05 |

A B C superconducting materials & devices

SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTORS 150 μm for Optical Communication and Quantum Optics support beams TUNGSTEN SILICIDE SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTORS>:P:5:7+ZHYLHYL]VS\[PVUHY` D [LJOUVSVN`MVYLMÄJPLU[[PTLYLZVS]LKZPUNSLWOV[VUJV\U[PUNPU[OLPUMYHYLK 0UJVSSHIVYH[PVU^P[O50:;173OHZILLUWPVULLYPUN[OLHK]HUJLTLU[ VM>:P:5:7+ZZPUJL;OLZLKL]PJLZOH]LYLJLU[S`KLTVUZ[YH[LK %  KL[LJ[PVULMÄJPLUJ`H[UT^P[OWZ[PTLYLZVS\[PVU 4JWZTH_PT\TJV\U[YH[LZHUKZ\I/aPU[YPUZPJKHYRJV\U[Z0U WP_LSHYYH`ZVM>:P:5:7+Z^LYLZ\JJLZZM\SS`\ZLK[VKV^USPUR VW[PJHSJVTT\UPJH[PVUKH[HMYVT[OL4VVUH[ 4IWZPU[OL3\UHY3HZLY *VTT\UPJH[PVU+LTVUZ[YH[PVU 0UWP_LSHYYH`ZVMMYLLZWHJLJV\WSLK>:P:5:7+Z^LYL KLTVUZ[YH[LK^P[OHYLJVYKIYLHRPUN_›THJ[P]LHYLHHSVUN^P[O HK]HUJLKJY`VNLUPJYLHKV\[LSLJ[YVUPJZ,]LUSHYNLYHYYH`ZHYLJ\YYLU[S` PUKL]LSVWTLU[MVYHM\[\YL+LLW:WHJL6W[PJHS*VTT\UPJH[PVU+:6* [LJOUVSVN`KLTVUZ[YH[PVUWYVQLJ[^OLYLHM\[\YLNYV\UKYLJLP]LYH[[OL 7HSVTHY6IZLY]H[VY`^PSSYLJLP]LMHPU[VW[PJHSJVTT\UPJH[PVUZPNUHSZMYVT 4HYZVYIL`VUK0UHKKP[PVU>:P:5:7+HYYH`ZHYL\UKLYKL]LSVWTLU[MVY \S[YHOPNOYH[LX\HU[\TJVTT\UPJH[PVUHUK173:5:7+ZOH]LILLUPUM\ZLK PU[VH]HYPL[`VMX\HU[\TVW[PJZL_WLYPTLU[ZH[*HS[LJO40;5VY[O^LZ[LYU

\ZPUN[OLOPNOJYP[PJHS[LTWLYH[\YLZ\WLYJVUK\J[VY4N);OLUT^PKL IMAGE A!Image of 64x16-element thermopile array for Diviner-Europa, a proposed instrument for NASA’s Europa Mission. IMAGE B!Close-up micrograph of a single thermopile pixel. The UT[OPJR4N)UHUV^PYLZOHKHJYP[PJHS[LTWLYH[\YLVM2HUKYLZWVUKLK [V[OYLLWOV[VUZ^P[OHU\S[YHMHZ[Z\IUHUVZLJVUKJ\YYLU[W\SZL;OLZL performance of this pixel meets the requirements of Diviner-Europa. IMAGE C!Scanning electron microscope image of an SNSPD based on MgB2. The nanowires are 200 nm wide and YLZ\S[ZOVSKWYVTPZLMVYOPNO[LTWLYH[\YL\S[YHMHZ[ZPUNSLWOV[VUKL[LJ[VYZ the active area is 10 x 10 +m2. IMAGE D!Optical microscope image of a free-space-coupled 64-pixel SNSPD array for the DSOC ground receiver. The nanowires are 160 nm wide and the active area is 320 +m in diameter.

THERMOPILE Array MDL HAS BEEN BUILDING THERMOPILE ARRAYSMVYH]HYPL[` VMZWHJLIVYULTPZZPVUZMVY^LSSV]LYHKLJHKL;OLYTVWPSLZHYLPKLHSS`Z\P[LK MVYZWHJLILJH\ZL[OL`YLX\PYLUVJY`VJVVSLYVYIPHZJPYJ\P[HYLIYVHKIHUK HUKHYLPUZLUZP[P]L[V[LTWLYH[\YLKYPM[(_LSLTLU[[OLYTVWPSLHYYH` ^HZKL]LSVWLKMVY+P]PULY,\YVWH +P]PULY,^OPJOPZHT\S[PZWLJ[YHSPUMYHYLK PTHNPUNYHKPVTL[LYKLZPNULK[VÅ`VU5(:(»ZWSHUULK-SHNZOPW,\YVWH NASA snaps infrared images TPZZPVU;OPZHYYH`PZe_SHYNLY[OHU[OLJ\YYLU[Z[H[LVM[OLHY[HYYH`ZÅ`PUN of Saturn and its rings using the Cassini spacecraft. VU173»Z4HYZ*SPTH[L:V\UKLY4*:HUK+P]PULY;OLWLYMVYTHUJLVM[OLHYYH` TLL[Z[OLYLX\PYLTLU[ZVM+P]PULY,(KKP[PVUHSS`J\Z[VTYLHKV\[PU[LNYH[LK JPYJ\P[Z960*Z^LYL[LZ[LKI`173MVYWLYMVYTHUJLHUKYHKPH[PVU[VSLYHUJL ;OLJ\Z[VT960*TLL[Z[OLJOHSSLUNPUN[V[HSPVUPaPUNKVZL;0+HUKZPUNSL L]LU[\WZL[:,<YLX\PYLTLU[ZVM[OL,\YVWHTPZZPVU 

38 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 39 05 |

superconducting materials & devices

SUPERCONDUCTING DEVICES & MATERIALS The microwave superconducting parametric amplifier invented at MDL demonstrates near-quantum-limited Enabling Groundbreaking Science for 25 years sensitivity at 10 GHz. Device physics model predicts quantum-limited detection possible up to 800 GHz, Planck releases polarization map of nearly a factor 5 better than state-of-the-art cosmic microwave background made semiconducting amplifiers. using MDL polarization-sensitive Using a small focal plane of spider-web bolometers, bolometers. Joint analysis with the balloon-borne Boomerang telescope showed for Optical MKID array instrument fielded at Palomar BICEP2 does not yet yield statistically the first time that the universe is “flat” based on makes state-of-the-art, submillisecond, time- significant detection of primordial unprecedented measurements of the cosmic First superconducting resolved measurements of the . Results gravitational waves. microwave background. polarimeters developed highlighted in science technical news journals. based on in-phase-combined MDL thermopile arrays MDL thermopile arrays planar antenna arrays. used to make the first Planck releases highest precision ever have been used to measure Scientists at JPL and the Caltech campus temperature map of the cosmic microwave the longest unbroken superconductor- complete temperature maps Pioneering invented and demonstrated the microwave background based on measurements made global temperature, insulator-superconductor (SIS) of the Moon, including kinetic inductance detector (MKID), with MDL spider-web bolometers. dust, and water ice mixers the coldest measured surface for frequencies spanning widely adopted worldwide for ground-based climatology for the the range from 200 to 900 GHz are millimeter/submilimeter astronomy and also temperatures in the solar system. The quantum capacitance detector is invented and demonstrated in MDL and achieves a world of developed at MDL and fielded in used for energy-resolved photon detection at Mars (> 8 years). ground-based and airborne telescopes. optical, UV, and x-ray wavelengths. record for lowest noise IR detector.

’93 ’97 ’99 ’00 ’01 ’04 ’05 ’09 ’10 ’11 ’12 ’13 ’14 ’15

SIS mixers and spider-web bolometer arrays, developed at MDL, are adopted as Herschel–Planck launch the baseline detectors in instruments HIFI, Polarization-sensitive bolometer with MDL-made SIS SPIRE, and HFI for the ESA missions First superconducting nanowire Using superconducting invented at MDL. This detector was mixers, spider-web MDL-produced SIS mixers on Herschel and Planck. single-photon detector (SNSPD) polarimeter arrays fabricated immediately adopted for the bolometer arrays, and Herschel HIFI discover many made outside of Russia is fabricated at MDL, the BICEP2 experiment Planck flight mission. polarization-sensitive new terahertz spectral lines from High-sensitivity uncooled thermopile and tested at the MDL. releases the most sensitive bolometers on board. in interstellar space. arrays invented and tested at MDL. millimeter-wave polarization map made to date, in a search for “B-modes” indicative of primordial gravitational waves. Result is reported by international news agencies and science journals. Spider-web bolometer detector arrays made for Herschel SPIRE instrument measure unprecedented Current state-of-the-art JPL/ large-area maps detecting distant infrared-luminous MDL transition-edge sensor galaxies and closer to home detect argonium — ArH+, the arrays. The outline on each first interstellar containing a element. array shows the size of antenna Modular 95-GHz area for each pixel at 95 GHz, focal plane with SNSPD array made in MDL used in a ground station at 150 GHz, and 220 GHz. several modular units Table Mountain, Calif., establishes an optical communication assembled in place. link with the LADEE satellite orbiting the Moon. First light obtained with the MAKO array at CSO, which has a 484-element MKID array made at MDL at the heart of the instrument.

SPIDER balloon experiment just before launch (image courtesy of the SPIDER collaboration).

40 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 41 Submillimeter-wave or THz technology reveals the physical and chemical processes involved in the -cycle of planets, comets, and even stars.

IMRAN MEHDI Supervisor, Instrument Electronics and Sensors

25 YEARS AT JPL

Submillimeter-wave technology: A probe for . SUBMILLIMETER Wave Advanced Technologies RESEARCHERS PUZ\ITPSSPTL[LY^H]LHK]HUJLK [LJOUVSVN` H[ 173 ZWLJPHSPaL PU KL]LSVWPUN HUK PTWSLTLU[PUNZ\ITPSSPTL[LY^H]LHUK[LYHOLY[aYLTV[L False-color image showing the smooth Hapi region connecting the head and body ZLUZPUN[LJOUVSVNPLZMVYH]HYPL[`VMHWWSPJH[PVUZ;OLWYPTHY` of comet 67P/Churyumov-Gerasimenko. MVJ\ZPZ[VKL]LSVWJVTWVULU[ZHUK[LJOUVSVNPLZ[VLUHISL Differences in reflectivity have been enhanced in this image to emphasize the ZWHJLIVYULPUZ[Y\TLU[ZIHZLKVUOPNOYLZVS\[PVUOL[LYVK`UL blueish color of the Hapi region. By studying ZWLJ[YVTL[LYZMVY,HY[OYLTV[LZLUZPUNTPZZPVUZWSHUL[HY`TPZZPVUZ the reflectivity, clues to the local composition of the comet are revealed. Here, the blue HUKHZ[YVWO`ZPJZVIZLY]H[VYPLZ173»ZYPJOHUK]HYPLK[LJOUPJHSL_WLY[PZL coloring might point to the presence of PZHSZV\[PSPaLKMVYNYV\UKIHZLKHWWSPJH[PVUZ[OH[HYLHZWPUVMMMYVT[OL frozen water ice at or just below the dusty surface. The data used to create this image OL[LYVK`ULYLJLP]LY[LJOUVSVNPLZ/L[LYVK`UL[LJOUVSVN`HSSV^ZVUL[V were acquired on August 21, 2014, when THWKL[LJ[\UPX\LTVSLJ\SHYZPNUH[\YLZ^P[O]LY`OPNOZWLJ[YHSYLZVS\[PVU was 70 km from the comet. V]LYH^PKLYHUNLVM^H]LSLUN[OZ1735(:(OHZILLU[OL[YHKP[PVUHSSLHKLY CREDIT: ESA/Rosetta/MPS for OSIRIS Team PU[OPZÄLSKK\L[VP[Z^PKLHWWSPJHIPSP[`MVYHZ[YVWO`ZPJZHZ^LSSHZ,HY[OYLTV[L ZLUZPUN5L_[NLULYH[PVU[LJOUVSVN`KL]LSVWTLU[^PSSHSSV^\Z[VI\PSKHUKKLWSV` JVTWHJ[Z\ITPSSPTL[LY^H]LYLJLP]LYZ[OH[HYLPKLHSS`Z\P[LKMVYWSHUL[HY`TPZZPVUZ »

42 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 43 06 |

A B submillimeter-wave advanced technologies

NOVEL HOT-ELECTRON BOLOMETER NEOWISE, the asteroid-hunting portion of NASA’s Wide-field Infrared Survey (HEB) Detector Utilizing MgB2 Superconductor Explorer, was able to crack the centaur EXTREMELY HIGH SENSITIVITYKL[LJ[VYZHYLYLX\PYLKMVYPU]LZ[P mystery thanks to its ability to see the infrared properties of the small NH[PUN[OLZ[HYMVYTPUNYLNPVUZVM[OL\UP]LYZLHUKTHRPUNX\HU[P[H[P]L objects. The infrared data, together TLHZ\YLTLU[ZVUHI\UKHUJLZVM]HYPV\ZTVSLJ\SHYZWLJPLZPUHYLHZVMHJ[P]L with previous visible-light observations, Z[HYMVYTH[PVU(UV]LS[LYHOLY[a;/aYHKPH[PVUTP_LYTHKLMYVT[OLOPNOJYP[PJHS showed that many of the centaurs are dark like soot and blue-gray in color, [LTWLYH[\YLZ\WLYJVUK\J[PUNTH[LYPHS4N)OHZYLJLU[S`ILLUKLTVUZ[YH[LK,]LU telltale signs of comets. [OV\NOZ\WLYJVUK\J[P]P[`PU4N)^P[OJYP[PJHS[LTWLYH[\YLe2^HZKPZJV]LYLKPU C D VUS`UV^OH]L\S[YH[OPUOPNOX\HSP[`ÄSTZILJVTLH]HPSHISL:\JOÄSTZHYL[OL RL`PUHJOPL]LTLU[VM[OLOPNO[OLYTHSYLSH_H[PVUZWLLK^PKLTP_LYIHUK^PK[O173OHZ

KL]LSVWLKX\HZPVW[PJHS4N)/,)TP_LYZMVY[OL¶;/aYHUNLHUKWLYMVYTLKH ZLYPLZVMWYVVMVMJVUJLW[[LZ[ZKLTVUZ[YH[PUN[OLSHYNLTP_LYIHUK^PK[O\W[V ./a HUKSV^UVPZL[LTWLYH[\YL«2KV\ISLZPKLIHUK(UV[OLYPTWVY[HU[ILULÄ[VM [OLUL^[LJOUVSVN`PZ[OLWVZZPIPSP[`VMVWLYH[PUN[OLTP_LYH[¶2;OPZ^PSSHSSV^MVY HT\JOZPTWSLYHUKSLZZL_WLUZP]LJY`VJVVSPUNHWWYVHJOLZWLJPHSS`VUZWHJLIVYUL WSH[MVYTZ-VYJVTWHYPZVU[OL/LYZJOLS/0-0PUZ[Y\TLU[YLX\PYLKSPX\PKOLSP\T MVYJVVSPUN^OPJOL]LU[\HSS`SPTP[LK[OLTPZZPVUSPML[PTL[Ve`LHYZ

IMAGE F!A new generation of hot-electron bolometric chips based on MgB2 is being developed at JPL. This chip is fabricated with a spiral antenna, placed on top of a U.S. quarter shown for size. These chips will provide extreme sensitivity, operating only at IMAGE A: A 16-pixel, 1.9-THz local oscillator (LO) source prototype for next-generation 20–25 K. IMAGE G!Work is underway to develop a 100-pixel array receiver that can terahertz cameras. IMAGE B: 1.47-THz 4-pixel LO subsystems for STO-2. IMAGE C: enable increased science throughput from features such as the Horsehead Nebula A 520–600-GHz on-chip power combined frequency tripler. IMAGE D: A bias-able (Barnard 33 in the constellation Orion). 1.9–2.06 THz frequency tripler for radio astronomy. IMAGE E: A high-altitude balloon will be launched from Antarctica next year to study star formation. It will carry detectors F and local oscillators made in the MDL.

A HIGH-ALTITUDE BALLOON Instrument for Studying the Life-Cycles of Stars THE STRATOSPHERIC TERAHERTZ OBSERVATORY:;6 PZH5(:(M\UKLKSVUNK\YH[PVUIHSSVVU3+)L_WLYPTLU[KLZPNULK[V G HKKYLZZHRL`WYVISLTPUTVKLYUHZ[YVWO`ZPJZ!\UKLYZ[HUKPUN[OLSPML J`JSLZVMZ[HYMVYTPUNTVSLJ\SHYJSV\KZPU[OL4PSR`>H`.HSH_`;V HJJVTWSPZO[OPZNVHS:;6^PSSZ\Y]L`HZLJ[PVUVM[OL.HSHJ[PJWSHULPU [OLS\TPUV\ZPU[LYZ[LSSHYJVVSPUNSPULH[ ›T ;/aHUK[OL PTWVY[HU[Z[HYMVYTH[PVUHUKPVUPaLKNHZ[YHJLYH[›T;/a ;OLWP_LSOL[LYVK`ULYLJLP]LYHYYH`ZVUIVHYK:;6WVZZLZZ[OL E ZLUZP[P]P[`HUKZWLJ[YHSYLZVS\[PVUULLKLK[VZLLTVSLJ\SHYJSV\KZPU [OLWYVJLZZVMMVYTH[PVUTLHZ\YL[OLYH[LVML]HWVYH[PVUVMTVSLJ\ SHYJSV\KZHUKZLWHYH[L[OLI\SRTV[PVUVMNHZPU[OL.HSH_`MYVT SVJHSRPULTH[PJLMMLJ[Z)`I\PSKPUNH[OYLLKPTLUZPVUHSWPJ[\YLVM [OLPU[LYZ[LSSHYTLKP\TVM[OL.HSH_`:;6^PSSILHISL[VZ[\K` [OLJYLH[PVUHUKKPZY\W[PVUVMZ[HYMVYTPUNJSV\KZPU[OL.HSH_` KL[LYTPUL[OLWHYHTL[LYZ[OH[NV]LYU[OLZ[HYMVYTH[PVUYH[LHUK WYV]PKLH[LTWSH[LMVYZ[HYMVYTH[PVUHUKZ[LSSHYPU[LYZ[LSSHYMLLKIHJR PUV[OLYNHSH_PLZ173»Z4+3PZH[[OLMVYLMYVU[VMWYVK\JPUN[OLSVJHS VZJPSSH[VYHUKOV[LSLJ[YVUTP_LYZMVY[OPZPTWVY[HU[TPZZPVU

44 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 45 06 |

A B submillimeter-wave advanced technologies

NASA’s contribution included MDL-PRODUCED DEVICES three of the orbiter’s instruments (the Microwave Instrument for Instruments for Planetary Exploration Rosetta Orbiter, the and Electron Sensor, and an ultraviolet DETECTION OF WATERTVSLJ\SLZPU[OL\UP]LYZLPZHSVUNZ[HUKPUN spectrometer called Alice).The NVHSVM5(:(WSHUL[HY`TPZZPVUZ*\YYLU[S`4+3WYVK\JLKKL]PJLZHYLVU Microwave Instrument for the IVHYK[OL40964PJYV^H]L0UZ[Y\TLU[MVY[OL9VZL[[H6YIP[LY4096ÄYZ[ Rosetta Orbiter was built at JPL KL[LJ[LK^H[LY]HWVYMYVT[OLJVTHVMJVTL[7*O\Y`\TV].LYHZPTLURV and JPL is home to its principal investigator, Samuel Gulkis. PU1\UL^OLU9VZL[[H^HZRTMYVT[OLJVTL[U\JSL\Z([[OH[ C KPZ[HUJL[OLU\JSL\Z^HZ\UYLZVS]LKHUK[OLLU[PYLJVTHÄSSLK4096»ZÄLSKVM]PL^ 5V^[OH[9VZL[[HOHZYLUKLa]V\ZLK^P[O[OLJVTL[4096OHZILN\UVIZLY]H[PVUZ E [VTHW[OLU\JSL\ZHUKJVTHPUNYLH[KL[HPS4VYLYLJLU[S`[OL4096PUZ[Y\TLU[OHZ KL[LJ[LKHUPUJYLHZLPU[OLYH[LVM^H[LY]HWVYJVTPUNMYVT[OLJVTL[JVUÄYTPUN[OH[ [OL^H[LY]HWVYYH[LVU[OLJVTL[PZUV[JVUZ[HU[4096PZWYVK\JPUNZJPLU[PÄJYLZ\S[Z [OH[^PSSPTWYV]LV\Y\UKLYZ[HUKPUNVMJOLTPJHSHUKWO`ZPJHSWYVJLZZLZVUWSHUL[HY`IVKPLZ (K]HUJLKKL]PJLZHYLILPUNKLZPNULKHUKMHIYPJH[LKH[[OL4+3[OH[^PSSHSSV^SV^LYTHZZHUK SV^LYWV^LYOL[LYVK`ULYLJLP]LYZ^P[ONYLH[LYZLUZP[P]P[PLZ[VO\U[MVY^H[LYPU[OL\UP]LYZL (WYVWVZLKPUZ[Y\TLU[[V,\YVWHWHY[VM[OL,\YVWH*SPWWLYTPZZPVU\UKLYJVUZPKLYH[PVU

I`5(:(MVYHSH\UJOKH[L^PSSHSSV^ZJPLU[PZ[Z[VPU]LZ[PNH[LWS\TLZVU,\YVWH )LHT 9LJLP]LY D E MYVT[OL[LSLZJVWL OVYU .H5 )HSHUJLK WV^LYHTWSPÄLY -YLX\LUJ` TP_LYZ 36PUW\[ -SPW KV\ISLY 7V^LY TPYYVY 7VSHYPaH[PVU KP]PKLYZ COMPACT SUBMILLIMETER-WAVE [^PZ[

Instruments for Planetary Exploration 0-HUK *HSPIYH[PVU +*IPHZ JVUULJ[VYZ NASA HAS FUNDED KL]LSVWTLU[VMHZ\WLYJVTWHJ[Z\ITPSSPTL[LY^H]L SVHK 9LJLP]LY JT PUZ[Y\TLU[MVYWSHUL[HY`L_WSVYH[PVU

0UZ[Y\TLU[MVY:\ITPSSPTL[LY^H]L:\YMHJLHUK([TVZWOLYPJ9LJVUUHPZZHUJL 0UW\[ZPNUHS ¢ 9- JT  ¶./a WVSHYPaH[PVUZ 8\HKYH[\YL HUK9LZLHYJOPU6YIP[70::(996^PSSWYV]PKLHZ[H[LVM[OLHY[Z\ITPSSPTL[LY MYVU[LUK Z`U[OLZPaLY O`IYPKZ ^H]LYHKPVTL[LYZWLJ[YVTL[LYMVYVYIP[LYTPZZPVUZ[V4HYZ=LU\Z;P[HUHUK IMAGE A! A portable imaging radar system has been developed that utilizes state-of-the-art [OL.HSPSLHUTVVUZ70::(996^PSSHSSV^HSHYNLU\TILYVMJOLTPJHSZWLJPLZ receivers for providing high-resolution images. IMAGE B! An 8-pixel transreceiver array has been

Z\JOHZ^H[LY56565/:6/:*/HUK/*5HTVUNV[OLYZ[VIL developed at 340 GHz for the radar platform. IMAGE C! This panorama shows a series of four KL[LJ[LKH[JVUJLU[YH[PVUZILSV^HWHY[WLYIPSSPVU0UL_WSVYPUNWSHUL[ZHUK images. The top ones are optical while the bottom panels show THz images obtained with the platform [OLPYTVVUZMYVTVYIP[70::(996^PSSNH[OLYKH[HVU[OL[OLYTHSZ[Y\J[\YL in IMAGE A. Artifacts hidden under a winter jacket are visible in the THz images. IMAGE D! Compact instruments are being designed based on MDL proven technology that can shrink the size and volume of K`UHTPJZHUKJVTWVZP[PVUVMWSHUL[HY`H[TVZWOLYLZHUKZ\YMHJLZ0U future planetary instruments. IMAGE E! Close-up of the silicon piece from IMAGE D is shown; this very YHKPVTL[LYTVKL[OLPUZ[Y\TLU[^PSSTLHZ\YL[OLWVSHYPaLK[OLYTHSLTPZZPVU light silicon structure includes submillimeter-wave components such as an OMT, mixer, and multiplier. YL]LHSPUNHZWLJ[ZVMHIVK`»ZJOLTPJHSJVTWVZP[PVUHUKWO`ZPJHSZ[H[L (ZHZWLJ[YVTL[LY70::(996^PSSPU]LZ[PNH[L[OLZV\YJLZHUKZPURZVM MDL LEVERAGES SPACE TECHNOLOGY [YHJLNHZLZHUKNSVIHSS`JOHYHJ[LYPaL[OLH[TVZWOLYL^P[OOPNOZWLJ[YHS ZWH[PHSHUK[LTWVYHSYLZVS\[PVU\UPX\LS`H]HPSHISL[OYV\NO for a Safer Planet Earth Z\ITPSSPTL[LY^H]LZWLJ[YVZJVW`0[^PSSHSZVTLHZ\YL SUBMILLIMETER-WAVEJVTWVULU[ZHUKYLJLP]LYZ[OH[OH]LILLUKL]LSVWLK ^PUKZWLLKZ[LTWLYH[\YLWYLZZ\YLHUKRL`JVUZ[P[\LU[ MVYZWHJLHWWSPJH[PVUZJHUHSZVIL\ZLKMVYHWWSPJH[PVUZVUWSHUL[,HY[O(WVY[HISL JVUJLU[YH[PVUZPU[OLWSHUL[HY`H[TVZWOLYLZ^P[OH YHKHYZ`Z[LT^HZKLTVUZ[YH[LKPU[OH[JHUWYV]PKLPTHNPUNVM[HYNL[ZI`YL]LHS OPNOLYWYLJPZPVU[OHUHU`V[OLYH]HPSHISL[LJOUVSVN` PUNHY[PMHJ[ZILOPUKJSV[OLZ[O\Z\UKL[LJ[HISL^P[OYLN\SHYJHTLYHZ;OL[LJOUVSVN` KL]LSVWLKH[173IHZLKVUKL]PJLZMYVT4+3JHU^VYRH[./aHUK./a[OL OPNOLZ[YLWVY[LKMYLX\LUJ`MVYZ\JOHUHWWSPJH[PVU0UHU WP_LSYHKHYJHTLYH ^HZPTWSLTLU[LK[OH[HSSV^ZMVYYLHS[PTLPTHNPUNVM[HYNL[Z;OPZPZHIYLHR[OYV\NO HUKHSSV^ZVUL[VPTHNLH^PKLZJLUL^P[OJLU[PTL[LYZJHSLYLZVS\[PVU;OPZZ`Z[LTPZ WVY[HISLHUKJHUILTV\U[LKPUH]LOPJSLHZ^HZKVULI`4+3ZJPLU[PZ[Z[VZ[\K`K\Z[ Z[VYTZPU[OL4VQH]L+LZLY[;OPZPUZ[Y\TLU[OHZZJPLU[PÄJHWWSPJH[PVUZMVYZ[\K`PUN [OLK`UHTPJZVMK\Z[Z[VYTZVY]VSJHUPJLY\W[PVUZVU,HY[OHZ^LSSHZV[OLYWSHUL[Z

46 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 47 06 |

submillimeter-wave advanced technologies

SUBMILLIMETER-WAVE TECHNOLOGY A Hunt for Water, Heat, and Molecules in the Solar System and Beyond Herschel Space Observatory, launched May 14, 2009, carries local

Temperature oscillator and mixer devices designed Development of the world’s first and fabricated at the MDL. Ozone 2.5-THz mixer based on Nb CIO

HEB. Similar devices were HNO3 later used on Herschel’s HIFI instrument. HCI

Water vapor HIFI LO subsystem Figure from EOS MLS instrument used on the Herschel Delivery of 557-GHz Schottky showing the capability of the Space Observatory. Development and delivery diode receiver for the MIRO submillimeter-wave instrument. of diode receivers for instrument on ESA’s Rosetta The Earth Observing System (EOS) Earth observations spacecraft. MIRO made Microwave Limb Sounder (MLS) Delivery of LO chains A 4-pixel 1.47-THz LO on the UARS MLS Onwards: Development contact with Lutetia (in is one of four instruments on for the HIFI instrument source has been spacecraft. of first planar Schottky 2000) and is currently NASA’s EOS Aura satellite, on board ESA’s Herschel developed for the Monitoring of diode mixer and taking science data launched on July 15, 2004. Space Observatory. 670-GHz radar Stratospheric THz ozone chemistry. multipliers. on comet CG. demonstration. Observatory (STO-2).

’90’91 ’01 ’04 ’05 ’09 ’11 ’14

Demonstration of the Rosetta is a spacecraft on a 10-year first imaging radar NASA’s Upper Atmosphere Research Satellite mission to catch a comet and land a at 670 GHz. (UARS) with JPL’s Microwave Limb Sounder probe on it. Launched in 2004, the (MLS) as one of its 10 instruments was launched spacecraft arrived at its target, September 12, 1991. The major objective of comet 67P/Churyumov- UARS MLS was, in response to the industrial Gerasimenko, on August 6, 2014. Herschel was launched chlorofluorocarbon threat to the ozone layer, to on May 14, 2009. It is the The camera aboard provide global information on chlorine monoxide (ClO), fourth “cornerstone” mission in Rosetta’s lander, Philae, the dominant form of chlorine that destroys ozone. the ESA science program. With a obtained this image of comet 3.5-m Cassegrain telescope, it is the 67P/Churyumov-Gerasimenko largest space telescope ever launched. on October 7, 2014.

CIO

5 10 15 20 25  TVSLJ\SLZT A 360-degree panoramic image, covering the entire southern and northern celestial The images show MLS sphere, reveals the cosmic landscape that O and ClO measure- surrounds our tiny blue planet. The plane 3 03 ments made during The sheer size of comet of the Milky Way Galaxy, which we see 140 180 220 260 300 340 67P/C-G’s jets can be seen edge-on from our perspective on Earth, development of the 1996 Antarctic ozone hole. +<HIV]LO7H in this wide-view image cuts a luminous swath across the image. captured by Rosetta CREDIT: ESO/S. Brunier on February 6, 2015.

48 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 49 When developing a new technology, some of the seemingly simple obstacles Hot fluids circulating through magnesium- rich basalt can produce methane. that we take for granted turn out to be quite complicated to overcome.

HARISH M. MANOHARA Principal Staff / Group Supervisor, Nano and Micro Systems

15 YEARS AT JPL

Advanced microdevices for prolonged operation

in harsh environments. NANO & MICRO Systems THE PAST YEAROHZILLU[OL¸KLSP]LY`¹`LHYMVYUHUV HUKTPJYVZ`Z[LTZ;OPZPZ[OLTVZ[ZH[PZM`PUNHZWLJ[VMHWWSPLK YLZLHYJO^OLYLHUL^[LJOUVSVN`PZU\Y[\YLKMYVTP[ZJVUJLW[PVU [VHÄLSK[LZ[YLHK`WYVK\J[VYPUZVTLJHZLZHSHIVYH[VY`WYV]LU WYVK\J[YLHK`MVY[OLUL_[IPNNLYZ[HNL;OL`LHYZH^HIV\[Ä]L KPMMLYLU[[LJOUVSVN`KL]LSVWTLU[LMMVY[ZYLHJO[OLPYWSHUULKJ\STPUH[PVU YLZ\S[PUNPUKLSP]LYHISLZ4+3Z\JJLZZM\SS`KLSP]LYLKVUHUV]LSZHTWSL WYLZLUJL]LYPÄJH[PVUZLUZVYJVUJLW[MVYWYPTP[P]LIVK`ZHTWSLYL[\YUTPZZPVUZ" HM\UJ[PVUPUN9-WV^LYLKZHTWSLL_[YHJ[PVUZ`Z[LT![OL4PJYV,_[YHJ[VYVY›,? MVYPUZP[\WSHUL[HY`L_WSVYH[PVUPUZ[Y\TLU[Z"HTPUPH[\YL]HJ\\T[YPVKL[OH[\ZLZ JHYIVUUHUV[\ILÄLSKLTP[[LYZHUKO`IYPKTPJYVHZZLTIS`[VKYP]LHUVZJPSSH[VYH[OPNO [LTWLYH[\YLMVYVPSHUKNHZPUK\Z[Y`HWWSPJH[PVU"TPJYVTHJOPULKOPNO[LTWLYH[\YL [VSLYHU[YVI\Z[JHWHJP[VYZMVYKV^UOVSLJPYJ\P[ZMVYVPSHUKNHZPUK\Z[Y`HWWSPJH[PVU"HUK HM\UJ[PVUHSSHIVYH[VY`WYV[V[`WLVMHTPUPH[\YLZ[LYLVLUKVZJVWL^P[OWHUUPUNJHWHIPSP[` MVYTPUPTHSS`PU]HZP]LUL\YVZ\YNLY`HWWSPJH[PVUZ4HU`VM[OLZLWYVK\J[ZHYLUV^LU[LYPUN [OLTH[\YH[PVUWOHZL[OH[PZ\UPX\LS`KPMMLYLU[MVYLHJO^P[O]HY`PUNKLNYLLZVMJVTWSL_P[`HUK JOHSSLUNLZ>LHYLSVVRPUNMVY^HYK»

50 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 51 07 |

A EDX B nano & micro systems

MINIATURE X-ray Imaging / Spectroscopic Tool Dr. Valerie Scott prepares to test a CNT JPL’S CARBON NANOTUBE*5;ÄLSKLTPZZPVU[LJOUVSVN`OHZ mini X-ray tube in ILLU\ZLK[VYLHSPaLHWYLSPTPUHY`]LYZPVUVMHUPTHNPUNZWLJ[YVZJVWPJ the characterization [VVSZ\P[HISLMVYOHYZOLU]PYVUTLU[HWWSPJH[PVUZ:\JOH[VVSPZKLZPYLK chamber. MVYPUZP[\HWWSPJH[PVUZ[VHJX\PYLYLHS[PTLWLUL[YH[P]LPTHNLZHZ^LSSHZ LSLTLU[HSJVTWVZP[PVUKH[HVM[OLZ\YYV\UKPUNNLVSVNPJHSMLH[\YLZ;OL [VVSPZHSZV\ZLM\SMVYVPSHUKNHZPUK\Z[Y`HWWSPJH[PVUZPUVWLU^LSSZ;OL WYVISLTOV^L]LYPZ[OL\UH]HPSHIPSP[`VMHJVTWHJ[?YH`ZV\YJLHUK PTHNPUNZWLJ[YVZJVWPJZ`Z[LT[OH[JHUILPU[LNYH[LKPU[VHUHJ[\H[PUN C D [VVSMVYL_HTWSLHYVIV[PJHYT173PZKL]LSVWPUNHJVTWHJ[]LYZPVU VMZ\JOH[VVS^P[OWV[LU[PHS[V[\UL[OLZV\YJLLULYN`

52 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 53 07 |

nano & micro systems

A RF-POWERED NANO & MICRO Systems Highlights Micro-extractor and Reactor (μEX) JPL HAS DEVELOPEDHU9-WV^LYLKTPJYVYLHJ[VYHZ WHY[VMWV[LU[PHSPUZP[\L_WSVYH[PVUTPZZPVUZ[VPUULYHUKV\[LY WSHUL[HY`IVKPLZMVYZHTWSLWYVJLZZPUNHUKL_[YHJ[PVU;OPZ [LJOUVSVN`\[PSPaLZHX\LV\ZZVS\[PVUZZ\IQLJ[LK[V./a YHKPH[PVUH[T>VMPUW\[WV^LY[VL_[YHJ[[HYNL[VYNHUPJ JVTWV\UKZHUKTVSLJ\SHYHUKPUVYNHUPJPVUZHZ^LSSHZ[V O`KYVS`aLJVTWSL_WVS`TLYPJTH[LYPHSZ:\JJLZZM\SPKLU[PÄ JH[PVUHUKJOHYHJ[LYPaH[PVUVMRL`[HYNL[TVSLJ\SLZYLS`VU[OL BCZHTWSLWYVJLZZPUN[LJOUPX\LZ\[PSPaLKHSVUNZPKLZ[H[LVM[OL HY[KL[LJ[PVUHUKHUHS`ZPZ›,?WV[LU[PHSS`VMMLYZHZPTWSPÄLK HS[LYUH[P]L[V[OL[`WPJHSNVSKZ[HUKHYKL_[YHJ[PVUZ[OH[VM[LU New miniature stereo \ZLZVS]LU[ZJOLTPJHSZHUKJVUKP[PVUZ[OH[JHU]HY`^PSKS`HUK imaging system for KLWLUKVU[OL[HYNL[LKTVSLJ\SLZ0UZ[LHK[OPZPUZ[Y\TLU[\ZLZ New sample 3D imaging: HZPUNSLZVS]LU[·^H[LY·[OH[JHUIL¸[\ULK¹\UKLY[OLKPMMLYLU[ verification sensor 3D-MARVEL L_WLYPTLU[HSJVUKP[PVUZSL]LYHNPUN[OLVWLYH[PUNWYPUJPWSLZVM First high-current density system for lunar spin-off started. [OLZ\IJYP[PJHS^H[LYL_[YHJ[VY7YVVMVMJVUJLW[L_WLYPTLU[Z CNT field-emission mission developed. OH]LILLUKVULL_HTPUPUNO`KYVS`ZPZYLHJ[PVUJOLTPZ[Y`HUK sources developed. L_[YHJ[PVUVMZL]LYHS[HYNL[TVSLJ\SLZZ\JOHZHTPUVHJPKZ

D JPL BLACK Silicon Technology ’02 ’05’07 ’11 ’13 JPL HAS DEVELOPEDHJY`VL[JOZPSPJVUZ\YMHJL [L_[\YPUN[LJOUPX\LPL¸ISHJRZPSPJVU¹[OH[PZYHWPK Development of a YLWLH[HISLHUKYVI\Z[^P[OWYVJLZZWHYHTL[LYZHKQ\Z[HISLMVY MEMS gyroscope with Si DRG IP leads Development of black VW[PTPaH[PVUVM[L_[\YLJOHYHJ[LYPZ[PJZKLWLUKPUNVU\[PSPaH[PVU the best reported bias to a spin-off. Si technology to enhance 4\S[PWSLHWWSPJH[PVUZL_PZ[![OLYLZ\S[HU[HYLHLUOHUJLTLU[ stability for spacecraft Nano and micro the performance of imaging E OHZHWWSPJH[PVUZPU[OLYTHSTHUHNLTLU[HUKPULSLJ[YPJHS and defense use. systems research spectrometers for Earth KL]PJLZZ\JOHZJHWHJP[VYZHUKIH[[LYPLZ"[OL[L_[\YPUN started. science applications. LUHISLZ[OLZ\YMHJL[VILTHKLLP[OLYZ\WLYO`KYVWOVIPJ VYZ\WLYO`KYVWOPSPJ^P[OHWWSPJH[PVUZPUTPJYVÅ\PKPJZHUK PVUWYVW\SZPVU"HUK[OLOPNOSPNO[[YHWWPUNJHWHIPSP[`ÄUKZ HWWSPJH[PVUZPUMHIYPJH[PVUVMHU[PYLÅLJ[P]LZ\YMHJLZMVYVW[PJHS PUZ[Y\TLU[ZZ\JOHZPTHNPUNZWLJ[YVTL[LYZHUKJVYVUHNYHWOZ ;OLHIPSP[`[VKLÄUL\S[YHISHJRZ\YMHJLZHKQHJLU[[VOPNOS` F YLÅLJ[P]LVY[YHUZTPZZP]LZ\YMHJLZ^P[OSP[OVNYHWOPJWYLJPZPVU OHZLUHISLK173»ZISHJRZPSPJVU[LJOUVSVN`[VILPUJVYWVYH[LK PU[VZL]LYHSÅPNO[PUZ[Y\TLU[ZPUJS\KPUN/`;,:(=(90:<*0: JPL’s Black Si exhibits near zero reflectivity from UV out to ~20 μm /`ZW0904H9:790:4HUK5,65 IMAGE A!Schematic flow chart of the RF-powered micro-extraction process. IMAGE B!Photograph of the RF-powered micro-extractor. IMAGE C!

S-shaped waveguide. IMAGE D!OCO2 spectrometer slit. IMAGE E!WFIRST- AFTA high-contrast imaging apodizer for planet finding near bright parent star. Background image: This is an enhanced-color % Reflectance / Wavenumber (cm–1) IMAGE F!Cryo-etched black Si reflectance as a function of wavelength. view generated from images acquired by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter (MRO).

54 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 55 MEP will revolutionize small MEP thruster under a measurement microscope during alignment of 400 emitter capabilities. needles and extractor apertures within 10 μm

of center of the 40-μm-diameter apertures. COLLEEN MARRESE-READING Principal Investigator, Microfluidic Electrospray Propulsion

20 YEARS AT JPL

Electrospray propulsion systems... MICROFLUIDIC scalable and high precision. Electrospray Propulsion (MEP) ADVANCESPUTPJYVMHIYPJH[PVUJHWHIPSP[PLZHYL LUHISPUN[OLKL]LSVWTLU[VMHYYH`ZVMZPSPJVULSLJ[YVZWYH` ULLKSLZMVYOPNOS`JVTWHJ[PU[LNYH[LKZJHSHISLPUKP\T M\LSLKLSLJ[YVZWYH`[OY\Z[LYZ;OLZPSPJVULTP[[LYHYYH`JOPWZ OH]LULLKSLZPUJT[OH[HYLHIV\[›T[HSS^P[O [HWLYLKZPKL^HSSZHUKH_PHSNYVV]LZMVYJHWPSSHY`MVYJLKYP]LU WYVWLSSHU[ÅV^;OL`HYLWH[[LYULK\ZPUNNYH`ZJHSLLSLJ[YVUILHT SP[OVNYHWO`[V^YP[LHJVTWSL_+YLZPZ[L_WVZ\YLWYVÄSLHUKL[JO THZR;OLLTP[[LYZHYLSVHKLK^P[OH[OPUÄSTVMPUKP\TWYVWLSSHU[\ZPUN TPJYVMHIYPJH[PVUMHJPSP[PLZ;OLOLH[LY[VTLS[[OLPUKP\TPZMHIYPJH[LKMYVT W`YL_HUKZPSPJVUJOPWZHUK[OLUIVUKLK[V[OLLTP[[LYHYYH`JOPW\ZPUN HUVKPJIVUKPUN;OL[OY\Z[LYHZZLTIS`HSZVPUJS\KLZHUL_[YHJ[VYLSLJ[YVKL OPNO]VS[HNLPZVSH[VYWYVWLSSHU[THUHNLTLU[KL]PJLHUKHUHZZLTIS`Z[Y\J[\YL 2PSV]VS[ZHYLHWWSPLKIL[^LLU[OLULLKSLZHUK[OLL_[YHJ[VY^P[OHWLY[\YLZHSPNULK [V[OLULLKSLZ[VKLMVYT[OLPUKP\TPU[VHSPX\PKJVULH[[OLHWL_VM[OLULLKSLZ HUK[OLUL_[YHJ[HUKHJJLSLYH[LPVUZ[V[LUZVM[OV\ZHUKZVMTL[LYZWLYZLJVUK[V JYLH[L[OY\Z[;OLMLLKZ`Z[LTPZOPNOS`PU[LNYH[LKPU[V[OL[OY\Z[LYOLHKILJH\ZLP[PZ IHZLKVUJHWPSSHY`MVYJLZVUS`^P[OUV]HS]LZVYWYLZZ\YPaLKYLZLY]VPY;OPZHWWYVHJO[V LSLJ[YVZWYH`WYVW\SZPVU^PSSPTWYV]LVU[OLZ[H[LVM[OLHY[PU]VS\TLHUKTHZZI`TVYL[OHU [PTLZ;OPZ[LJOUVSVN`OHZYLJLU[S`KLTVUZ[YH[LKVWLYH[PVUH[V]LYTPJYVUL^[VUZVM [OY\Z[HUKOV\YZVMZ[HISLVWLYH[PVUH[SV^LY[OY\Z[SL]LSZ»

56 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 57 08 |

A B microfluidic electrospray propulsion

The bonded emitter array and heater is pre-loaded with indium propellant MEP Will Enable New Spacecraft CONTROL PARADIGMS in a combined e-beam/thermal SEVERAL THRUSTERSJHUIL YLHJ[PVU^OLLSZ]PIYH[PVUPZVSH[PVUOL_HWVKZ evaporation system. The chip is mounted on a rotating arm that has KPZ[YPI\[LKVU]LY`ZTHSSVY]LY`SHYNL HUKO`KYHaPUL[OY\Z[LYZ[VVMMSVHK[OLT;OL` three axes of rotation to allow ZWHJLJYHM[[VWYV]PKLH[[P[\KLJVU[YVS[VT\JO ^PSSOH]L[OLJHWHIPSP[`[VVWLYH[LJVU[PU\V\ZS` for conformal coating of complex OPNOLYWYLJPZPVU[OHUYLHJ[PVU^OLLSZ^OPSL MVY`LHYZ\ZPUNVUS`O\UKYLKZVMNYHTZVM 3D structures. ZPNUPÄJHU[S`YLK\JPUNZ`Z[LTTHZZ]VS\TL PUKP\TWYVWLSSHU[;OLOPNO]VS[HNLWV^LY HUKJVU[YVSJVTWSL_P[`:[\K`YLZ\S[ZZ\NNLZ[ WYVJLZZPUN\UP[ZHYL\UKLYKL]LSVWTLU[[V [OH[4,7JV\SKWYLJPZPVUWVPU[L_VWSHUL[ PU[LNYH[L^P[OZPUNSLVYT\S[PWSL[OY\Z[LYZVU C D VIZLY]H[VYPLZ[V[PTLZIL[[LYWYLJPZPVU _JTLUHISPUNKPZ[YPI\[PVUVMJVTWSL[L [OHU[OH[VM[OL/\IISL:WHJL;LSLZJVWL WYVW\SZPVUZ`Z[LT\UP[Z^P[OJVU[YVSVMHU`VM ^OPJOPZJ\YYLU[S`Z[H[LVM[OLHY[PUWVPU[PUN [OLPU[LNYH[LKZ`Z[LTZ]PHZL]LYHSSV^]VS[HNL WYLJPZPVU;OL`^V\SKLUHISLLSPTPUH[PUN ^PYLZVUS`[V[OLZWHJLJYHM[H]PVUPJZ\UP[

IMAGE A!100-micronewton prototype MEP thruster in a thermal shield. IMAGE B! MEP thruster on a micronewton thrust stand in a 2-meter-diameter vacuum chamber for testing. IMAGE C!MEP thruster being assembled. IMAGE D!Chamber of the combined e-beam/thermal deposition system used to Single array of 400 electrospray needles is pre-load the emitters with propellant. First fabrication run of 150-μm- demonstrated, with 300-μm-tall structures, tall complex geometries in tapered and grooved sidewalls, and sharp silicon, with tapered sidewalls, tips. First electrospray test at JPL using MEP Will Enable Nanosats with Extraordinary using a combination of gray- MDL-fabricated arrays, with 5 μN PROPULSION CAPABILITY scale lithography and DRIE. for 20 minutes. MEP TECHNOLOGY PZ OPNOS` JVTWHJ[ ^P[O TPJYVMHIYPJH[LK JVTWVULU[Z H JHWPSSHY`MVYJLKYP]LUMLLKZ`Z[LTHUKZVSPKOPNOKLUZP[`PUKP\TTL[HSWYVWLSSHU[[OH[ HYLHSSPU[LNYH[LKPU[V[OL[OY\Z[LYOLHKMVYHOPNOS`KPZ[YPI\[HISLWYVW\SZPVUHYJOP[LJ[\YL ^P[OH]LY`OPNOKLS[H]JHWHIPSP[`VU]LY`ZTHSSZWHJLJYHM[;OPZ[OY\Z[LY[LJOUVSVN` ’94 ’06 ’12 ’14 ’15 ^V\SKWYV]PKLIV[OWYPTHY`WYVW\SZPVUHUKH[[P[\KLJVU[YVS^P[OLPNO[[OY\Z[LYZ[VLUHISL PU[LYWSHUL[HY`*\IL:H[ZHUK*\IL:H[ZMVY,HY[OVYIP[^P[OT\JONYLH[LYVYIP[THUL\]LYPUN JHWHIPSP[PLZ[OHUSHYNLZWHJLJYHM[0[VWLYH[LZH[HZWLJPÄJPTW\SZLVM%Z[VLUHISL Repeatable successful fabrication of emitter TZVMKLS[H]JHWHIPSP[`VUH<*\IL:H[^P[OVUS`NYHTZVMPUKP\TPUH]VS\TL Fabrication of 500-μm- arrays with feed-system vias, bonded with the SLZZ[OHUJT*\IL:H[Z^HYTZ^P[O4,7JV\SKILYLSLHZLK[VJOHYHJ[LYPaLHZ[LYVPKZ First demonstration of tall microemitters in heater and pre-loaded with indium propellant. *\IL:H[Z^P[O4,7JV\SKYL[\YUZHTWSLZMYVT4HYZ;OL`JV\SKILYLSLHZLKMYVTT\JO gray-scale e-beam silicon, with the Demonstration of stable thrust at 25 μN for 1 hour, SHYNLYZWHJLJYHM[[VHZZLTISLPU[VJVTWSL_HYJOP[LJ[\YLZ lithography at JPL. collaboration of with controlled performance operation above 150 μN. UC Irvine. Microfabricated ELECTROSPRAY NEEDLES JPL HAS DEVELOPEDHTPJYVMHIYPJH[PVUWYVJLZZMVY+LSLJ[YVZWYH`ULLKSLHYYH`Z \ZPUNHJVTIPUH[PVUVMNYH`ZJHSLLSLJ[YVUILHTSP[OVNYHWO`HUKKLLWYLHJ[P]LPVUL[JOPUN +90,(OPNOYLZVS\[PVULILHTZLUZP[P]LWOV[VYLZPZ[PZL_WVZLKPUPUJYLTLU[ZVMUVUSPULHY KVZLZHUKKL]LSVWLKPUHUP[LYH[P]LTHUULY[VHJOPL]LHJJ\YH[LKLW[OVM[OL+ZOHWLZ (J\Z[VT+90,WYVJLZZPZ[OLUHWWSPLK[VHJOPL]L[HSSULLKSLZ%›T^P[O[HWLYLK ZPKL^HSSZHUKPU[LNYH[LKNYVV]LZ-PUHSS`[OLHYYH`ZHYLTL[HSSPaLK^P[OWYVWLSSHU[;OPZUV]LS MICROFABRICATION OF COMPLEX 3D GEOMETRIES HUK\UPX\LWYVJLZZ[VMHIYPJH[LJVTWSL_+Z[Y\J[\YLZUV[VUS`LUHISLZTPJYVMHIYPJH[LK for Microfluidic Electrospray Propulsion Systems LSLJ[YVZWYH`Z`Z[LTZI\[PZHSZVILULÄJPHSMVYIPVTLKPJHSHUKZ\YNPJHSTPJYVULLKSLKL]PJLZ SHZLYZHUKWOV[VUPJZJY`Z[HSZVYTPJYVÅ\PKPJZJOHUULSZMVYWYLJPZLZWYH`N\UHWWSPJH[PVUZ

58 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 59 By analyzing distributions of organics on other worlds, we Image of Saturn’s icy moon Enceladus acquired by NASA’s Cassini spacecraft. can search for patterns that we The blue “tiger stripes” in the lower portion of the image are geologically may recognize as life, very similar active “geyser” features, which spray icy, organic-laden material into space. or very different from our own.

PETER WILLIS Senior Technologist, Microfluidic Life Analyzer

11 YEARS AT JPL

JPL is developing IN SITUInstruments instruments to search AT THE MOST BASICTVSLJ\SHYSL]LSHSSSPML VU,HY[OPZM\UKHTLU[HSS`[OLZHTLJVUZ[Y\J[LK for chemical evidence MYVTHYLSH[P]LS`ZTHSSZL[VMJOLTPJHSI\PSKPUNISVJRZ )`HUHS`aPUN[OLKPZ[YPI\[PVUZVMVYNHUPJTVSLJ\SLZVU of life on Europa V[OLY^VYSKZ^LJHUZLHYJOMVYWH[[LYUZVM[OLZLI\PSKPUN ISVJRZ[OH[JHUWYV]PKLJS\LZHIV\[[OLWYLZLUJLVML_[PUJ[VY L_[HU[SPML0U[OPZZLHYJOMVYSPMLPU[OL\UP]LYZLPUZ[Y\TLU[H[PVU and Enceladus. JHWHISLVMSPX\PKIHZLKJOLTPJHSHUHS`ZPZPZULLKLK;OPZ YLX\PYLTLU[MVYSPX\PKHUHS`ZPZPZUV[Z\YWYPZPUN!P[^HZPU^H[LY [OH[SPMLL]VS]LKVU,HY[OHUK[OYV\NOSPX\PKIHZLK[LJOUPX\LZ[OH[ ^LOH]LNYLH[S`H\NTLU[LKV\Y\UKLYZ[HUKPUNVMIPVSVN`HUKJVTWSL_ IPVSVNPJHSWYVJLZZLZ

4PJYVJOPWLSLJ[YVWOVYLZPZ^P[OSHZLYPUK\JLKÅ\VYLZJLUJL4,30-KL[LJ[PVUPZ HSPX\PKIHZLK[LJOUPX\L[OH[WYV]PKLZLMÄJPLU[ZLWHYH[PVUZMVYH]HYPL[`VM[OLZL I\PSKPUNISVJRZZ\JOHZHTPUVHJPKZVYMH[[`HJPKZ:WLJPÄJTVSLJ\SHYWYVWLY[PLZ VM[OLZLVYNHUPJHJPKZJOPYHSP[`VMHTPUVHJPKZHUKJHYIVUJOHPUSLUN[OVMMH[[` HJPKZHYL\ZLM\SIPVTHYRLYZZOV\SK[OL`ILKL[LJ[LKPUL_[YH[LYYLZ[YPHSLU]PYVUTLU[Z ;V^HYKZ[OPZNVHS173OHZKL]LSVWLK[OL*OLTPJHS3HW[VW[OLÄYZ[IH[[LY`WV^LYLK H\[VTH[LKYLWYVNYHTTHISLWVY[HISLHZ[YVIPVSVN`PUZ[Y\TLU[;OL*OLTPJHS3HW[VW OV\ZLZ[OLTPJYVÅ\PKPJZLSLJ[YVUPJZHUKVW[PJZULLKLK[VWLYMVYTOPNOS`ZLUZP[P]L4,30- HUHS`ZPZVMVYNHUPJHJPKZHUKV[OLYVYNHUPJIPVTHYRLYZ»

60 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 61 09 |

SEARCHING FOR LIFE in the Universe in situ instruments THE SEARCH FOR EVIDENCEVMWHZ[VYWYLZLU[SPMLVUHSPLU^VYSKZZ[HY[Z^P[O in a Small Package [OLKL[LJ[PVUVMVYNHUPJZPNUH[\YLZLZZLU[PHSMVYSPMLVU,HY[O;V^HYKZ[OPZLUK173OHZ BIG SCIENCE KL]LSVWLKHUL^Z[YH[LN`MVYHUHS`aPUNMH[[`HJPKZVUV\YTPJYVÅ\PKPJKL]PJLZ JPL HAS DEVELOPED ¸SHIVUHJOPW¹ Z`Z[LTZ [V ZLHYJO -H[[`HJPKZHYLMV\UKPU[OLJLSSTLTIYHULZVMHSS[OYLLRPUNKVTZVMSPMLVU,HY[OHUKUVYTHSS` MVYZPNUH[\YLZVMWHZ[VYWYLZLU[SPMLVUHSPLU^VYSKZ;OLZLTPUPH[\YL HJJV\U[MVY¶ VMTPJYVIPHSIPVTHZZ;O\ZI`HUHS`aPUN[OLZLTVSLJ\SLZP[^V\SKIL SHIVYH[VYPLZJV\SKILWSHJLKHIVHYKM\[\YLZWHJLJYHM[VYWSHUL[HY`YV]LYZ WVZZPISL[VPKLU[PM`[OLYLTHPUZVMTPJYVVYNHUPZTZWYLZLU[PUL_[YH[LYYLZ[YPHSZHTWSLZ [OH[JV\SKZLHYJOMVYJOLTPJHSIPVZPNUH[\YLZPUWSHJLZ^OLYLHZ[YVUH\[ZJHUUV[ `L[]PZP[;OLZLTPUPH[\YLSHIVYH[VYPLZJV\SKKVHSS[OLL_WLYPTLU[ZYLX\PYLK ;LYYLZ[YPHSTPJYVVYNHUPZTZOH]LJLSSTLTIYHULZ^P[OKPMMLYLU[JHYIVUJOHPUSLUN[O PUHUH\[VTH[LKMHZOPVU^P[OV\[ULLKPUNHO\THUWYLZLU[;OLZLH\[VTH[LK ZPNUH[\YLZ-VYL_HTWSLHSNHSMH[[`HJPKZ[LUK[VILHYV\UK[OL**THYR^OLYLHZ SHIVUHJOPWZ`Z[LTZHYLTHKLVMZ[HJRLKNSHZZ^HMLYZ[OH[HYLUVSHYNLYPU IHJ[LYPHSMH[[`HJPKZHYL[`WPJHSS`** PUSLUN[O6\YTPJYVÅ\PKPJHUHS`aLYKPZ[PUN\PZOLZ JPYJ\TMLYLUJL[OHUH+=+;OLTPJYVJOPWZLLUOLYL^HZKLZPNULKMHIYPJH[LKHUK HIYVHKYHUNLVMMH[[`HJPKZI`[OLSLUN[OVM[OLPYJHYIVUJOHPUZ;O\ZI`TLHZ\YPUN[OLZL [LZ[LKH[[OL1734+30[PU[LNYH[LZHUHYYH`VMTPJYV]HS]LZMVYÅ\PKPJTHUPW\SH[PVUZ TVSLJ\SLZPUHU\URUV^UZHTWSL^LJHUNHPUPUMVYTH[PVUHIV\[^OH[VYNHUPZTZ^LYL ^P[OHTPJYVJOHUULSMVYLSLJ[YVWOVYL[PJZLWHYH[PVUHUKKL[LJ[PVUMVYHUHS`ZPZVM[OL WYLZLU[L]LUPM[OLZHTWSLPZ]LY`VSKHUK[OLVYNHUPZTZHYLUVSVUNLYHSP]L VYNHUPJZPUHNP]LUZHTWSL;OPZKL]PJL^HZ\ZLK[VWLYMVYTMVY[OLÄYZ[[PTLHULU[PYL 0U4+3KLTVUZ[YH[LK[OLHUHS`ZPZVM[OLM\SSYHUNLVMZOVY[[VSVUNMH[[`HJPKZ*¶* ¸LUK[VLUK¹HUHS`ZPZVMHTPUVHJPKZPUHUH\[VTH[LKMHZOPVU"[OH[PZHSS[OLZ[LWZMVY MVY[OLÄYZ[[PTLVUHTPJYVÅ\PKPJKL]PJLIMAGE A(UL^Å\VYLZJLU[K`L^HZ\ZLK[VSHILS [OLHUHS`ZPZ^LYLL_LJ\[LKI`ZLUKPUNJVTTHUKZ[V[OLTPJYVJOPWMYVTHJVTW\[LY [OLJHYIV_`SPJHJPKPUH[^VZ[LWVULWV[YLHJ[PVU[VLUHISLKL[LJ[PVU]PHSHZLYPUK\JLK ^P[OV\[YLX\PYPUNHU`O\THUPU[LY]LU[PVU Å\VYLZJLUJL-H[[`HJPKZ^LYLZ\JJLZZM\SS`KL[LJ[LKPUHZLKPTLU[ZHTWSLMYVT[OL:UHRL7P[ ;OPZ[LJOUVSVN`HSSV^ZMVYWYVNYHTTHISLHUHS`ZLZHUKPZL_[YLTLS`\ZLM\SMVY O`KYV[OLYTHSZ`Z[LTVM[OL4PK([SHU[PJ9PKNLIMAGE C–DKLTVUZ[YH[PUN[OLWV[LU[PHSVM[OPZ WSHUL[HY`TPZZPVUZ[VWSHJLZZ\JOHZ4HYZ,\YVWH,UJLSHK\ZVY;P[HU^OLYL TL[OVK[VOLSWJOHYHJ[LYPaLTPJYVIPHSJVTT\UP[PLZ[OYV\NO[HYNL[LKIPVTHYRLYHUHS`ZPZ [OLZHTWSLZLUJV\U[LYLKTH`IL]LY`KPMMLYLU[[OHUHU[PJPWH[LK0UHKKP[PVU [VL_[YH[LYYLZ[YPHSL_WSVYH[PVU[OPZ[LJOUVSVN`HSZVOHZT\S[PWSLHWWSPJH[PVUZ VU,HY[OZ\JOHZLU]PYVUTLU[HSTVUP[VYPUNHUKJSPUPJHSHUHS`ZPZPUYLTV[L ZL[[PUNZ^OLYLWVY[HISLPUZ[Y\TLU[H[PVU^V\SKIL\ZLM\S

IMAGE A!Separation of C2 to C30 fatty acids (2 mM C2–C26, in on a microchip. IMAGE B!Long-chain fatty acids. C IMAGE C!Sample collection at the base of the mound. Solid rocks were collected with the manipulator and sediments were collected with a water vacuum connected to a sample chamber. IMAGE D!The Snake Pit hydrothermal vent field as seen from the MIR 2 submersible. Active vents can be seen at the top of the structure. The sample A picture of the first prototype site was at the base. D microchip developed at MDL for automated analysis of amino acids. This technology could be used to find microscopic forms of life on other planets. This would be essential not only for , but also to keep future astronauts safe as they explore Mars and other worlds.

62 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 63 09 |

in situ instruments

TAKING THE LAB to the Sample What Happens NEXT 4PJYVÅ\PKPJ WLYPZ[HS[PJW\TW -YP[ DURING THE LAST DECADE173OHZTHKLNYLH[WYVNYLZZ[V^HYKZ[OLKL]LSVWTLU[VMWVY[HISL CURRENTYLZLHYJOPZMVJ\ZLKVU A C PUZ[Y\TLU[ZMVYPUZP[\KL[LJ[PVUVMVYNHUPJZ;OL4+3PUZ[Y\TLU[JVTIPULZTPJYVJOPWLSLJ[YVWOVYLZPZ4, PUJVYWVYH[PUNHKKP[PVUHSMLH[\YLZ[V[OL 2.0 ^P[OSHZLYPUK\JLKÅ\VYLZJLUJL30-KL[LJ[PVUMVYHWV^LYM\S[LJOUPX\L[OH[HSSV^Z[OLHUHS`ZPZVMH^PKL L_PZ[PUN*OLTPJHS3HW[VWZ\JOHZ[OL 1.9 YHUNLVMYLSL]HU[IPVTHYRLYZ^P[OL_[YLTLZLUZP[P]P[`173PZW\ZOPUN[OPZ[LJOUVSVN`MVY^HYK^P[O[OLNVHS JHWHIPSP[`VMSVVRPUNH[ZVSPKZHTWSLZHUK 1 VMVULKH`PTWSLTLU[PUN4,30-VUHM\[\YLZWHJLÅPNO[TPZZPVU4+3OHZKL]LSVWLK[OLJ\YYLU[Z[H[LVM WLYMVYTPUNWYLJVUJLU[YH[PVUVUJOPW 1.8 -SV^

[OLHY[PUZ[Y\TLU[PU[LNYH[PUN4,30-KL[LJ[PVUHUKH\[VTH[PVUJHWHIPSP[PLZ![OL*OLTPJHS3HW[VW IMAGE CZOV^Z[OLÄYZ[KLTVUZ[YH[PVUVM :PNUHS 1.7 THUPW\SH[PVUVMZLKPTLU[ZVUJOPW>L ;OL*OLTPJHS3HW[VWPZJHWHISLVMWLYMVYTPUNSPX\PKIHZLKHUHS`ZPZVMT\S[PWSLZHTWSLZPUHUH\[VTH[LK 1.6 TVKPÄLK[OLTPJYVÅ\PKPJHYJOP[LJ[\YL[V MHZOPVUPU[OLÄLSK;OPZ[Y\S`WVY[HISLPUZ[Y\TLU[PZHSZVL_[YLTLS`ZLUZP[P]LHSSV^PUN[OLKL[LJ[PVUVM 1.5 [YHJLZVMVYNHUPJTVSLJ\SLZ[OH[JV\SKILWYLZLU[VU,\YVWHVYV[OLYKLZ[PUH[PVUZPU[OLZVSHYZ`Z[LT PU[LNYH[LHÄS[LYHUKJVUÄULK[OLZHTWSL[V 20 40 60 80 100 2 VULZLJ[PVUVM[OLTPJYVJOPW;OPZWYVVMVM -SV^ ;OPZ`LHY[OLPUZ[Y\TLU[^HZ[LZ[LKMVY[OLÄYZ[[PTLV\[ZPKL[OLSHIVYH[VY`I`WLYMVYTPUNHUHS`ZPZVU 1.6 mm B HTPUVHJPKZPUNYLLUY\Z[;OL*OLTPJHS3HW[VW^HZWSHJLKVU[VWVMHYV]LYPU[OL4HYZ@HYKH[173 JVUJLW[PZHZPTWSLKLTVUZ[YH[PVUVMOV^ [OPZ[LJOUVSVN`JV\SKIL\ZLK[VWLYMVYT HZWYVVMVMJVUJLW[  3 L_[YHJ[PVUZVUJOPW-VSSV^PUNL_[YHJ[PVU [OLZHTWSLJV\SKILYV\[LK[VHUV[OLY HYLHVM[OLTPJYVJOPWMVYWYLJVUJLU[YH[PVU IMAGE A!Example of an analysis of amino acids on-chip. Current research LTWSV`PUN[YHWWLKILHKZIMAGE B involves chiral analysis of amino acids. IMAGE B!Picture of glass microbeads (~40 to 60 μm) trapped inside a microfluidic device for pre-concentration. IMAGE C! 173PZHSZVKL]LSVWPUNUL^TL[OVKZMVY First demonstration of manipulation of solid samples on-chip. [1: Pumping sediment DEVELOPMENT OF A MICROFLUIDIC CHEMICAL ANALYZER [OLHUHS`ZPZVMJOPYHSHTPUVHJPKZVUJOPW  mixed with blue dye into the device, 2: Pumping water through the sediment, 3: Water from the Atacama to the Mars Yard and the Bottom of the Ocean dissolves the dye mixed with the sample].

Field test in the Atacama Design of a 3-D instrument New protocols for detection of long- The Chemical Laptop was tested for the Desert of a microfluidic model for the Planetary In Situ chain amines were demonstrated first time in the field. The instrument instrument and extraction unit The Urey Instrument was selected Capillary Electrophoresis System by analyzing Titan aerosol was operated at the Mars Yard for developed at UC Berkeley in for the ESA ExoMars Mission. While (PISCES). PISCES integrates an simulants (). four hours using only collaboration with JPL. Extracts Urey was descoped from the payload First demonstration of extraction subsystem with the battery power. of samples from the Yungay in 2009 before a working prototype automated analysis of ME-LIF analyzer. PISCES could First analysis of fatty Hills were analyzed, detecting could be built, the project concept amino acids on a microchip readily be incorporated into acids on a microchip amino acids down to 4 ppb. was advanced, eventually becoming developed at MDL. planetary landers, rovers, or other using organic solvents the Chemical Laptop. robotic exploration vehicles. was performed at MDL.

’05 ’07 ’09 ’11 ’12 ’13 ’14 ’15

Development of a Teflon membrane for incorporation into microfluidic devices. New strategies for analysis of These membranes are resistant to sulfur-containing molecules organic solvents and reduce the were developed and validated possibility of contamination. by analyzing fluid from geothermal pools.

The Snake Pit hydrothermal vent field as seen from the MIR 2 submersible. Active vents can be seen at the top of the structure.

CREDIT : K. P. Hand

64 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 65 MDL equipment is often custom built to specific requirements.

JAMES LAMB Lead, Facility and Safety

30 YEARS AT JPL

Infrastructure & CAPABILITIES

THE SOPHISTICATED SEMICONDUCTOR WYVJLZZPUN[OH[[HRLZWSHJLPU[OL4+3YLX\PYLZ MDL requires complex JVTWSL_PU[LNYH[LKI\PSKPUNZ`Z[LTZHUKLX\PWTLU[ ;OLZLJSVZLS`TVUP[VYLKZ[H[LVM[OLHY[JHWHIPSP[PLZ integrated building PUZ[HSSLKPU\S[YHJSLHULU]PYVUTLU[ZMVYT[OLMV\UKH[PVUVM 4+3»Z[LJOUPJHSPTWSLTLU[H[PVUHUKPUUV]H[PVU6]LYZPNO[HUK systems. SVJHSJVUÄN\YH[PVUJVU[YVSPZWYV]PKLKI`[OL*LU[YHS7YVJLZZPUN HUK4+3:\WWVY[.YV\W^OPJOHSZVTHPU[HPUZHZTHSSZ[HMMVM WYVJLZZPUNWLYZVUULSMVYZWLJPHSPaLKWYVJLZZPUNZ\WWVY[+PYLJ[ ZLY]PJLZHYLTHUHNLKJVVYKPUH[LKHUKWYV]PKLKPUTHPU[HPUPUN[OL I\PSKPUNPUMYHZ[Y\J[\YLHUKLX\PWTLU[PUJS\KPUNSPMLZHML[`Z`Z[LTZMVY ZHML[`HZZ\YHUJL>OPSLPUK\Z[YPHS¸MHIZ¹HYL\Z\HSS`KLZPNULKMVYTHZZ WYVK\J[PVUVMKL]PJLZ\ZPUNHZPUNSLZL[VMZ[HUKHYKWYVJLZZLZVWLYH[PVUZ PU4+3HYLT\JOTVYLÅL_PISLHSSV^PUNYLZLHYJOKL]LSVWTLU[HUKZTHSS ZJHSLWYVK\J[PVUVMHIYVHKYHUNLVMKL]PJLZ^HMLYZPaLZ^HMLY[OPJRULZZLZ HUKTH[LYPHSMHTPSPLZ4+3WYVJLZZLZPU]VS]L:P.H(Z.H5HUKZ\WLYJVUK\J[PUN TH[LYPHSZ(ZHYLZ\S[4+3LX\PWTLU[PZVM[LUJ\Z[VTI\PS[MVYZWLJPÄJYLX\PYLTLU[Z Semiconductor processing equipment in MDL’s cleanrooms are utilized by +LZWP[L[OPZÅL_PIPSP[`HUK[OLKP]LYZLVWLYH[PVUZZ\MÄJPLU[JVU[YVSZHYLPUWSHJL[VHSZV researchers to fabricate improved HSSV^WYVJLZZPUNVMÅPNO[KLSP]LYHISLZHUK4+3OHZHSVUN[YHJRYLJVYKVMZ\JJLZZM\SS` sensors for instrumentation. KVPUN[OPZ6]LY[OLSHZ[X\HY[LYVMHJLU[\Y`VM4+3»ZVWLYH[PVUZU\TLYV\ZPUMYHZ[Y\J[\YL Z`Z[LTZPU4+3OH]LUV[VUS`ILLUTHPU[HPULKI\[HSZVOH]LILLUYLUL^LKHUK\WNYHKLK [VTHPU[HPUP[ZJ\[[PUNLKNLJHWHIPSP[PLZ»

66 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 67 10 |

SIGNIFICANT MDL infrastructure & capabilities INFRASTRUCTURE RENEWALS OVER THE LAST 25 YEARS

» 9LWSHJLTLU[VM[OL3PML:HML[`4VUP[VYPUNZ`Z[LTZ »

68 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 69 10 |

MDL FACILITY & SAFETY SYSTEM MILESTONES ^P[OISVVK^VYRKPZJVU[PU\LKMVY4+3 ZWLLKKYP]LZ[V9*P-PYLWLH[LYPUZ[HSSLK JVTI\Z[PISLKL[LJ[VYZ"WS\ZTHQVY=LY[L_ZWHYLZ AUGUST!*VUZ[Y\J[PVUÄ[\WHUKOVVR\WJVT 9LI\PS[6 THUPMVSK"PUVYNHUPJL_OH\Z[ISV^LY MVY4+3)\PSKPUNJVTWSL[LK " 3PNO[3HIZ)*HUK  WSL[LK4+3ZHML[`WSHUZPUWSHJL-PYZ[9477 (KKLUK\TZ  TLYNLK[VMVYTUL^Z\P[L-PYZ[ÅVVYUVY[OWHULS TV[VYZ"HUKYLWSHJLK[OLKLTPZ[LYLSLTLU[Z Z\ITPZZPVU7OHZL-VYTHS4+3:HML[`9L]PL^ KPZWSH`Z\WKH[LKWOHZL 2012=607SHIWOVULZPUZ[HSSLK+096^H[LYWSHU[/> 1987JANUARY!*LU[LYMVY:WHJL4PJYVLSLJ[YVUPJZ 3PLUZHUK9-(ZHKKYLZZLK6WLYH[PVUHS9LHKPULZZ HUKZLX\LUJPUN\WNYHKLK(/O\TPKPÄJH[PVU ;LJOUVSVN`*:4;LZ[HISPZOLK[VJYLH[LHT\S[P 7YVJLZZLZ[HISPZOLK 2006(/TVKPÄLKMVYPTWYV]LKO\TPKP[`JVU[YVS(/ Z`Z[LT\WNYHKLK*SHZZ0:6 HNLUJ`JYP[PJHSTHZZWYVNYHT^P[OZ[HMMMHJPSP[PLZ SEPTEMBER!-PUHS9LWVY[0ZZ\LK5VU[V_PJ ISV^LYYLWSHJLK:LJVUKHY`JVU[HPUTLU[PUJYLHZLK JSLHUYVVTJVU]LYZPVU)`WHZZWS\TIPUNHKKLK HUKLX\PWTLU[4+3JVUZ[Y\J[PVUILNPUZ VWLYH[PVUZILNPU VU4+3»ZLTLYNLUJ`NLULYH[VYM\LS[HUR [VWYVJLZZJVVSPUN^H[LYZ`Z[LTMVYZLY]PJPUNZ 1988AUGUST!-PYZ[HUU\HSLTWSV`LLZHML[`HUKZLTPJVU 1990 APRIL!9477HWWYV]LKOV\Y173-PYL+LW[HUK 20079LWSHJLK4+([V_PJNHZTVUP[VYPUNZ`Z[LTZ ,TLYNLUJ`NLULYH[VYYLWSHJLKR>[VR> K\J[VYJOLTPJHSVWLYH[PVUZ[YHPUPUNJVTWSL[LK /Ha4H[9LZWVUZL;LHT[YHPULKHUKPUWSHJLFull ^P[O/VUL`^LSS=LY[L_:`Z[LT"4+0:\WLY]PZVY` 20134+3(UUL_JY`VKL^HYZ[HNPUNHYLHHKKLK^P[O OCTOBER!)HZLI\PSKPUNJVUZ[Y\J[PVUJVTWSL[LK operations begin :`Z[LT^P[O5V[PÄLYZ`Z[LTHUK5(:(JLU[YHSPaLK 3LULSZ`Z[LT"ZV\[OPUVYNHUPJL_OH\Z[ISV^LY PTWYV]LKKYHPUHNL;OL5V[PÄLY3PML:HML[`:`Z[LT MDL OPERATIONAL ACTIVITIES / CHANGES ^OLLS"HUKÄYZ[ÅVVYJHYWL[PUNZVSHYWHULSZHKKLK :LJVUKÅVVYJHYWL[ZYLWSHJLK /VUL`^LSS¸-3,?¹[V_PJNHZTVUP[VYZHKKLK;^V 19939477\WKH[LK+PJOSVYVZPSHULHUK (Z/ 1998 (YZPULYLWSHJLTLU[VM (Z/IHS J\Z[VTL_OH\Z[LKPU\ZLWOV[VYLZPZ[JHIPUL[Z IHS/HKKLK·:*(84+HWWYV]LZ0TWYV]LK /YLX\LZ[LK+PZWLYZPVUHUHS`ZPZKVUL 20099LWSHJLK4+3JSLHUYVVT/,7(Z"0-+WHULSZ"HUK HKKLK-SHTTHISLYLMYPNLYH[VYMYLLaLYMVY[OL PUVYNHUPJL_OH\Z[^L[ZJY\IILYHUKPUVYNHUPJ :*(84+HWWYV]LZ ÄYZ[ÅVVYHUNSLKKPZWSH`Z9HPZLKJLPSPUNMVY PUJO Z[VYHNLVMPU\ZLWOV[VYLZPZ[ZHKKLK4VYLJLSS L_OH\Z[VWLYH[PVU[OYV\NO\WNYHKLZ :P4),(KKLK2=([YHUZMVYTLY"HUK]HYPHISL WOVULYLWLH[LYZHKKLK 1999/`KYVNLU+PZ[YPI\[PVU)\URLYJVUZ[Y\J[LK 1994/,7(<37(-PS[LYZYLWSHJLKPU4+3JSLHUYVVTZ =LS[YVUHPYÅV^TLHZ\YLTLU[Z`Z[LTZPUZ[HSSLK· 96HUK^H[LYYLJV]LY`Z`Z[LTPUZ[HSSLKHUK (/JSLHUYVVTZHUK(/ ]LYPÄLKVU4+3+0^H[LYWSHU[0UVYNHUPJL_OH\Z[ 2000(KKLKJSLHUYVVT(HUKJVUULJ[PVU \WZ[YLHTKHTWLY\UP[ZYLWSHJLK^P[OUL^\UP[Z MYVT "(/"(/"2=([YHUZMVYTLY" OH]PUNL_[LYUHSZLY]PJLHISLILHYPUNZ(KKLK LILHTSP[OVNYHWO`<7:Z`Z[LT"HUK+0^H[LY ZLJVUKZLPZTPJJVU[YVSZ`Z[LT WSHU[96\WNYHKL@2YLWSHJLTLU[VM4+( 19954+3»ZLTLYNLUJ`NLULYH[VYM\LS[HURYLWSHJLK [V_PJNHZTVUP[VYZ^P[O*4\UP[Z5(:(6,) 4+3LU[Y`[PSLZNYV\UK^P[OJPYJSLZ[VLSPTPUH[L 9L]PL^VM4+36WLYH[PVUZ ZSPWWPUNOHaHYK^OLU^L[4HU\HSZO\[KV^U 20014+3THJOPULZOVW SHIJVU]LYZPVU Z^P[JOLZHKKLK[V4+3JVU[YVSYVVT173 -PYLOVZLZYLTV]LKMYVTI\PSKPUN-PYL+LW[ ,UNPULLYPUN*V\UJPS9L]PL^VM[OL4+3:HML[` JVUULJ[PVUZYL[HPULK(/*VVS-VNO\TPKP[` (ZZ\YHUJL4HPU[LUHUJL9LX\PYLTLU[Z JVU[YVS\WNYHKLHKKLK4+3HSHYTWVPU[YL]PL^HUK Much of MDL’s PlasmaTherm 19969LVYNHUPaH[PVUVM4+3:HML[`,UNPULLYYLWVY[PUN [LZ[PUN4+3+0>H[LY7SHU[96YL]PZPVU\WNYHKL Versaline Deep Silicon Etcher (DSE) is located in the chase adjacent MYVT:LJ[PVU4HUHNLY[V4+34HUHNLY0UVYNHUPJ 2002(PYPU[HRL[V(/TVKPÄLKMVYUVPZLYLK\J[PVU[V to the cleanroom processing area L_OH\Z[\WZ[YLHTKHTWLYHZZLTISPLZYLTV]LK Z\YYV\UKPUNJVTT\UP[`4+3ÄYLZ`Z[LTZWYPURSLY where samples are loaded. HUK]HS]LKKYHPUZ`Z[LTHKKLK OLHKZYL]PL^LKHUKYLUL^LK-\SSTLKPJHSL_HTZ

70 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 71 10 |

1995 ADDITIONS DELETIONS infrastructure & capabilities MDL EQUIPMENT » ;:*,]HWVYH[VY » *(3,)8\HU[\T+V[(LYVZVS46*=+ COMPLEMENT MILESTONES » 6YPLSPUJO-SVVK,_WVZ\YL:`Z[LT » *\Z[VT(*OHTILY:W\[[LYPUNZ`Z[LT » 4:*7SHZTHZ[LY-S\VYPUL90, » .LULYHS(PY46*=+ ADDITIONS AND DELETIONS » +PL([[HJO3HZLY-HIYPJH[PVU,X\PWTLU[ » /VYPaVU[HS;\IL*SLHULY 1991 ADDITIONS » ,SLJ[YVUPJ=PZPVUZ>HMLY)VUKLY 1999 ADDITIONS » (0?;96546*=+ » 4VKPÄJH[PVUVM9PILY000=4),:`Z[LT » :LU[LJO:, 4\S[PZWLJ[YHS,SSPWZVTL[LY » )YHUZVU7SHZTH(ZOLY MVY.H5(S5.YV^[O DELETIONS » *\Z[VT*VU[HJ[(SSV`LY » 7VS`[LJ:PUNSL-PILY3+=:`Z[LTMVY » (RHZOP)LHT;LJOUVSVN`(););,4 DELETIONS 4PJYV.`YV*OHYHJ[LYPaH[PVU » 2000 ADDITIONS » 5(=;,*46*=+ >@269:;7S\Z:\YMHJL4LHZ\YLTLU[:`Z[LT » 2HYS:\ZZ)(*VU[HJ[(SPNULY » ;LNHS7SHZTH(ZOLY DELETIONS » 2HYS:\ZZ)()VUKLY » <3;,2,]HWVYH[VY 1992 ADDITIONS » » :7HYHTL[LY(UHS`aLY » *(3,)8\HU[\T+V[(LYVZVS46*=+ ;HTHYHR<=PUJO-SVVK,_WVZ\YL:`Z[LT » *VSVY**+*HTLYHHUK*YP[PJHS+PTLUZPVU » » 7SHZTH;LJO*S90, ;^V:LTP[VVS::WPU9PUZLY+Y`LYZ:9+Z^P[OPVUPaH[PVU L[)LUJO[V ^P[O+H[H3VNNPUN » » =HYPHU +3LHR+L[LJ[VY 9LZPK\HS.HZ(UHS`aLY9.(\WNYHKL[V46*=+ DELETIONS » » :\YMHJL:JPLUJL::??7:HMLY+PJPUN:H^ » » =LLJV3LHR+L[LJ[VY 3PURLK,]HWVYH[VYZMVY46_MVSSV^VU » 7OV[VS\TPULZJLUJL4HWWPUN:`Z[LT » :SVHUHUK:3 ,]HWVYH[VYHMLY+PJPUN:H^ 0(:(JPK>L[)LUJOMYVT » » ;V\ZPTPZ*YP[PJHS7VPU[+Y`LY » 7OPSSPWZ49+-V\Y*PYJSL?9H`+PMMYHJ[VTL[LY 4HU\HS,SSPWZVTL[LY » ;^V4LZH>LZ[0UJZ[H[PVU,SLJ[YVWSH[PUN)LUJOLZ » 1997 ADDITIONS /VYPaVU[HS;\IL*SLHULY^P[O*OLTPJHS9LJSHPT » » :WHYL*OHTILYHMLY:[LWWLY^P[O*\Z[VT:[HNL(SSV^PUN+PMMLYLU[:PaLZ 3PULHY(JJLSLYH[VY HUK;OPJRULZZLZVM>HMLYZ/V\ZPUNHUK*VTW\[LYL[7`YVNLUPJ6_PKH[PVU » HUK>HMLY-SH[ULZZ4LHZ\YPUN:`Z[LT +LLW3L]LS;YHUZPLU[:WLJ[YVZJVW`+3;::`Z[LT 3V^;LTWLYH[\YL6_PKL3;6HUK+VWLK » ,?:[LWWLY*VTW\[LYHMLY-\YUHJLZ[HJRZ 7VS`:PSPJVU[\ILZ » -PILY6W[PJ3HZLY>LSKPUNHUK(SPNUTLU[,X\PW garb loads silicon wafers into » :SVHU7YVÄSVTL[LY »

72 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 73 10 |

» 3LZRLY3V^3VZZ+PLSLJ[YPJ+LWVZP[PVU:`Z[LT » 6_MVYK7OVLUP_0*7*OSVYPUL90, DELETIONS » 4LHZ\YLTLU[Z[HUK-:HUK*VTW\[LY infrastructure & capabilities » » 9LZLHYJO+L]PJLZ)\TW)VUKLY » ;LTLZJHS)1+-*,)LHT,]HWVYH[VY 5VY[O4LZH>LZ[0UJ:[H[PVU,SLJ[YVWSH[PUN)LUJO @269:;7S\Z:\YMHJL4LHZ\YLTLU[:`Z[LT » 1,631:4-PLSK,TPZZPVU:,4^P[O,+? )YHUZVU7SHZTH(ZOLY)HJR\W :VM[^HYLMVY1,631)? -:,SLJ[YVU)LHT » 9LZLHYJO+L]PJLZ/PNO7YLZZ\YL)\TW)VUKLY » » 3LZRLY:\WLYJVUK\J[VY:W\[[LYPUN:`Z[LTTT ;`VKH:LYHJWYV[V[`WL:VS]LU[.SV]LIV_7YVJLZZPUN 3P[OVNYHWO`:`Z[LT » >HMLY+PHTL[LY*OHTILY@26:\YMHJL4LHZ\YLTLU[:`Z[LT +:,+90, » :\ZZ4(<=*VU[HJ[4HZR(SPNULY HUK.SV]LIV_LZMYVT DELETIONS » :VSHY:LTP4*4PJYVJS\Z[LY:WPU » ;^V6W[PJHS7YVÄSVTL[LYZMVYWOV[VYLZPZ[Z » 46_6YNHUPJ,]HWVYH[VY » *\Z[VT3LZRLY*OLTPJHSS`(ZZPZ[LK0VU)LHT,[JOLY *VH[PUN:`Z[LT HUKSHYNL^HMLYZ » 46_;LZ[PUNNSV]LIV_9LJVUÄN\YLK *(0), » :LTP[VVS :+\HS:WPU9PUZLY+Y`LY » 3VVTPZ3:+:JYPILY)YLHRLY MVY:PSHUL,_WLYPTLU[ » 4PJYV:JPLUJL,*9+PLSLJ[YPJ+LWVZP[PVU:`Z[LT » :\ZZ4(THZRHSPNULY46,_WVZ\YL » :P[L:LY]PJLZ:WPU+L]LSVWLY » /7?7:,:*(:`Z[LT » ;^V4+(:JPLU[PÄJ:`Z[LT;V_PJ.HZ 6W[PJZ\WNYHKL » ;LWSH77:(4PJYV^H]L7SHZTH(ZOLY » 9PILY4H[LYPHSZ000=4), 4VUP[VYPUN\UP[Z » -YVU[PLY:LTPJVUK\J[VY-:4 5;TT » -PUL[LJO-PULWSHJLY ¸3HTIKH¹)\TW)VUKLY » ALPZZ4PJYVWOV[0004L[LSVNYHWO4PJYVZJVWL:`Z[LT 2008 ADDITIONS 4HU\HS-PST:[YLZZHUK>HMLY)V^4HWWPUN:`Z[LT DELETIONS 2011 ADDITIONS » » >HMHI0U[LYUH[PVUHS  9*(7VS`WYVW`SLUL>L[ =LLJV>@265; 6W[PJHS7YVÄSLY?HMLYZ^P[O*\Z[VT>HZ[L*VSSLJ[PVU*HIPUL[ » :VSP[LJ5+:WPU*VH[LY ?YH`+PMMYHJ[PVU:`Z[LT » /\TTLY:W\[[LY+LWVZP[PVU:`Z[LT » 9OL[LJO0UJ:LTP[VVS:WPU9PUZL+Y`LY:9 » ;@:;(9Z[HJRTTPUJO37*=+^P[O » » 5HUVTL[YPJZ,SLJ[YVJOLTPJHS*HWHJP[HUJL=VS[HNL 2HYS:\ZZ+PHTVUK:JYPILY)YLHRLY » ;LTLZJHS,]HWVYH[VY;HZR:WLJPÄJ SV^Z[YLZZ:P5>L[7`YVNLUPJ6_PKH[PVU3V^ ,*=7YV7YVÄSLY 2005 ADDITIONS » (KKP[PVUHS7\TWZHUK4VK\SLZPUJSK4HZR4VK\SL ;LTWLYH[\YL6_PKL3;6HUKKVWLK7VS`:PSPJVU[\ILZ » 0VU.\UMVY=LLJV,)LHT,]HWVYH[VY » ([VTH[L*5;NYV^[OM\YUHJL MVY:\ZZ.HTTH4PJYVSP[OVNYHWO`4VK\SL*S\Z[LY 2014 ADDITIONS *HZZL[[L[V*HZZL[[L:WPU+L]LSVWLY:`Z[LT DELETIONS » 6_MVYK7SHZTHSHI 6W(3([VTPJ3H`LY+LWVZP[PVU » :\ZZ9* :WPU*VH[LY » :SVHU:3 ,]HWVYH[VY (3+:`Z[LT DELETIONS » 7SHZTH;OLYT(7,?:39-S\VYPULIHZLK0*790, » 7OPSSPWZ49+-V\Y*PYJSL?9H`+PMMYHJ[VTL[LY » ;@:;(9PUJO37*=+^P[O[^V[\ILZMVY3V^:[YLZZ » 6SK0U[LNYH[LK(PY:`Z[LTZ0UJ9*(>L[)LUJO ^P[O3HZLY,UK7VPU[+L[LJ[VY » 3LP[aPU[LYMLYVTL[LY :PSPJVU5P[YPKLHUK([TVZWOLYPJ>L[+Y`6_PKH[PVU » */(:,7W;`WL,]HWVYH[VY » 7SHZTH;OLYT=LYZHSPUL*OSVYPUL0*790,MVY000= DELETIONS 2009 ADDITIONS 2012 ADDITIONS 4H[LYPHSZ » » » (0?;96546*=+ » 3(:(0900()(PYIVYUL7HY[PJSL*V\U[LY )LULX;-:([VTPJ3H`LY+LWVZP[PVU (UNZ[YVT,UNPULLYPUN0UKP\T4L[HS,]HWVYH[VY (3+:`Z[LT » » (RHZOP)LHT;LJOUVSVN`(););YHUZTPZZPVU » =LLJV.,5 PUJO:PSPJVU4VSLJ\SHY)LHT A`NVAL4HWWLY » ,SLJ[YVU4PJYVZJVWL;,4 ,WP[H_`4),:`Z[LT :,;5VY[O(TLYPJH6U[VZ5H[P]L6_PKL0UKP\T » =HYPHU(\[V[LZ[ +3LHR+L[LJ[VY 6_PKL9LTV]HS;VVS 2006 ADDITIONS » :PSPJVUVU0UZ\SH[VY:60HUK*VTW\[LY:VM[^HYL » ;^V/VUL`^LSS-3,?7VY[HISL;V_PJ.HZ4VUP[VYZ » 7YLJP[LJO5HUVMVYTHMLY7HY[PJSL4VUP[VY *HUVU-7(PP3PUL:[LWWLY7YVQLJ[PVU » » 7SHZTHZ[LY94,*OSVYPUL90,^P[ONSV]LIV_ +\HSZ[HJR:LTP[VVS::WPU9PUZLY+Y`LY:9+ » 4HZR(SPNULY 6S`TW\Z3,?;09*VUMVJHS4PJYVZJVWL » » 5L^>H]L9LZLHYJO,a3HaL3HZLY 7SHZTH;OLYT,*9*OSVYPUL90, 2007 ADDITIONS » :\ZZ7YVIL:[H[PVUHUK:VM[^HYL

74 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 75 › :\ZZ)(<=^P[OQPNNPUNZ\WWVY[PUN PACKAGING APPENDICES :\ZZIVUKLY » :,;-*-SPW*OPW)\TW)VUKLY » >HMLY;YHJR9LZPZ[+L]LSVWLY+PZWLUZL:`Z[LTZ! MDL EQUIPMENT COMPLEMENT » 2HYS:\ZZ>HMLY)VUKLY › :\ZZ.HTTH4VK\SL*S\Z[LY:`Z[LT MATERIAL DEPOSITION » ,SLJ[YVUPJ=PZPVUZ>HMLY)VUKLY › :P[L:LY]PJLZ:WPU+L]LSVWLY:`Z[LT » ;OLYTHS,]HWVYH[VYZ » -PUL[LJO-PULWSHJLY ¸3HTIKH¹)\TW)VUKLY › :VSHY:LTP4*4PJYVJS\Z[LY:WPU*VH[PUN:`Z[LT » ,SLJ[YVU)LHT,]HWVYH[VYZ » ;OPUUPUN:[H[PVUHUK0UZWLJ[PVU:`Z[LTZ » @PLSK,UNPULLYPUN:`Z[LT@,:9L]LYZHS6]LU » (UNZ[YVT,UNPULLYPUN0UKP\T4L[HS,]HWVYH[VY MVY**+;OPUUPUN » 6]LUZ/V[WSH[LZ-\YUHJLZHUK4HU\HS:WPUULYZ » PYL)VUKPUN PUJS\KPUN:VSP[LJ*ZWPUULYZHUKH:\ZZ MVY+PLSLJ[YPJZHUK4L[HSZ » +0:*6HUK>HMLY+PJLYZ 9* :WPU*VH[LY » HMLY)V^ » 6_MVYK7SHZTHSHI 6W(3([VTPJ3H`LY+LWVZP[PVU(3+ » HMLY7HY[PJSL4VUP[VY › ([TVZWOLYPJ>L[+Y`6_PKH[PVU » :;190,MVY:\WLYJVUK\J[VYZ » 1,631:4-PLSK,TPZZPVU:,4^P[O,+? » *HYIVU5HUV[\IL-\YUHJL:`Z[LTZ » *\Z[VT?L-L[JOLY » 5PRVUHUKALPZZ0UZWLJ[PVU4PJYVZJVWLZ » ,SLJ[YVWSH[PUN*HWHIPSP[PLZ CHLORINE-BASED PLASMA ETCHING SYSTEMS ^P[O0THNL*HW[\YL » 4VSLJ\SHY)LHT,WP[H_`4), » L[)LUJOMVYPUJO>HMLYZ » ;OVTHZ:^HUU4L[HSSV6YNHUPJ*OLTPJHS=HWVY ;LTWLYH[\YL:[HNL?YH`+PMMYHJ[PVU:`Z[LT » :VS]LU[>L[7YVJLZZPUN)LUJOLZ +LWVZP[PVU46*=+:`Z[LT » :\YMHJL:JPLUJL::??7:^P[O;OLYTHS:[HNL » 9PUZLY+Y`LYZMVY>HMLYZPUJS\KPUN:LTP[VVS : LITHOGRAPHIC PATTERNING » *\Z[VT)HSSPZ[PJ,SLJ[YVU,TPZZPVU4PJYVZJVW` +\HS:WPU9PUZLY+Y`LY » ,SLJ[YVU)LHT,ILHT3P[OVNYHWO`!1,631)? -: ),,4:`Z[LT » *OLTPJHS/VVKZ LILHTSP[OVNYHWO`Z`Z[LT^P[OHUTZWV[ZPaL]VS[ » *\Z[VTL[7YVJLZZPUN)LUJOLZ  HJJLSLYH[PVU]VS[HNLHIPSP[`[VOHUKSL^HMLYZ\W[V PUJOLZPU » 5HUVTL[YPJZ,*=7YV7YVÄSLY » ;V\ZPTPZ )*YP[PJHS7VPU[+Y`LY KPHTL[LYHUKOHYK^HYLHUKZVM[^HYLTVKPÄJH[PVUZ[VKLHS^P[O » =,,*6>@265; :\YMHJL7YVÄSLY » J\Y]LKZ\IZ[YH[LZOH]PUN\W[VTTVMZHN 9HWPK;OLYTHS7YVJLZZVYZ*VU[HJ[(SSV`LYZ PUJS\KPUN?VW[PJZ » » .*(4HUU>HMLY:[LWWLY^P[OJ\Z[VTZ[HNLHSSV^PUNKPMMLYLU[ 7VSPZOPUNHUK7SHUHYPaH[PVU:[H[PVUZ » A`NVAL4HWWLYUVUJVU[HJ[+7YVÄSLY ZPaLZHUK[OPJRULZZLZVM^HMLYZ›TYLZ » :[YHZIH\NO,**OLTPJHS4LJOHUPJHS7VSPZOLY » *HUVU-7(PP3PUL:[LWWLY›TYLZ » 7YLJP[LJO5HUVUMVYTH]L9LZLHYJO,a3HaL3HZLY sample into MDL’s Beneq atomic *\[[PUN:`Z[LT layer deposition (ALD) System. › 2HYS:\ZZ41)^P[OIHJRZPKL09 » › :\ZZ4(<=^P[O46,_WVZ\YL6W[PJZ\WNYHKL 0UKVU\Z/-=7,/`KYVÅ\VYPJ(JPK =HWVY7OHZL,[JOLY

76 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 77 JOURNAL PUBLICATIONS F. Shahedipour-Sandvik. “Ion Implantation-Based  C. Borgentun, C. Frez, R. M. Briggs, M. Fradet, and Single Photon Detectors Operating at 2.5 K,” Appl. Phys. Edge Termination to Improve III-N APD Reliability S. Forouhar, “Single-Mode High-Power Interband Cascade Lett. 105, 122601, 2014.  T. Reck, C. Jung-Kubiak, J. Gill, and G. Chattopadhyay, and Performance,” IEEE Photonics Technol. Lett. 27, Lasers for Mid-Infrared Absorption Spectroscopy,” Opt. )%XVVLqUHV&&ODXVHQ$7LUDQRY%.RU]K9%à9HUPD “Measurement of Silicon Micromachined Waveguide 498, 2015. Express 23, 2446, 2015. Components at 500 to 750 GHz,” IEEE Trans. Terahertz Sci. S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, M. L. Cable, S. M. Hörst, C. He, A. M. Stockton, M. F. Mora, Technol., 4 (1), 33, 2014.  D. Z. Ting, A. Soibel, S. A. Keo, Sir B. Rafol, J. M. Mumolo,  C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, J. K. Liu, C. J. Hill, A. Khoshakhlagh, L. Höglund, E. M. 0$7ROEHUW0$6PLWKDQG3$:LOOLV´,GHQWLÀFDWLRQ “Quantum Teleportation from a Telecom-Wavelength  A. Sergeev, V. Mitin, B. Karasik, and S. Vitkalov, Luong, and S. D. Gunapala, “Development of Quantum of Primary Amines in Titan Tholins Using Microchip Photon to a Solid-State Quantum Memory,” Nat. Photonics “Ultrasensitive Superconducting Terahertz Detectors: Novel Well, Quantum Dot, and Type II Superlattice Infrared Nonaqueous Capillary Electrophoresis,” Earth Planet. Sci. 8, 775, 2014. Approaches and Emerging Materials,” J. Phys.: Conf. Ser. photodetectors,” J. Appl. Remote Sens. 8 (1), 084998, 2014. Lett. 403 (0), 99, 2014. 486, 012021, 2014.  D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili,  A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg,  M. L. Cable, A. M. Stockton, M. F. Mora, K. P. Hand, V. B. Verma, R. P Mirin, S. W. Nam, K. J. Resch, and  V. Mitin, V. Pogrebnyak, M. Shur, R. Gaska, B. Karasik, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z.-Y. Ting, and P. A. Willis, “ Microchip Nonaqueous Capillary T. Jennewein, “Direct Generation of Three-Photon and A. Sergeev, ”Hot-Electron Micro & Nanobolometers and S. D. Gunapala, “Room Temperature Performance of Electrophoresis of Saturated Fatty Acids Using a New Polarization Entanglement,” Nat. Photonics 8, 801, 2014. Based on Low-Mobility 2DEG for High-Resolution THz Mid-Wavelength Infrared InAsSb nBn Detectors,” Appl. Phys. Fluorescent Dye,” Anal. Method. 6 (24), 9532, 2014. Spectroscopy,” J. Phys.: Conf. Ser. 486, 012028, 2014.   R. Valivarthi, I. Lucio-Martinez, A. Rubenok, P. Chan, Lett. 105, 023512, 2014.  E. T. da Costa, M. F. Mora, P. A. Willis, C. L. do Lago, F. Marsili, V. B. Verma, M. D. Shaw, J. A. Stern, J. A. Slater,  C. B. McKitterick, H. Vora, X. Du, B. S. Karasik and D. E. D.Z.-T. Ting, Y.-C. Chang, Sir B. Rafol, J. K. Liu, C. J. Hill, H. Jiao, and C. D. Garcia, “Getting Started with Open- '2EODN6:1DPDQG:7LWWHO´(IÀFLHQW%HOO6WDWH Prober, “ Microbolometers with Superconducting S. A. Keo, J. Mumolo, S. D. Gunapala, and S. V. Bandara, +DUGZDUH'HYHORSPHQWDQG&RQWURORI0LFURÁXLGLF Analyzer for Time-Bin Qubits with Fast-Recovery WSi Contacts for Terahertz Photon Detection,” J. Low Temp. “The Sub-Monolayer Quantum Dot Infrared Photodetector Devices,” Electrophoresis 35 (16), 2370, 2014. Superconducting Single Photon Detectors,” Opt. Express Phys. 176, 291, 2014. Revisited,” Infrared Phys. Technol., http://dx.doi.org/10.1016/j.   A. D. Beyer, M. D. Shaw, F. Marsili, M. S. Allman, A. E. Lita, 22, 24497, 2014.  B. S. Karasik, C. B. McKitterick, and D. E. Prober, infrared.2014.09.028, 2014. V. B. Verma, G. V. Resta, J. A. Stern, R. P. Mirin, S. W.   V. B. Verma, A. E. Lita, M.R. Vissers, F. Marsili, D. P. “Prospective Performance of Graphene HEB for  S. D. Gunapala, S. V. Bandara, J. K. Liu, J. M. Mumolo, Nam, and W. H. Farr, “Tungsten Silicide Superconducting Pappas, R. P. Mirin, and S. W. Nam, “Superconducting Ultrasensitive Detection of Sub-mm Radiation,” Sir B. Rafol, D. Z. Ting, A. Soibel, and C. Hill, “Quantum Nanowire Single-Photon Test Structures Fabricated Using Nanowire Single Photon Detectors Fabricated from an J. Low Temp. Phys. 176, 249, 2014. Well Infrared Photodetector Technology and Applications,” Optical Lithography,” IEEE Trans. Appl. Supercond. Amorphous Mo0.75Ge0.25 Thin Film,” Appl. Phys. Lett.  J. V. Siles, C. Lee, R. Lin, G. Chattopadhyay, T. Reck, IEEE J. Selected Topics in Quantum Electronics 20 (6), 25 (3), 1, 2015. 105, 022602, 2014. C. Jung-Kubiak, I. Mehdi, and K. Cooper, “A High-Power 3802312, 2014.   A. D. Beyer, M. E. Kenyon, B. Bumble, M. Runyan, P. E.  E. A. Dauler, M. E. Grein, A. J. Kerman, F. Marsili, S. 105–120 GHz Broadband On-Chip Power-Combined   L. Höglund, D. Z. Ting, A. Soibel, A. Fisher, A. Echternach, W. A. Holmes, J. J. Bock, and C. M. Bradford, Miki, S. W. Nam, M. D. Shaw, H. Terai, V. B. Verma, and Frequency Triple,” IEEE Microw. Wireless Compon. Lett. Khoshakhlagh, C. J. Hill, S. Keo, and S. D. Gunapala, “Comparing Transition-Edge Sensor Response Times in a T. Yamashita, “Review of Superconducting Nanowire DOI:10.1109/LMWC.2015.2390539, 2014. “Minority Carrier Lifetime in Mid-Wavelength Infrared InAs/ 0RGLÀHG&RQWDFW6FKHPHZLWK'LIIHUHQW6XSSRUW%HDPVµ Single-Photon Detector System Design Options and  E. Schlecht, J. V. Siles, C. Lee, R. H. Lin, B. Thomas, InAsSb Superlattices: Photon Recycling and the Role J. Low Temp. Phys. 176 (3–4), 299, 2014. Demonstrated Performance,” Opt. Eng. 53, 081907, 2014. G. Chattopadhyay, and I. Mehdi, “Schottky Diode Based of Radiative and Shockley-Read-Hall Recombination  M. E. Kenyon, A. D. Beyer, B. Bumble, P. E. Echternach,  V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. 1.2 THz Receivers Operating at Room Temperature and Mechanisms,” Appl. Phys. Lett. 105, 193510, 2014. W. A. Holmes, and C. M. Bradford, “Toward a Detector/ Shaw, A. E. Lita, R. P. Mirin and S. W. Nam, “A Four-Pixel Below for Planetary Atmospheric Sounding,” IEEE Trans. L. Höglund, D. Z. Ting, A. Soibel, A. Fisher, A. Readout Architecture for the Background-Limited Far-IR/ Single-Photon Pulse-Position Array Fabricated from WSi THz Sci. Technol. 6 (4), 661, 2014.   Khoshakhlagh, C. J. Hill, S. Keo, and S. D. Gunapala, Submm Spectrograph (BLISS),” J. Low Temp. Phys. 176 Superconducting Nanowire Single-Photon Detectors,” Appl.  F. Boussaha, J. Kawamura, J. Stern, C. Jung-Kubiak, ´,QÁXHQFHRIWKH&DUULHU&RQFHQWUDWLRQRQWKH0LQRULW\ (3–4), 376, 2014. Phys. Lett. 104, 051115, 2014. A. Skalare, and V. White, “2.7 THz Balanced Waveguide Carrier Lifetime in Mid-Wavelength Infrared InAs/InAsSb  M. A. Lindeman, “Resonator-Bolometer Theory, Microwave  J. W, Kooi, R. A Chamberlin, R. R. Monje, A. Kovacs, HEB Mixer,” IEEE Trans. THz Sci. Technol. 4 (5) 545, 2014. Superlattices,” Infrared Phys. Technol., 2014. Published Read Out, and Kinetic Inductance Bolometers,” J. Appl. F. Rice, H. Yoshida, B. Force, K. Cooper, D. Miller, online: doi:10.1016/j.infrared.2014.10.011  K. B. Cooper and G. Chattopadhyay, “Submillimeter-Wave Phys. 116 (2), 024506, 2014. M. Gould, D. Lis, B. Bumble, R. LeDuc, J. A. Stern, and Radar: Solid-State System Design and Applications,” IEEE  A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg,  M. A. Lindeman, J. A. Bonetti, B. Bumble, P. K. Day, T.G.G. Phillips, “Performance of the Caltech Submillimeter Microw. Mag. 15 (7), 51, 2014. R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D. Z.-Y. Ting, B. H. Eom, W. A. Holmes, and A. W. Kleinsasser, Observatory Dual-Color 180-720 GHz Balanced SIS  C. A. Leal-Sevillano, K. B. Cooper, E. Decrossas, and S. D. Gunapala, “Room Temperature Performance of “Arrays of Membrane Isolated Yttrium-Barium-Copper- Receivers,” IEEE Trans. Terahertz Sci. 4, 149, 2014. R. J.Dengler, J. A. Ruiz-Cruz, J. R. Montejo-Garai, Mid-Wavelength Infrared InAsSb nBn Detectors,” Infrared Oxide Kinetic Inductance Bolometers,” J. Appl. Phys.  P. Szypryt, G. E. Duggan, B. A. Mazin, S. R. Meeker, G. Chattopadhyay, and J. M. Rebollar, “Compact Duplexing Phys. Technol., 2014. Published online: doi:10.1016/j. 115 (23), 234509, 2014. M. J. Strader, J. C. van Eyken, D. Marsden, K. O'Brien, for a 680-GHz Radar Using a Waveguide Orthomode infrared.2014.09.030  M. A. Lindeman, B. H. Eom, P. K. Day, L. J. Swenson, A. B. Walter, G. Ulbricht, T. A. Prince, C. Stoughton, and Transducer,” IEEE Trans. Microw. Theory Tech. 62 (11),  S. D. Gunapala, S. B. Rafol, D. Z. Ting, A. Soibel, R. Wernis, H. G. LeDuc, and J. Zmuidzinas, “AC Bolometer B. Bumble, “Direct Detection of SDSS J0926+3624 Orbital 2833, 2014. L. Höglund, C. J. Hill, A. Khoshakhlagh, J. K. Liu, J. M. Theory and Measurements of Kinetic Inductance Expansion with ARCONS,” Mon. Not. R. Astron. Soc. 439,  T. Reck, C. Jung-Kubiak, J. Siles, C. Lee, R. Lin, Mumolo, and S. A. Keo, “1/f Noise QWIPs and nBn Bolometer-Resonators,” J. Low Temp. Phys. 176, 2765, 2014. G. Chattopadhyay, I. Mehdi, and K. Cooper, “A Silicon Detectors,” Infrared Phys. Technol., 2014. Published online: 2014; 511, 2014.  J. Gao, M.R. Vissers, M. Sandberg, D. Li, H.M. Cho, Micromachined Eight-Pixel Transceiver Array for doi:10.1016/j.infrared.2014.09.031  C. Lee, Z. Zhang, G. Steinbrecher, H. Zhou, J. Mower, C. Bockstiegel, B.A. MAzin, H. G. Leduc, S. Chaudhuri, Submillimeter-Wave Radar,” IEEE Trans. THz Sci.  S. Forouhar, C. Borgentun, C. Frez, R. M.Briggs, M. Bagheri, T. Zhong, L. Wang, X. Hu, R. D. Horansky, V. B. Verma, D. P. Pappas, and K. D. Irwin, “Properties of TiN for Technol. 5 (2), 197, 2015. C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, A. E. Lita, R. P. Mirin, F. Marsili, M. D. Shaw, S. W. 'HWHFWRUDQG$PSOLÀHU$SSOLFDWLRQVµJ. Low Temp. Phys.  J. Hennessy, A. D. Jewell, H. F. Greer, M. C. Lee, and J. Abell, I. Vurgaftman and J. R. Meyer, “Reliable Mid- Nam, G. W. Wornell, F. N. C. Wong, J. H. Shapiro, 176 (3–4), 136, 2014. S. Nikzad, “Atomic Layer Deposition of Magnesium Infrared Laterally-Coupled Distributed-Feedback Interband and D. Englund, “Entanglement-based Quantum  M. Faverzani, P. K. Day, P. Falferi, E. Ferri, A. Giachero, Fluoride via bis(ethylcyclopentadienyl)magnesium and Cascade Lasers,” App. Phys. Lett. 105, 051110, 2014. Communication Secured by Nonlocal Dispersion C. Giordano, H. G. LeDuc, B. Marghesin, R. Mezzena, Anhydrous Fluoride,” J. Vac. Sci. Technol. Cancellation,” Phys. Rev. A 90, 062331, 2014.  R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, R. Nizzolo, A. Nucciotti, “Development of Superconducting A 33, 01A125, 2015. “Regrowth-Free Single-Mode Quantum Cascade Lasers  V. B. Verma, B. Korzh, F. Bussières, R. Horansky, A. E. Lita, Microresonators for a Neutrino Mass Experiment,” J. Low  P. Suvarna, J. Bulmer, J. M. Leathersich, J. Marini, with Power Consumption Below 1 W,” App. Phys. Lett. 105, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Temp. Phys. 176 (3–4), 530, 2014. I. Mahaboob, J. Hennessy, L. D. Bell, S. Nikzad, and 141117, 2014. 1DP´+LJK(IÀFLHQF\:6L6XSHUFRQGXFWLQJ1DQRZLUH

78 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 79  J. J. Bock, C. D. Dowell, S. R. Hildebrandt, H. T. Nguyen,  R. Valivarthi, I. Lucio-Martinez, A. Rubenok, P. Chan, Denver, CO, APS March Meeting 2014, Volume 59, 16. N. Llombart, M. Alonso-DelPino, C. Lee, G. Chattopadhyay, R. O’Brient, Z. K. Staniszewski, A. D. Turner, et al., F. Marsili, V. B. Verma, M. D. Shaw, J. A. Stern, J. A Slater, Number 1, March 3–7, 2014. C. Jung-Kubiak, and I. Mehdi, “On the Development of Bicep2 Collaboration, “Detection of B-Mode Polarization Silicon Micromachined Lens Antennas for THz Integrated '2EODN6:1DPDQG:7LWWHO´(IÀFLHQW%HOO6WDWH 5. J. V. Siles, C. Lee, R. Lin, G. Chattopadhyay, and I. Mehdi, at Degree Angular Scales by BICEP2,” Phys. Rev. Lett. Analyzer for Time-Bin Qubits with Fast-Recovery WSi Heterodyne Arrays,” 39th Int. Conference on Infrared, “Progress Towards a Room-Temperature 4.7 THz Multiplied 112, 241101, 2014. Superconducting Single Photon Detectors,” Opt. Express Millimeter, and Terahertz Waves, IRMMW-THz, Tucson, Local Oscillator Source to Enable Neutral 22, 24497, 2014. AZ, Sep. 2014.  J. J. Bock, P. K. Day, C. D. Dowell, S. R. Hildebrandt, Observation,” Proc. of the 25th International Symposium N. Llombart, H. T. Nguyen, R. O’Brient, Z. K. Staniszewski,  D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, on Space Terahertz Technology (ISSTT 2014), Moscow, 17. C. Lee, G. Chattopadhyay, M. Alonso-delPino, and A. D. Turner, P. Wilson, et al., Bicep2 Collaboration, V. B. Verma, R. P. Mirin, S. W. Nam, K. J Resch, and Russia, Apr. 2014. N. Llombart, “6.4 mm Diameter Silicon Micromachined Lens “Bicep2. II. Experiment and Three-Year Data Set,” T. Jennewein, “Direct Generation of Three-Photon for THz Dielectric Antenna,” 39th Int. Conference on Infrared, 6. G. Chattopadhyay, T. Reck, C. Jung-Kubiak, C. Lee, J. Siles, Astrophys. J. 792 (1) 62, 2014. Polarization Entanglement,” Nat. Photonics 8, 801, 2014. Millimeter, and Terahertz Waves, IRMMW-THz, Tucson, AZ, N. Chahat, K. Cooper, E. Schlecht, M. Alonso-DelPino, and Sep. 2014.   B. R. Johnson, P.A.R. Ade, D. Araujo, K. J. Bradford,  F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, I. Mehdi, “Terahertz Antennas with Silicon Micromachined D. Chapman, P. K. Day, J. Didier, S. Doyle, H. K.Eriksen, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, front-end,” 8th European Conference on Antennas and 18. V. Siles, “Ultra-Compact Integration Techniques for Millimeter D. Flanigan, C. Groppi, S. Hillbrand, G. Jones, M. Limon, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, Propagation (EuCAP), The Hague, Netherlands, Apr. 2014. and Submillimeter-Wave Sources and Transceivers Using “Quantum Teleportation from a Telecom-Wavelength Multi-Layer Silicon Micromachining and On-Chip Power- P. Mauskopf, H. McCarrick, A. Miller, T. Mroczkowski, 7. I. Mehdi, J. V. Siles, R. Lin, C. Lee, P. J. Bruneau, Photon to a Solid-State Quantum Memory,” Nat. Photonics Combining Techniques,” invited presentation at Recent B. Reichborn-Kjennerud, B. Smiley, J. Sobrin, I. K. E. Schlecht, J. Kawamura, and P. Goldsmith, “4-Pixel 8, 775, 2014. Progresses in Millimetre-Wave Monolithic and Multilayer Wehus, and J. Zmuidzinas, “The Detector System for the Frequency Multiplied Source For High-Resolution Heterodyne Integrated Circuits and Module Integration Techniques Stratospheric Kinetic Inductance Polarimeter (SKIP),”   V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Array Receivers at 1.9 THz,” Proc. of the 25th International Workshop, 2014 IEEE International Microwave & RF J. Low Temp. Phys. 176 (5–6), 741, 2014. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and Symposium on Space Terahertz Technology (ISSTT 2014), Conference (IMaRC), Bangalore, India, Sep. 2014.   E. Shirokoff, P. S. Barry, C. M. Bradford, G. Chattopadhyay, 6:1DP´+LJK(IÀFLHQF\:6L6XSHUFRQGXFWLQJ1DQRZLUH Moscow, Russia, Apr. 2014. Single-Photon Detectors Operating at 2.5 K,” Appl. Phys. 19. N. Gautam, J. Kawamura, N. Chahant, B. Karasik, P. Day, S. Doyle, S. Hailey-Dunsheath, M. I. Hollister, 8. D. Cunnane, J. H. Kawamura, B. S. Karasik, M. A. Wolak Lett. 105, 122601, 2014. P. Focardi, S. Gulkis, L. Pfeiffer, and M. Sherwin, “Tunable A. Kovacs, H. G. Leduc, C. M. McKenney, P. Mauskopf, and X. X.Xi, “Temperature Dependent Parameters of MgB2 Antenna Coupled Intersubband Terahertz Detector,” Proc. H. T. Nguyen, R. O’Brient, S. Padin, T. J. Reck, L. J.   V. B. Verma, A. E. Lita, M. R. Vissers, F. Marsili, D. P. Hot Electron Bolometer Mixers,” Proc. of 2014 Applied of the 39th Int. Conf. on IR, MM, and THz Waves, pp. 1–2, Swenson, C. E. Tucker, and J. Zmuidzinas, “Design and Pappas, R. P. Mirin, and S. W. Nam, “Superconducting Superconductivity Conference, Charlotte, N.C., Aug. 2014. Tucson, AZ, Sept. 14–19. Performance of SuperSpec: An On-Chip, KID-Based, mm- Nanowire Single Photon Detectors Fabricated from an 9. D. Cunnane, J. H. Kawamura, B. S. Karasik, M. A. Wolak and Wavelength Spectrometer,” J. Low Temp. Phys. 176 (5–6), Appl. Phys. Lett. 20. V. Siles, C. Lee, R. Lin, G. Chattopadhyay, and I. Mehdi, $PRUSKRXV0R*HWKLQÀOPµ X. X. Xi, “MgB2 Hot Electron Bolometers Operating Above 657, 2014. 105, 022602, 2014. “Capability of Room-Temperature Solid State Coherent 20 K,” Proc. of the 25th International Symposium on Space Sources in the THz Range,” invited keynote talk, Proc. of the  S. Hailey-Dunsheath, P. S. Barry, C. M. Bradford,  E. Dauler, M. Grein, A. Kerman, F. Marsili, S. Miki, S. W. Terahertz Technology, Moscow, Russia, April 2014. 34th International Conference on Infrared, Millimeter, and G. Chattopadhyay, P. Day, S. Doyle, M. Hollister, A. Kovacs, Nam, M. Shaw, H. Terai, V. Verma, and T. Yamashita, 10. B. S. Karasik, “Normal Metal HEB Detector with Johnson Terahertz Waves, Tucson, AZ, Sep. 2014. H.G. LeDuc, N. Llombart, P. Mauskopf, C. McKenney, “Review of Superconducting Nanowire Single-Photon Noise Thermometry Readout,” Proc. of the 25th International R. Monroe, H. T. Nguyen, R. O’Brient, S. Padin, T. Reck, Detector System Design Options and Demonstrated 21. G. Chattopadhyay, T. Reck, A. Tang, C. Jung-Kubiak, C. Lee, Symposium on Space Terahertz Technology, Moscow, E. Shirokoff, L. Swenson, C. E. Tucker, and J. Zmuidzinas, Performance,” Opt. Eng. 53, 081907, 2014. J. V. Siles, E. Schlecht, M-C. F. Chang, and I. Mehdi, “Silicon Russia, April 2014. “Optical Measurements of SuperSpec: A Millimeter-Wave Micromachined High-Resolution Terahertz Spectroscopic  C. R. Webster et al., “Mars Methane Detection and On-Chip Spectrometer,” J. Low Temp. Phys. 176 (5–6), 11. B. S. Karasik, “Superconducting and Graphene Bolometers Instrument for Planetary Missions,” Proc. of International Variability at Gale Crater,” Science 347, 415–17, 2015. 841, 2014. for Emerging High-Sensitivity THz Applications in Space,” Workshop on Instrumentation for Planetary Missions,  B. Cornell, D. C. Moore, S. R. Golwala, B. Bumble, P. K. The 3nd Russia-Japan-USA Symposium: The Fundamental Greenbelt, MD, Nov. 2014. CONFERENCE AND & Applied Problems of Terahertz Devices & Technologies Day, H. G. LeDuc, and J. Zmuidzinas, “Particle Detection 22. N. Gautam, M. Sherwin, J. Kawamura, B. Karasik, PROCEEDINGS PUBLICATIONS (RJUS TeraTech-2014), June 17–21, Buffalo, NY, Using MKID-Based Athermal-Phonon Mediated Detectors,” P. Focardi, S. Gulkis, and L. Pfeiffer, “A Heterodyne Detector pp. 13–14. 2014. J. Low Temp. Phys. 176 (5–6), 891, 2014. 1. P. Goldsmith, I. Mehdi, J. Kawamura, J. V. Siles, C. Lee, for Terahertz Spectroscopy of Planets and Comets,” The G. Chattopadhyay, and J. A. Stern, “Next Generation  H. McCarrick, D. Flanigan, G. Jones, B. R. Johnson, P. Ade, 12. K. B. Cooper and R. J. Dengler, “Residual Phase Noise and 2nd Int. Workshop on Instrumentation for Planetary Missions Submillimeter Heterodyne Focal Plane Array Technology,” D. Araujo, K. Bradford, R. Cantor, G. Che, P. Day, S. Doyle, Transmit/Receive Isolation in a Submillimeter-Wave FMCW (IPM2014), Greenbelt, MD, Nov. 4–7, 2014. American Astronomical Society Meeting Abstracts (Vol. 223), Radar,” IEEE/MTT-S International Microwave Symposium, H. Leduc, M. Limon, V. Luu, P. Mauskopf, A. Miller, 23. B. S. Karasik, C. B. McKitterick, and D. E. Prober, Washington, D.C., Jan. 2014. 0900-0920, Tampa Bay, FL, June 2014. T. Mroczkowski, C. Tucker, and J. Zmuidzinas, “Horn- “Monolayer Graphene Bolometer as a Sensitive Far-IR Coupled, Commercially-Fabricated Aluminum Lumped- 2. J. V. Siles, I. Mehdi, C. Lee, R. H. Lin, P. J. Bruneau, E. T. 13. J. V. Siles, “Terahertz Device and Circuits for High- Detector,” Proc. SPIE, Vol. 9153, 915309, 2014. Element Kinetic Inductance Detectors for Millimeter Schlecht, J. H. Kawamura, and P. F. Goldsmith, “A Multi-Pixel Resolution array cameras and transceivers for astrophysics, 24. D. Cunnane, J. Kawamura, B. S. Karasik, M. A. Wolak, and Wavelengths,” Rev. Sci. Instrum. 85 (12), 123117, 2014. Room-Temperature Local Oscillator Sub-System for Array Planetary Science and Radar Imaging Applications,” Proc. X. X.Xi, “Development of the Hot-Electron THz Bolometric Receivers at 1.9 THz,” Proc. of SPIE Astronomical Telescopes of the 2014 IEEE Lester Eastman Conference on High  V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Mixer Using MgB2 Thin Film,” Proc. SPIE, Vol. 9153, and Instrumentation, Montréal, Canada, June 2014. Performance Devices, Ithaca, NY, Aug. 2014. Shaw, A. E. Lita, R. P. Mirin and S. W. Nam, “A Four-Pixel 91531Q, 2014. Single-Photon Pulse-Position Array Fabricated from WSi 3. M. Wolak, T. Tan, D. Cunnane, B. Karasik, and X. Xi, 14. C. Jung-Kubiak, T. Reck, and G. Chattopadhyay, “Integrated 25. B. S. Karasik, C. B. McKitterick, and D. E. Prober, “Monolayer Superconducting Nanowire Single-Photon Detectors,” Appl. “Fabrication and Study of Ultrathin MgB2 Films for Hot Calibration Switches for Compact Planetary Instruments,” Graphene Bolometer as Sensitive Far-IR Detector,” Proc. of Phys. Lett. 104, 051115, 2014. Electron Bolometer Applications,” Bulletin of the American 39th Int. Conference on Infrared, Millimeter, and Terahertz Physical Society, A47.00006, APS March Meeting 2014 the SPIE Astronomical Telescopes + Instrumentation 2014  C. Lee, Z. Zhang, G. R. Steinbrecher, H. Zhou, J. Mower, Waves, IRMMW-THz, Tucson, AZ, Sep. 2014. Volume 59, Number 1, Denver, CO, March 3–7, 2014. Symposium, Quebec, Canada, July 2014. T. Zhong, L. Wang, X. Hu, R. D. Horansky, V. B. Verma, 15. T. Reck, C. Jung-Kubiak, C. Leal-Sevillano, and 26. D. P. Cunnane, M. A. Wolak, T. Tan, J. H. Kawamura, X. X. A. E. Lita, R. P. Mirin, F. Marsili, M. D. Shaw, S. Woo Nam, 4. Sergeev, B. Wen, R. Yakobov, S. Vitkalov, and G. Chattopadhyay, “Silicon Micromachined Components Xi, and B. S. Karasik, “Development of the Hot-Electron G. W. Wornell, F.N.C Wong, J. H. Shapiro, and D. Englund, B. Karasik, “Electron Heating in Superconducting Cuprate at 0.75 to 1.1 THz,” 39th Int. Conference on Infrared, THz Bolometric Mixer Using Thin MgB2 Film,” Proc. of the “Entanglement-Based Quantum Communication Secured Heterostructures and Its Application for Advanced Sensing,” Millimeter, and Terahertz Waves, IRMMW-THz, Tucson, AZ, SPIE Astronomical Telescopes + Instrumentation 2014 by Nonlocal Dispersion Cancellation,” Phys. Rev. A 90, Bulletin of the American Physical Society, A47.00007, Sep. 2014. 062331, 2014. Symposium, Quebec, Canada, July 2014.

80 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 81 27. T. Chui, A. Kleinsasser, B. Karasik, B. Bumble, T. Lanting, Summer Topical Meeting Series: July 14–16, Montréal, 49. R. M. Briggs, C. Frez, C. E. Borgentun, M. Bagheri, D. Englund, “High-Dimensional Time-Energy Entanglement- and E. Ladizinsky, “SQUID Noise Measurements for Québec, Canada, 2014. S. Forouhar, and R. D. May, “Five-Channel Infrared Based Quantum Key Distribution Using Dispersive Optics,” Fabrication Process Investigations,” Proc. of 2014 Applied Laser Absorption Spectrometer for Combustion Product Conference on Lasers and Electro-Optics (CLEO) San 39. D. Z. Ting, et al., “Theoretical Aspects of Minority Carrier Superconductivity Conference, Charlotte, NC, Aug. 2014. Monitoring Aboard Manned Spacecraft,” 44th International Jose, CA, June 2014. Extraction in Unipolar Barrier Infrared Detectors,” in Proc. Conference on Environmental Systems, American Institute 28. N. Rouhi, C. Jung-Kubiak, V. White, M. Dickie, S. Forouhar, of the 2014 U.S. Workshop on the Physics and Chemistry 59. F. Marsili, M. J. Stevens, A. Kozorezov, V. B. Verma, of Aeronautics and Astronautics (AIAA), Tucson, AZ, 2014. and C. Marrese-Reading, “High Aspect Ratio Three Dimensional of II-VI Materials, October 21–23, Baltimore, MD, 2014. C. Lambert, J. A. Stern, R. Horansky, S. D. Dyer, M. D. Silicon Micro-Needles Using Photoresist Re-Flow and One-Step- 50. P. A. Willis, M. L. Cable, M. F. Mora, A. M. Stockton, K. P. Shaw, R. P. Mirin, and S. W. Nam, “Hotspot Dynamics 40. L. Höglund, D. Z. Ting, A. Khoshakhlagh, A. Soibel, C. J. Etch Process,” MRS Fall Meeting, Boston, MA, Dec. 2014. Hand, S.M. Hörst, M.A. Tolbert, C. He, and M.A. Smith, in Current Carrying WSi Superconducting Nanowires,” Hill, A. Fisher, S. Keo, and S. D. Gunapala, “Minority “Non-Aqueous Microchip Capillary Electrophoresis of Conference on Lasers and Electro-Optics (CLEO), 29. E. Hoenk, S. Nikzad, A. G. Carver, T. J. Jones, J. Hennessy, Carrier Lifetime Studies of Narrow Bandgap Antimonide Long-Chain Aliphatic Amines in Titan Simulant Material and San Jose, CA, June 2014. A. D. Jewell, J. Sgro, S. Tsur, M. McClish, and R. Farrell, Superlattices,” Proc. of SPIE, 8993, 89930Y, 2014. Fatty Acids in Deep Ocean Sediments,” The Eighteenth “Superlattice-Doped Silicon Detectors: Progress and 60. D. Shaw, K. Birnbaum, M. Cheng, M. Srinivasan, K. Quirk, 41. S. D. Gunapala, D. Z. Ting, A. Soibel, A. Khoshakhlagh, International Conference on Miniaturized Systems for Prospects,” Proc. SPIE 9154, High Energy, Optical and J. Kovalik, A. Biswas, A. D. Beyer, F. Marsili, V. Verma, R. P. S. A. Keo, C. J. Hill, S. B. Rafol, L. Baker, J. K. Liu, J. M. Chemistry and Life Sciences (μTAS 2014), San Antonio, Infrared Detectors for Astronomy VI, edited by A. D. Holland Mirin, S. W. Nam, J. A. Stern, and W. H. Farr, “A Receiver Mumolo, A. Fisher, R. Kowalczyk, and R. Rosenberg, P. R. TX, October 2014. and J. Beletic, 2014 915413. for the Lunar Laser Communication Demonstration Using Pinsukanjana, E. D. Fraser, K. P. Clark, K. Roodenko, 51. M. Stockton, J. Kim, P.A.Willis, R. Lillis, R. Amundson, the Optical Communications Telescope Laboratory,” 30. E. T. Hamden, A. D. Jewell, S. Gordon, J. Hennessy, J. M. Fastenau, D. Loubychev, Y. M. Qiu, A. W. K. Liu, International Conference on Lasers and Electro-Optics (CLEO), San M. Hoenk, S. Nikzad, D. Schiminovich, and D. C. Martin, R. Bornfreund, N. Jolivet, and J. L. Miller, “Development of HWDO´0LFURÁXLGLF/LIH$QDO\]HU 0,/$ µ Workshop on Instrumentation for Planetary Missions, Jose, CA, June 2014. ´+LJK(IÀFLHQF\&&''HWHFWRUVDW89:DYHOHQJWKVµProc. Ga-free InAs/InAsSb LWIR Detector and Focal Plane for Greenbelt, MD, #1045, November 2014. SPIE 9144, Space Telescopes and Instrumentation 2014: Army Degraded Visual Environment Application,” Proc. of 61. F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, Ultraviolet to Gamma Ray, edited by T. Takahashi, the Military Sensing Symposia (MSS), Gaithersburg, MD, 52. F. Marsili, V. B. Verma, M. J. Stevens, J. A. Stern, M. D. S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, J.-W. A. den Herder, and M. Bautz, 2014 91442X. September 8–12, 2014. Shaw, A. J. Miller, D. Schwarzer, A. Wodtke, R. P. Mirin, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, and S. W. Nam, “Mid-Infrared Superconducting Nanowire “Quantum Teleportation from a Telecom-Wavelength Photon 31. D. Jewell, J. Hennessy, E. Hamden, T. Goodsall, C. Shapiro, 42. P.-K. Liao, D. Lan, G. Yang, K. P. Clark, E. D. Fraser, Single-Photon Detectors Based on WSi,” Applied to a Solid-State Quantum Memory,” Conference on Lasers A. Carver, T. J. Jones, M. E. Hoenk, and S. Nikzad, “Using K. Roodenko, P. R. Pinsukanjana, and Y.-C. Kao, D. Z. Superconductivity Conference, Charlotte, NC, August 2014. and Electro-Optics (CLEO), San Jose, CA, June 2014. ALD to Enable High Performance Detectors and Optics for Ting, C. J. Hill, A. Soibel, L. Höglund, and S. D. Gunapala, Astronomy and Planetary Exploration,” 12th International “Recent Development of Domestic Large Diameter GaSb 53. F. Marsili, M. J. Stevens, A. Kozorezov, V. B. Verma, 62. V. Verma, M. S. Allman, R. Horansky, F. Marsili, J. A. Stern, A. Baltic Conference on Atomic Layer Deposition, Helsinki, Substrates at IntelliEPI,” Proc. of the Military Sensing C. Lambert, J. A. Stern, R. Horansky, S. Dyer, M. D. Shaw, D. Beyer, M. D. Shaw, S. W. Nam, and R. P. Mirin, “Progress Finland, 2014. Symposia (MSS), Gaithersburg, MD, September 8–12, 2014. R. P. Mirin, and S. W. Nam, “Hotspot Relaxation Time DQG3URVSHFWVIRU+LJK(IÀFLHQF\DQG*LJDFRXQWSHU6HFRQG in Current Carrying WSi Superconducting Nanowires,” Detectors for Quantum Repeaters Using Superconducting 32. J. Hennessy, L. D. Bell, S. Nikzad, P. Suvarna, J. M. 43. S. D. Gunapala, S. B. Rafol, D. Z. Ting, Soibel, L. Höglund, Applied Superconductivity Conference, Charlotte, NC, Nanowire Detectors,” Conference on Lasers and Electro- Leathersich, J. Marini, and F. (Shadi) Shahedipour-Sandvik, C. J. Hill, A. Khoshakhlagh, J. K. Liu, J. M. Mumolo, and S. August 2014. Optics (CLEO), San Jose, CA, June 2014. “Atomic-Layer Deposition for Improved Performance of III-N A. Keo, “1/f Noise QWIP Infrared Focal Plane Arrays,” IEEE Avalanche Photodiodes,” MRS Proceedings, v1635, 2014. Photonics Conference 2014 Digest, La Jolla, CA, October 54. A.Kozorezov, C. Lambert, F. Marsili, M. J. Stevens, V. B. 63. T. Gerrits, F. Marsili, M. D. Shaw, T. J. Bartley, and S. W. 12–16, 2014. Verma, R. Horansky, S. Dyer, M. D. Shaw, J. A. Stern, Nam, “Four-Photon Joint Spectral Probability Distribution of a 33. J. Hennessy, L. D. Bell, S. Nikzad, P. Suvarna, J. Bulmer, R. P. Mirin, and S. W. Nam, “Quasi-particle Recombination High Spectral-Purity Photon Source,” Conference on Lasers J. M. Leathersich, J. Marini and F. Shahedipour-Sandvik, 44. S. D. Gunapala, D. Z. Ting, A. Soibel, S. A. Keo, S. B. in the Relaxing Hot Spot in Current-Carrying Super- and Electro-Optics (CLEO), San Jose, CA, June 2014. “ALD Surface Passivation of GaN for Improved Photodiode Rafol, J. M. Mumolo, J. K. Liu, C. J. Hill, A. Khoshakhlagh, conducting Nanowires,” Applied Superconductivity Performance,” 56th Electronic Materials Conference, Santa L. Höglund, and E. M. Luong, “Development of Quantum 64. S. W. Nam, V. Verma, M. Allman, R. Horansky, R. P. Mirin, Conference, Charlotte, NC, August 2014. Barbara, CA, 2014. Well, Quantum Dot, and Antimonide Superlattice Infrared A. Lita, F. Marsili, M. Shaw, A. D. Beyer, and J. A. Stern, Photodetectors,” Optical Society of America: Latin America 55. D. Beyer, M. D. Shaw, F. Marsili A. E. Lita, V. B. Verma, “Nanowire Superconducting Single Photon Detectors 34. P. Suvarna, J. Bulmer, J. M. Leathersich, J. Marini, F. , Optics & Photonics Conference Digest, Cancun, Mexico, G. V. Resta, J. A. Stern, P. Ravindran, S. Chang, J. Bardin, Progress and Promise,” Conference on Lasers and Electro- Shahedipour-Sandvik, L. D. Bell, J. Hennessy and S. Nikzad, November 16–21, 2014. D. S. Russel, J. W. Gin, F. D. Patawaran, R. P. Mirin, S. W. Optics (CLEO), San Jose, CA, June 2014. “Advanced Micropixel Design for Separate Absorption and Nam, and W. H. Farr, “Tungsten Silicide Superconducting Multiplication III-N Avalanche Photodiodes,” 56th Electronic 45. V. J. Scott and X. Amashukeli, “An RF-Powered Micro- 65. M. Allman, V. B. Verma, R. Horansky, F. Marsili, J. A. Nanowire Single-Photon Detectors Fabricated Using Materials Conference, Santa Barbara, CA, 2014. ([WUDFWRUIRU(IÀFLHQW([WUDFWLRQDQG+\GURO\VLVµAGU Stern, M. D. Shaw, A. D. Beyer, R. P. Mirin, and Sae Optical Lithography,” Applied Superconductivity Conference, San Francisco, CA, December 2014. Woo Nam, “Progress Towards a Near IR Single-Photon 35. J. Hennessy, A. Jewell, S. Nikzad, B. Balasubramanian, Conference, Charlotte, NC, August 2014. Superconducting Nanowire Camera for Free-Space C. Moore, and K. France, “ALD Metal Fluorides for Optical 46. V. J. Scott, R. Toda, R. Murthy, L. Del Castillo, and 56. F. Marsili, M. D. Shaw, G. V. Resta, J. A. Stern, A. D. Beyer, Imaging of Light,” Conference on Lasers and Electro-Optics Coatings in the Ultraviolet,” 14th International Conference H. Manohara, “CNT Field Emitters: Growth and In Situ , P. Ravindran, S. Chang, J. Bardin, D. S. Russel, J. W. (CLEO), San Jose, CA, June 2014. on Atomic Layer Deposition, Kyoto, Japan, 2014. Welding on Metal Surfaces,” ACS Conference, San Gin, F. D. Patawaran, V. B. Verma, R. P. Mirin, S. W. Nam, Francisco, CA, August 2014. 66. M. D. Shaw, F. Marsili, A. D. Beyer, W. H. Farr, G. Resta, 36. S. Nikzad, M. E. Hoenk, J. J. Hennessy, A. D. Jewell, and W. H. Farr, “Arrays of WSi Superconducting Nanowire V. B. Verma, R. D. Horansky, A. Lita, R. P. Mirin, and A. G. Carver, T. J. Jones, S. L. Cheng, T. Goodsall, and 47. V. J. Scott and X. Amashukeli, “An RF-Powered Micro- Single Photon Detectors” Applied Superconductivity S. W. Nam, “Tungsten Silicide Superconducting Nanowire C. Shapiro, “High-Performance Silicon Imaging Arrays for 5HDFWRUIRU(IÀFLHQW([WUDFWLRQDQG+\GURO\VLVµACS Conference, Charlotte, NC, August 2014. Single Photon Detector Arrays for Deep Space Optical Cosmology, Planetary Sciences, and other Applications,” Conference, San Francisco, CA, August 2014. 57. V. B. Verma, A.E. Lita, M. R. Vissers, F. Marsili, D. P. Communication,” SPIE Defense Security and Sensing invited paper, 2014 International Electron Devices Meeting, 48. P. Backes, C. McQuin, M. Badescu, A. Ganino, (SPIE DSS 2014), Baltimore, MD, April 2014. San Francisco, CA, 2014. 3DSSDV530LULQDQG6:1DP´+LJK(IÀFLHQF\ H. Manohara, Y. Bae, R. Toda, N. Wiltsie, S. Moreland, Superconducting Nanowire Single Photon Detectors Based 67. J. C. Bardin, P. Ravindran, S. Chang, C. Mohamed, M. D. 37. S. Nikzad, “High Performance Silicon Imagers and Their J.Grimes-York, P. Walkemeyer, E. Kulczycki, C. Dandino, on Amorphous Mo0.75Ge0.25,” Conference on Lasers and Shaw, F. Marsili, G. Resta, and W. H. Farr, “Cryogenic Applications,” High Performance Silicon Imaging, editor, R. Smith, M. Williamson, D. Wai, R. Bonitz, A. San Martin, Electro-Optics (CLEO) San Jose, CA, June 2014. SiGe Integrated Circuits for Superconducting Nanowire D. Durinig, Woodhead Publishing, Elsevier, 2014. and B. Wilcox, “Sampling System Concepts for a Touch-and- 58. C. Lee, Z. Zhang, J. C. Mower; G. Steinbrecher, H. Zhou, Single Photon Detector Readout,” SPIE Defense Security Go Architecture Comet Surface Sample Return Mission,” 38. D. Z. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, L. Wang, R. Horansky, V. B. Verma, M. Allman, A. E. Lita, and Sensing 2014 (SPIE DSS 2014), Baltimore, MD, AIAA Space 2014, Conference and Exposition, San Diego, and S. D. Ganapala, “Midwave Barrier Infrared Detector R. P. Mirin, F. Marsili, A. D. Beyer, M. D. Shaw, S. W. April 2014. CA, August 4–7, 2014. DOI:10.2514/6.2014-4379. with Quantum Dot Enhancement,” Proc. of the IEEE Nam. G. W. Wornell, F. N. C. Wong, J. H. Shapiro, and

82 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 83 68. T. Gerrits, F. Marsili, M. D. Shaw, T. J. Bartley, and S. 80. T. Zhong, H. Zhou, L. Wang, G. Wornell, Z. Zhang, 9. C. Mcquin, M. Badescu, P. G. Backes, N. Wiltsie, S. J. 6. R. Toda, M. J. Bronikowski, E. M. Luong, and H. Manohara, W.Nam, “Four-Photon Joint Spectral Probability Distri- J. H. Shapiro, F. Wong, R. Horansky, V. Verma, A. Lita, Moreland, J. A. Grimes-York, H. Manohara, S. Y. Bae, and “Method for Manufacturing a Carbon Nanotube Field Emission bution of a High Spectral-Purity Photon Source,” CLEO: R. P Mirin, T. Gerrits, S. W. Nam, A. Restelli, J. C. R. Toda, “BiBlade Sampling Chain,” NTR 94553, 2014. Device with Overhanging Gate,” U.S. Patent No. 8,916,394, Issue Applications and Technology, San Jose, CA, 2014. %LHQIDQJ)0DUVLOLDQG0'6KDZ´3KRWRQ(IÀFLHQW Date: 12/23/2014. 10. V. Scott and X. Amashukeli, “Small Volume Pressurized High-Dimensional Quantum Key Distribution,” CLEO: 69. M. Allman, V. B Verma, R. Horansky, F. Marsili, J. A Sample Handling System,” NTR 49601, 2014. 7. H. Manohara and M. Mojarradi, “Microscale Digital Vacuum Applications and Technology, San Jose, CA, 2014. Stern, M. D. Shaw, A. D. Beyer, R. P. Mirin, and S. W. Electronic Gates,” U.S. Patent No. 8,796,932, Issue Date: 11. 96FRWWDQG;$PDVKXNHOL´$&RQWLQXRXV)ORZ0LFURÁXLGLF Nam, “Progress Towards a Near IR Single-Photon 81. T. Zhong, C. Lee, Z. Zhang, H. Zhou, G. Steinbrecher, 08/05/2014. Microwave-Assisted Chemical Reactor,” NTR 49602, 2014. Superconducting Nanowire Camera for Free-Space J. Mower, L. Wang, R. D. Horansky, V. B. Verma, A. E. Lita, 8. C. Frez, C. Borgentun, R. M. Briggs, M. Bagheri, and Imaging of Light,” CLEO: Applications and Technology, R. P. Mirin, T. Gerrits, A. Restelli, J. C. Bienfang, F. Marsili, 12. V. Scott, “Thin Layer Chromatography – Surface Enhanced S. Forouhar, “Fabrication of Single-Mode, Distributed San Jose, CA, 2014. M. D. Shaw, S. W. Nam, G.W. Wornell, D. Englund, J. H. ,” NTR 49668, 2014. Feedback Interband Cascade Lasers using Second-Order Shapiro, and F.N.C. Wong, “Entanglement-based High- 70. V. B. Verma, F. Marsili, J. A. Stern, A. Beyer, M. D. Shaw, 13. H. Manohara, S. Y. Bae, L.Y. Del Castillo, and K. B. Lateral Bragg Gratings,” NPO-49559. Dimensional Quantum Key Distribution,” QCrypt, Paris, S. Nam, and R. P. Mirin, “Progress and Prospects for Chin, “Integrated In Situ Sensors for Harsh Environment France, 2014. 9. P. M. Echternach, C. M. Bradford, P. K. Day, K. J. Stone, and +LJK(IÀFLHQF\DQG*LJDFRXQWSHU6HFRQG'HWHFWRUVIRU Applications,” NTR 49068, 2013. B. J. Pepper, “Capacitively Coupled Quantum Capacitance Quantum Repeaters Using Superconducting Nanowire 14. R. M. Briggs, C. Frez, C. E. Borgentun, M. Bagheri, S. Forouhar, Detector,” NTR # 49779. Detectors,” CLEO Lasers and Electro Optics, San Jose, BOOK CONTRIBUTIONS and R. D. May, “Multi-Channel Laser Absorption Spectrometer CA, 2014. 10. H. F. Greer, A. M. Fisher, P.A. Willis, H. Jiao, A. M. Stockton, 1. C. Lee, “Plasma-Processed Biomimetic Nano- and for Combustion Product Monitoring,” NTR-49505, 2014. M. F. Mora, and M. L. Cable, “Chemical Laptop,” U.S. Patent 71. F. Marsili, M. J. Stevens, A. Kozorezov, V. B. Verma, Micro-Structures” in Biomimetic Architectures by Plasma 15. R. M. Briggs, C. Frez, and S. Forouhar, “Low-Power- serial No. 62/134,946 for March 2015. C. Lambert, J. A. Stern, R. Horansky, S. Dyer, M. D. Shaw, Processing, edited by Surojit Chattopadhyay. Pan Stanford Consumption Single-Mode Quantum Cascade Lasers R. P. Mirin, and S. W. Nam, “Hotspot Dynamics in Current Publishing Pte. Ltd. ISBN: 978-981-4463-94-2, 91–109, 2014. Fabricated Without Epitaxial Regrowth,” NTR-49512, 2014. Carrying WSi Superconducting Nanowires,” CLEO Lasers 2. S. Nikzad, A. D. Jewell, A. G. Carver, M/ E. Hoenk, SPECIAL RECOGNITION and Electro Optics, San Jose, CA, 2014. 16. C. Frez, C. E. Borgentun, R. M. Briggs, M. Bagheri, and J. N. Maki and L. D. Bell, “Digital Imaging for Planetary S. Forouhar, “Fabrication of Single-Mode, Distributed NASA AWARDS 72. M. D. Shaw, K. Birnbaum, M. Cheng, M. Srinivasan, Exploration” in the Handbook of Digital Imaging, edited by Feedback Interband Cascade Lasers Using Second-Order 1. Jeffrey Stern (posthumous) – Exceptional Service Medal: K. Quirk, J. Kovalik, A. Biswas, A. Beyer, F. Marsili, V. B. M. Kriss, John Wiley & Sons, Ltd: Chichester, UK, 1531– Lateral Bragg Gratings,” NTR-49559, 2014. For pioneering development of mixers for the Heterodyne Verma, R. P. Mirin, S.W. Nam, J. A. Stern and W. H. 1558, 2015. Instrument for the Far-Infrared on Herschel, THz mixers Farr, “A Receiver for the Lunar Laser Communication 17. M. D. Shaw, et al., “Waveguide-Integrated Superconducting 3. F. A. Miranda and H. M. Manohara, “Nanotechnology for and WSi Superconducting Nanowire Single Photon Demonstration Using the Optical Communications Nanowire Single Photon Detectors,” NTR-49701, 2014. Nanoelectronic Devices,” in Advanced Nanomaterials for Detectors, 2014. Telescope Laboratory,” CLEO: Science and Innovations, 18. M.D. Shaw, et al., “A Free-Space Coupled Multi-Element Aerospace Applications, ed. C. Cabrera, 2014-06-30, 2. David Z. Ting – Exceptional Technology Achievement San Jose, CA, 2014. Detector for Deep Space Optical Communication,” DOI: 10.4032/9789814463195. Medal: Advanced Infrared Detector Technology, 2014. 73. A. C. Weber, A. D.Turner, K. Megerian, et al., “Keck NTR-49463, 2014. 3. Siamak Forouhar – Exceptional Technology Achievement Array and BICEP3: Spectral Characterization of 5000+ 19. M.D. Shaw, et al., “Multimode Fiber-Coupled Tungsten Medal: Semiconductor Lasers, 2014. Detectors,” Proc. SPIE Vol. 9153, August 19, 2014. NEW TECHNOLOGY REPORTS Silicide Superconducting Nanowire Single Photon Detector 1. J. Siles, C. Lee, G. Chattopadhyay, K. Cooper, I. Mehdi, 4. Sarath D. Gunapala – Outstanding Leadership Medal: 74. A. C. Weber, A. D.Turner, K. Megerian, et al., ”Pre-Flight Array,” NTR-49420, 2014. R. Lin, and A. Peralta, “Ultra-High Power W-band/F-band Outstanding Technical Management and Leadership in the Integration and Characterization of the SPIDER Schottky Diode Based Frequency Multipliers,” NTR-49351. development of novel infrared detectors which enable new Balloon-Borne Telescope,” Proc. SPIE Volume 9153, 2. Cecile Kubiak-Jung et al., “Silicon Micro-Emitters for PATENTS NASA and defense applications, 2014. August 19, 2014. 1. C. Jung-Kubiak, T. Reck, B. Thomas, R. H. Lin, A. Peralta, 0LFURÁXLGLF(OHFWURVSUD\3URSXOVLRQ6\VWHPVµ175 5. James R. Wishard – Exceptional Service Medal: For 75. A. C. Weber, A. D.Turner, K. Megerian, et al., “Attitude J. J. Gill, C.Lee, J.V. Siles, R. Toda, G. Chattopadhyay, K. B. exceptional service enabling advanced systems in JPL’s Determination for Balloon-Borne Experiments,” Proc. SPIE 3. A. Khoshakhlagh, D. Z. Ting, and S. D. Gunapala, Cooper, and I. Mehdi, “Silicon Alignment Pins: An Easy Way Microdevices Laboratory to produce state-of-the-art Vol. 9145, September 2014. “P-compensated InAs/InAsSb Barrier Infrared Detectors,” To Realize A Wafer-To-Wafer Alignment,” U.S. Patent Serial March 10, 2014, NTR-49493. No. 13/871,830 for May 2014. WHFKQRORJ\DQGÁLJKWFRPSRQHQWVIRU1$6$VFLHQFH 76. A. C. Weber, A. D.Turner, K. Megerian, et al., “BLAST instruments, 2014. Bus Electronics: General-Purpose Readout and Control 4. D. Z. Ting, D. W. Wilson, S. A. Keo, A. Soibel, L.Höglund, and 2. G. Chattopadhyay, I. Mehdi, C. Lee, J. J. Gill, C. Jung- 6. E. Schlecht, J. V. Siles, C. Lee, R. H. Lin, B. Thomas, for Balloon-Borne Experiments,” Proc. SPIE Vol. 9145, S. Gunapala, “Optical Enhancement for Spectral Imaging Kubiak, and N. Llombart, “Microfabrication Technique of G. Chattopadhyay, and I. Mehdi – Group Achievement September 2014. Infrared Focal Plane Arrays,” June 6, 2014, NTR-49556. Silicon Microlens Array for Terahertz Applications,” U.S. Award: Outstanding innovation and expertise in 5. D. Z. Ting, A. Soibel, L.Höglund, and S. Gunapala, “Unipolar Patent Serial No. 13/869, 292 May 2014. 77. A. C. Weber, A. D.Turner, K. Megerian, et al., “Design demonstrating super-compact multi-pixel receiver systems %DUULHU'XDOɅ%DQG,QIUDUHG'HWHFWRUVµ-DQXDU\ and Construction of a Carbon Fiber Gondola for the 3. C. Jung-Kubiak, T. Reck, G. Chattopadhyay, J. V. Siles for submillimeter-wave atmospheric sounding of planetary NTR-49789. SPIDER Balloon-Borne Telescope,” Proc. SPIE Vol. 9145, Perez, R. H. Lin, I. Mehdi, C. Lee, K. B. Cooper, and , 2014. September 2014. 6. J. L. Hall, S. Sherrit, H. Manohara, M. Mojarradi, E. D. A. Peralta, “Multi-Step Deep Reactive Ion Etching Fabri- 7. S. Cheng, T. Goodsall, E. Hamden. J. Hennessy, M. Hoenk, Archer, A. R. Sirota, and E. J. Brandon, “Wireless Surface cation Process for Silicon-Based Terahertz Components,” 78. A. C. Weber, A.D.Turner, K. Megerian, et al., “Pointing A. Jewell, T. Jones, and S.Nikzad – Group Achievement &RQWUROOHGDQG3UH3URJUDPPDEOH,QÁRZ&RQWURO9DOYH Provisional Patent Serial No 61/812,097, April 2014. Control for the SPIDER Balloon-Borne Telescope,” Proc. Award: For exceptional achievement in developing high Monitoring System,” NTR 49771, 2014. SPIE Vol. 9145, September 2014. 4. D. Z. Ting, C. J. Hill, A. Soibel, S. V. Bandara, and S. D. SHUIRUPDQFHVFLHQWLÀFXOWUDYLROHWLPDJHUVHQDEOLQJQHZ Gunapala, “High Operating Temperature Barrier Infrared 79. A. Biswas, J. M. Kovalik, M. W. Wright, W. T. Roberts, 7. J. L. Hall, S. Sherrit, H. Manohara, M. Mojarradi, E. J. instruments for future planetary and astrophysics Detector with Tailorable Cutoff Wavelength,” U.S. Patent M. K. Cheng, K. J. Quirk, M. Srinivasan, M. D. Shaw, and Brandon, E. D Archer, A. R. Sirota, M. S. Garrett, E. A. missions, 2014. Kulczycki, and R. C. Ewell, “Smart Pipe System for Oil Well No. 8,928,036 B2, January 6, 2015. K. M. Birnbaum, “LLCD Operations Using the Optical 8. S. Forouhar, C. Frez, R. Briggs, M. Bagheri, and C. Completions,” NTR 49729, 2014. Communications Telescope Laboratory (OCTL),” Proc. SPIE 5. David Z. Ting, Sarath D. Gunapala, Alexander Soibel, Jean Borgentun – Group Achievement Award: Collaboration 8971, Free-Space Laser Communication and Atmospheric 8. S. Sherrit, M. Badescu, H. Manohara, and S. Y. Bae, Nguyen, and Arezou Khoshakhlagh, “Single-Band and between JPL Semiconductor Laser Team and Harvard Propagation XXVI, 89710X, San Francisco, CA, 2014. “Monolithic Actuated Endoscope (MAE),” NTR 49706, 2014. Dual-Band Infrared Detector,” U.S. Patent No. 8,928,029 B2, University, 2014. January 6, 2015.

84 25 YEARS OF COMMITMENT TO SCIENCE & TECHNOLOGY 2014 ANNUAL REPORT 85