Androgen Receptor Expression in the Human and Rat Urogenital Tract
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Male Reproductive System 2
Male Reproductive System 2 1. Excretory genital ducts 2. The ductus (vas) deferens and seminal vesicles 3. The prostate 4. The bulbourethral (Cowper’s) glands 5. The penis 6. The scrotum and spermatic cord SPLANCHNOLOGY Male reproductive system ° Male reproductive system, systema genitalia masculina: V a part of the human reproductive process ° Male reproductive organs, organa genitalia masculina: V internal genital organs: testicle, testis epididymis, epididymis ductus deferens, ductus (vas) deferens seminal vesicle, vesicula seminalis ejaculatory duct, ductus ejaculatorius prostate gland, prostata V external genital organs: penis, penis scrotum, scrotum bulbourethral glands, glandulae bulbourethrales Prof. Dr. Nikolai Lazarov 2 SPLANCHNOLOGY Ductus (vas) deferens ° Ductus (vas) deferens: V a straight thick-walled muscular tube V transports sperm cells from the epididymis V length 45-50 cm V diameter 2.5-3 mm ° Anatomical parts: V testicular part V funicular part V inguinal part – 4 cm V pelvic part ° Ampulla ductus deferentis: V length 3-4 cm; diameter 1 cm V ejaculatory duct, ductus ejaculatorius Prof. Dr. Nikolai Lazarov 3 SPLANCHNOLOGY Microscopic anatomy ° tunica mucosa – 5-6 longitudinal folds: V lamina epithelialis – bilayered columnar epithelium with stereocilia V lamina propria: dense connective tissue elastic fibers ° tunica muscularis – thick: V inner longitudinal layer – in the initial portion V circular layer V outer longitudinal layer ° tunica adventitia (serosa) Prof. Dr. Nikolai Lazarov 4 SPLANCHNOLOGY Seminal vesicle, vesicula seminalis ° Seminal vesicle, vesicula (glandula) seminalis: V a pair of simple tubular glands – two highly tortuous tubes V posterior to the urinary bladder V length 4-5 (15) cm V diameter 1 cm ° Macroscopic anatomy: V anterior and posterior part V excretory duct Prof. -
The Reproductive System
27 The Reproductive System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The reproductive system is designed to perpetuate the species • The male produces gametes called sperm cells • The female produces gametes called ova • The joining of a sperm cell and an ovum is fertilization • Fertilization results in the formation of a zygote © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • Overview of the Male Reproductive System • Testis • Epididymis • Ductus deferens • Ejaculatory duct • Spongy urethra (penile urethra) • Seminal gland • Prostate gland • Bulbo-urethral gland © 2012 Pearson Education, Inc. Figure 27.1 The Male Reproductive System, Part I Pubic symphysis Ureter Urinary bladder Prostatic urethra Seminal gland Membranous urethra Rectum Corpus cavernosum Prostate gland Corpus spongiosum Spongy urethra Ejaculatory duct Ductus deferens Penis Bulbo-urethral gland Epididymis Anus Testis External urethral orifice Scrotum Sigmoid colon (cut) Rectum Internal urethral orifice Rectus abdominis Prostatic urethra Urinary bladder Prostate gland Pubic symphysis Bristle within ejaculatory duct Membranous urethra Penis Spongy urethra Spongy urethra within corpus spongiosum Bulbospongiosus muscle Corpus cavernosum Ductus deferens Epididymis Scrotum Testis © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • The Testes • Testes hang inside a pouch called the scrotum, which is on the outside of the body -
On Cysts of the Prepuce and Raphé, with an Illustrative Case
ON CYSTS OF THE PREPUCE AND RAPHE, WITH AN ILLUSTRATIVE CASE* By GEO. HENRY EDINGTON, M.D., M.R.C.S. Eng., Surgeon to the Central Dispensary, and Extra Surgeon to the Dispensary of the Western Infirmary, Glasgow. Cysts of the prepuce receive but scant notice in the general text-books of surgery, and it is partly on this account that I now record the following case. I have been led, however, to do so also from the fact that recently cysts in this region have been engaging the minds of some writers in connection with their probable origin in a congenital abnormality. I shall first notice a case which has come under my own observation, and then refer to the literature of the subject. Willie D., aged 1 year, was brought to the Central Dispensary on 27th October, 1897, on account of his being the subject of " phimosis, accompanied by a small lump" at the distal extremity of the prepuce. This lump was first observed when he was 3 months old, and it increased in size till he reached the age of 6 months, since when no alteration in dimension had been noticed. It was stated, however, that, after ceasing to enlarge, the swelling had become harder than when first noticed. The prepuce (Fig. 1, p. 423), which was long, presented on inspection a spherical swelling on the under aspect of the free margin, with the antero-posterior vertical meridian corres- * Paper read and specimen shown at the meeting of the Glasgow Pathological and Clinical Society, 11th April, 1898. -
A Case of Seminal Vesicle / Prostatic Reflux Causing Intense Focal
Hong Kong J Radiol. 2016;19:49-51 | DOI: 10.12809/hkjr1615333 CASE REPORT A Case of Seminal Vesicle / Prostatic Reflux Causing Intense Focal Fluorodeoxyglucose Uptake in the Prostate Gland WH Ma1, EYP Lee2, ASH Lai3, PL Khong2 1Nuclear Medicine Unit, Department of Radiology, Queen Mary Hospital; 2Department of Radiology, The University of Hong Kong; 3Department of Radiology, Queen Mary Hospital, Pokfulam, Hong Kong ABSTRACT We report an interesting case of benign persistent intense focal fluorodeoxyglucose (FDG) activity in the prostate gland. A 66-year-old man with a history of prostatism and benign prostate hypertrophy presented with elevated prostate-specific antigen. Three prostatic biopsies obtained by transrectal ultrasonography (TRUS) were negative for malignancy. Magnetic resonance imaging of the prostate revealed a hypointense signal at the right prostate base on T2-weighted images. FDG positron emission tomography/computed tomography (CT) was performed for further evaluation and demonstrated intense FDG activity, similar to urine, posterior to the prostate. Delayed CT scan showed serpiginous excretion of contrast into the seminal vesicles and peripheral zone of the prostate, corresponding to areas of intense and persistent FDG activity, compatible with seminal vesicle and prostatic reflux of urine resulting in intense FDG uptake. Awareness of this pathological entity that may be a complication of TRUS or due to chronic prostatitis may avoid misinterpretation, especially in the absence of administration of CT contrast to delineate -
Benign Prostatic Hyperplasia DEFINITION OF
Introduction Introduction enign prostatic hyperplasia (BPH) is an increasingly B common condition in aged males. By the age of 60 years, more than 50% of men will have microscopic evidence of the disease, and more than 40% of men beyond this age will have lower urinary tract symptoms (LUTS) (Chute and Panser, 1993). LUTS are the most common problem that affects BPH patients, and include urinary frequency, urgency, weak stream, straining and nocturia (Trueman et al, 1999) (Wu et al, 2006). Although urologists normally attribute LUTS that are concomitant with BPH to urinary obstruction caused by enlarged prostate, some controversies still exist (Bosch et al, 2008). Several studies have shown that there are correlations between urinary symptoms and prostate volume, peak flow rate or residual urine volume (Madersbacher et al, 1997). However, others have found that prostate volume is not associated with LUTS, and objective parameters cannot predict the severity of symptoms in BPH patients (KEzzeldin et al, 1996) (Tubaroa and Vecchia, 2004). 1 Introduction Because most of these studies have been carried in Western countries, evidence in Oriental populations is still lacking. Almost 20 years ago, Barry and his collagues suggested that by using a simple questionnaire, which was later validated, physicians could quantify urine storage and voiding symptoms reported by patients with BPH or LUTS (Barry et al, 1995). The questionnaire also included a question about quality of life, which can also be called the “bothersome index” or “motivational index” question. That question asked, “If you were to spend the rest of your life with your urinary condition the way it is now, how would you feel about that?” From this was born the International Prostate Symptom Score (I-PSS), which became the gold standard outcome measurement for most clinical trials that assessed responses to interventions for the management of BPH (Becher et al, 2009). -
Morphology and Histology of the Penis
Morphology and histology of the penis Michelangelo Buonarotti: David, 1501. Ph.D, M.D. Dávid Lendvai Anatomy, Histology and Embryology Institute 2019. "See the problem is, God gave man a brain and another important organ, and only enough blood to run one at a time..." - R. W MALE GENITAL SYSTEM - SUMMERY male genital gland= testis •spermio/spermatogenesis •hormone production male genital tracts: epididymis vas deference (ductus deferens) ejaculatory duct •sperm transport 3 additional genital glands: 4 Penis: •secretion seminal vesicles •copulating organ prostate •male urethra Cowper-glands (bulbourethral gl.) •secretion PENIS Pars fixa (perineal) penis: Attached to the pubic bone Bulb and crura penis Pars libera (pendula) penis: Corpus + glans of penis resting ~ 10 cm Pars liberaPars erection ~ 16 cm Pars fixa penis Radix penis: Bulb of the penis: • pierced by the urethra • covered by the bulbospongiosus m. Crura penis: • fixed on the inf. ramus of the pubic bone inf. ramus of • covered by the ischiocavernosus m. the pubic bone Penis – connective tissue At the fixa p. and libera p. transition fundiforme lig. penis: superficial, to the linea alba, to the spf. abdominal fascia suspensorium lig. penis: deep, triangular, to the symphysis PENIS – ERECTILE BODIES 2 corpora cavernosa penis 1 corpus spongiosum penis (urethrae) → ends with the glans penis Libera partpendula=corpus penis + glans penis PENIS Ostium urethrae ext.: • at the glans penis •Vertical, fissure-like opening foreskin (Preputium): •glans > 2/3 covered during the ejaculation it's a reserve plate •fixed by the frenulum and around the coronal groove of the glans BLOOD SUPPLY OF THE PENIS int. pudendal A. -
Ta2, Part Iii
TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART III Contents: Systemata visceralia Visceral systems Caput V: Systema digestorium Chapter 5: Digestive system Caput VI: Systema respiratorium Chapter 6: Respiratory system Caput VII: Cavitas thoracis Chapter 7: Thoracic cavity Caput VIII: Systema urinarium Chapter 8: Urinary system Caput IX: Systemata genitalia Chapter 9: Genital systems Caput X: Cavitas abdominopelvica Chapter 10: Abdominopelvic cavity Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: SYSTEMA DIGESTORIUM Chapter 5: DIGESTIVE SYSTEM Latin term Latin synonym UK English US English English synonym Other 2772 Systemata visceralia Visceral systems Visceral systems Splanchnologia 2773 Systema digestorium Systema alimentarium Digestive system Digestive system Alimentary system Apparatus digestorius; Gastrointestinal system 2774 Stoma Ostium orale; Os Mouth Mouth 2775 Labia oris Lips Lips See Anatomia generalis (Ch. -
Development of the Reproductive Organs
ANNALS O F CLINICAL AND LABORATORY SCIENCE, Vol. 15, No. 5 Copyright © 1985, Institute for Clinical Science, Inc. Development of the Reproductive Organs BERNARD GONDOS, M.D. Department of Pathology, University of Connecticut, Farmington, CT 06032 ABSTRACT Understanding of the development of the reproductive organs is essen tial to the evaluation of abnormalities in sexual differentiation. Recent advances resulting from application of genetic, biochemical, and ultra- structural techniques have helped to clarify the mechanisms regulating gonadal and reproductive tract development. The present review consid ers the major processes of sexual differentiation, development of the female reproductive system and development of the male reproductive system with emphasis on current understanding of basic regulatory mech anisms involved in normal and abnormal development of the reproductive organs. Introduction development, however, there is an indif ferent stage in which the gonadal anlagen and other structural primordia appear The reproductive organs in each sex identical in male and female embryos. consist of gonads, an internal duct sys The process of sexual differentiation is tem, and external genitalia. During the initial event imposed on these prim development this basic organ system is itive structures. Subsequently, the male adapted to the different functional needs and female systems develop along sepa of the two sexes. Development of the rate pathways, but clearcut homologies reproductive organs involves complex remain as a result of their common or interaction of genetic, biochemical, mor igin. phologic, and hormonal factors. This Understanding of the development of intricate coordination leads to the estab the reproductive organs requires consid lishment of structural and functional eration of three main processes: (1 ) estab adaptations required for gamete matu lishment of sexual differentiation; (2 ) ration, sex hormone secretion, and development of the female reproductive reproduction. -
Understanding the Concept of Sevani in Ayurveda: a Cadaveric Study
International Journal of Research and Review Vol.7; Issue: 11; November 2020 Website: www.ijrrjournal.com Original Research Article E-ISSN: 2349-9788; P-ISSN: 2454-2237 Understanding the Concept of Sevani in Ayurveda: A Cadaveric Study Rahul Kumar Gupta1, Rajni Dhaded2 1Assistant Prof. Department of Rachna Sharir, Jammu Institute of Ayurveda & Research, Nardani Jammu, J&K, 2Associate Prof. Department of Rachna Sharir, BVVS Ayurvedic Medical College Bagalkot, Karnataka Corresponding Author: Rahul Kumar Gupta ABSTRACT need to be made available. Sevani is one of the important structures emphasized by Sevani is one of the vital structures emphasized Sushrutacharya which are situated five in by all most all the Acharyas where surgical the Shiras, one each in Jihva and Medra.1 procedures should be avoided. These are Sevani is a structure which holds two parts situated five in the Shiras, one each in Jihva and together for its structural and functional Medra. The relevance of Sevani is mentioned in different operative procedures. So an attempt is integrity in the body. These Sevani should made to understand the term Sevani , also to be avoided during the surgical procedures as know the relevant structures underlying it , to there is difficulty in the reunion of the 2 explore the extent, nature and particular structure. In this study an attempt has been anatomical structure as Sevani with the help of made to define the term Sevani, its nature cadaveric dissection was taken. and extent through the conceptual study and observations drawn from the cadaveric Keywords: sevani, shira, jivha, medra, nature, dissection. cadaver, dissection. MATERIAL AND METHODS INTRODUCTION Three adult cadavers available in the Nature has bestowed many favors department of Shareera Rachana, SDMCA, which are scientific miracles working for a Hassan were dissected in the region of smooth running of the human body. -
T U B E R C U L O U S E P I D I D Y M I T I S a CLINICAL AMD AETIOLOGICAL STUDY by WALTER M. BORTHWICK
/ TUBERCULOUS EPIDIDYMITIS A CLINICAL AMD AETIOLOGICAL STUDY by WALTER M. BORTHWICK ProQuest Number: 13850421 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13850421 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 S C HEM A Page ACKNOWLEDGMENTS CHAPTER 1. Introduction ........................... 1 2. The Normal Genitalia ............. 4 (a) Embryology .......................... 4 •(b) Anatomy ............................. 15 (c) Physiology .......................... 30 3. The Aetiology of Tuberculous Epididymitis. .. 36 (a) General Incidence .......... 36 (b) Age Incidence ................ 42 (c) Extra-Genital Tuberculous Lesions .... 48 (d) Injury .............................. 52 (e) Infection......................... 57 4. The Diagnostic Standards of Tuberculous Epididymitis. 60 5. The Local Lesion ........................... 67 (a) Incidence of Double Affection ........ 67 (b) Classification of Tuberculous Epididymitis ..................... 72 (1) Subacute and Chronic Epididymitis . 81 (2) Acute Epididymitis .......... 99 (c) Tuberculosis of the Testis ........... 108 (d) Tuberculosis of the Vas Deferens..115 CHAPTER Page 5. (Contd.) (e) Scrotal Pistulae in Association with Tuberculous Epididymitis......... 120 (f) Hydrocele and its Relation to Tuberculous Epididymitis......... 127 (g) Involvement of Inguinal Glands in cases of Tuberculous Epididymitis. ••• 129 6. Pelvic Coincidental Lesions. -
Chapter 27 *Lecture Powerpoint
Chapter 27 *Lecture PowerPoint The Male Reproductive System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • Our genes live on in our offspring • This chapter will focus on some general aspects of human reproductive biology and the role of the male in reproduction 27-2 Sexual Reproduction and Development • Expected Learning Outcomes – Identify the most fundamental biological distinction between male and female. – Define primary sex organs, secondary sex organs, and secondary sex characteristics. – Explain the role of the sex chromosomes in determining sex. 27-3 Sexual Reproduction and Development Cont. – Explain how the Y chromosome determines the response of the fetal gonad to prenatal hormones. – Identify which of the male and female external genitalia are homologous to each other. – Describe the descent of the gonads and explain why it is important. 27-4 The Two Sexes • Essence of sexual reproduction: biparental, meaning offspring receives genes from two parents – Offspring is not genetically identical to either one – We will die, but our genes will live on in a different container—that is, our offspring • Gametes (sex cells) produced by each parent • Zygote (fertilized egg) has combination of both parents’ genes 27-5 The Two Sexes • Male and female gametes (sex cells) combine their genes to form a zygote (fertilized egg) – One gamete has motility: sperm (spermatozoon)