Male Perineogenital Anatomy and Clinical Applications in Genital Reconstructions and Male-To-Female Sex Reassignment Surgery

Total Page:16

File Type:pdf, Size:1020Kb

Male Perineogenital Anatomy and Clinical Applications in Genital Reconstructions and Male-To-Female Sex Reassignment Surgery Male Perineogenital Anatomy and Clinical Applications in Genital Reconstructions and Male-to-Female Sex Reassignment Surgery Francisco Giraldo, M.D., Ph.D., María José Mora, M.D., Ph.D., Ana Solano, M.D., Ph.D., Carlos González, M.D., and Víctor Smith-Fernández, M.D., Ph.D. Málaga, Spain To determine the possibility of providing alternative such evolution, creativeness, and perfectionism surgical techniques for male genital reconstruction and in so short a period of time as has plastic and for male-to-female sex reassignment surgery, the authors undertook an anatomic investigation of the perineogeni- reconstructive surgery. tal region in male cadavers. Anatomic dissection was per- Either as a consequence of the lack of avail- formed on 14 male adult human cadavers (fresh and ability of human cadavers for scientific investi- formalin-preserved) studying the main afferent vessels to gation or difficulties secondary to technical ap- the anterior perineal region and their mean internal di- proaches in the zones concerned, the genitals ameters: deep external pudendal artery (0.60 mm), su- and the perineum remain two neglected areas perficial perineal artery (0.50 mm), and funicular artery (0.37 mm). We established their exact topography, to- of anatomic study, with a relatively limited gether with vascular anatomic variations, main vascular number of publications to date, so that further anastomosis circuits (base of the penis, scrotal septum, work in this area is necessary. and perineal fat and lateral spermatic-scrotal fascia), an- In 1991, we initiated an anatomic investiga- giosomes, anatomy of the rectovesical septum cavity, and tion in female cadavers of perineogenital soft their “critical” key points of dissection. The authors dis- tissues. The findings of these studies enabled cuss the clinical possibility of elevation of a “tree” of pre- viously described paragenital-genital flaps including us to successfully apply new techniques and mainly those based on the terminal branches of the in- approaches in vaginal reconstructive sur- ternal pudendal vascular system, the erectile tissue pedi- gery.1–4 We have since undertaken a similar cled flaps, and finally, flaps of the external pudendal sys- investigation in male cadavers, to determine tem. The authors indicate the concrete vascularization the possibility of providing alternative surgical system for each flap. (Plast. Reconstr. Surg. 109: 1301, techniques to those already described for gen- 2002.) ital reconstruction and for sex reassignment surgery. The main afferent vessels to the skin of the Although gross anatomy is well known genitals and the anterior perineal region in the through classic treatises, most scientific ad- male anatomy are the anterior scrotal arteries, vances in the field of plastic surgery have come which are direct branches from the femoral about as a result of investigation in the area of vascular system; and the posterior scrotal arter- cutaneous vascularization patterns in both hu- ies, which are terminal branches of the super- man cadavers and clinical practice. This re- ficial perineal vessels from the internal iliac search has resulted in impressive progress and vascular system. In addition, there is another development over the past 100 years, and prob- vascular structure which we consider to be rel- ably no other surgical specialty has achieved evant in this field, the funicular artery, a prox- From the Plastic and Reconstructive Unit, “Carlos Haya” Regional Hospital; and the Normal and Pathologic Morphology Department of the Faculty of Medicine, Málaga University. Received for publication May 1, 2001. This work was supported by a grant (Project Exp. 0686/98) from the Fondo de Investigación Sanitaria (FIS), Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo. 1301 1302 PLASTIC AND RECONSTRUCTIVE SURGERY, April 1, 2002 FIG.1.(Above, left) Deep external pudendal system. (1) Deep external pudendal artery, (2) internal anterior scrotal arteries, (3) external anterior scrotal arteries, (4) superficial cutaneous arteries of the penis, (5) great saphenous vein, (6) superficial external pudendal artery, (7) superficial vein draining the penile shaft, (8) deep dorsal neurovascular pedicles of the penis, (9) aponeurosis of the adductor longus muscle, (10) adductor longus muscle, (11) gracilis muscle, and (12) spermatic cord. (Above, right) Deep external pudendal system with the deep external pudendal arteries crossing over the saphenous hiatus. (1) Deep Vol. 109, No. 4 / MALE PERINEOGENITAL ANATOMY 1303 imal branch of the inferior deep epigastric the anatomy of the rectovesical septum, with artery from the external iliac system. identification of the “critical” key points of dis- In this work, we report our experience in a section of the rectovesical virtual space. Neu- series of human dissections of the perineogeni- rovascular structures were dissected bilaterally tal region in male cadavers. We describe the using magnifying glasses (ϫ3.5), and high- main vascular trunks arriving at this region, its resolution photographs of the origin, distribu- exact topography and anatomic variations, and tion, and topography of the vascular structures the principal anastomotic vascular circuits and were taken. their relation with spermatic-scrotal fascias. Arteriectomy specimens 1 cm long were har- The internal diameters of these arteries mea- vested from the proximal segment of the main sured by means of image analysis suggested the arteries (superficial perineal, deep external pu- possibility of elevation of a “tree” of genital dendal, and funicular) to determine their in- flaps based on these vascular axes and their ternal diameters. These arterial specimens terminal branches for applications in genital were processed and image-system analyzed fol- reconstructions and male-to-female sex reas- lowing the same systematic procedure used signment surgery. previously.3 The deep external pudendal artery was isolated and cannulated unilaterally in two MATERIALS AND METHODS cadavers, and its corresponding angiosomes Anatomic dissection was performed on 14 were visualized by means of the intraarterial male adult human cadavers (12 formalin- injection of 20 ml of methylene blue, and preserved and two fresh), useful for teaching the stained cutaneous territories were and investigation, from the Normal and Patho- photographed. logic Morphology Department, Faculty of Med- icine, Málaga University, Spain. External exam- RESULTS ination of the cadavers revealed no scars or anomalies in the perineal, genital, and ingui- Afferent Vessels to the Anterior Perineal Region and nal regions. By means of macro-micro dissec- their Distribution tion, the main afferent and efferent vascular In eight anatomic dissections, the unvarying structures to the skin of the genitals and ante- presence of three main vascular axes was de- rior perineal region were identified. We ana- termined (Fig. 1) as follows: lyzed 16 vascular pedicles (eight right, eight left) of the superficial perineal, deep external 1. Deep external pudendal artery, a direct pudendal, and funicular arteries, and deter- branch of the femoral artery arriving at the mined their relation to certain anatomic land- anterior perineal region, crossing under the marks, their main vascular anastomosis cir- great saphenous hiatus in seven of eight cuits, and the internal diameters of each artery. dissections (87.5 percent), and over this ve- In addition, in six cadavers, angiosomes of the nous structure in one case (12.5 percent) in main cutaneous arteries of the anterior peri- our series. At the spermatic cord the deep neal region were studied, and neurovascular external pudendal artery gives off the structures of the dorsum of the penis, the vas- following: cularization system of the scrotal septum, and a. Internal anterior scrotal arteries crossing external pudendal arteries, (2) internal anterior scrotal arteries, (3) external anterior scrotal arteries, (4) saphenous hiatus, (5) superficial cutaneous arteries of the penile shaft, and (6) right testicle. (Center, left) Superficial perineal neurovascular system. (1) Superficial perineal neurovascular pedicle, (2) external posterior scrotal arteries, (3) internal posterior scrotal arteries, (4) corpus spongiosum, (5) bulbocavernosus muscle, (6) right testicle, (7) left testicle, (8) penis, (9) scrotal-spermatic fascias. (Center, right) Superficial perineal neurovascular system. (1) Superficial perineal neurovascular pedicle, (2) external posterior scrotal arteries, (3) internal posterior scrotal arteries, (4) transperineal vessels communicating both superficial perineal pedicles, and (5) bulbocavernosus muscle. (Below, left) Lateral scrotal-spermatic vascular anastomotic circuit. (1) Deep external pudendal artery, (2) internal anterior scrotal arteries, (3) external posterior anterior arteries, (4) superficial perineal neurovascular pedicle, (5) internal posterior scrotal arteries, (6) external posterior scrotal arteries, (7) lateral scrotal-spermatic fascias, (8) obturator artery perforator, (9) penis, (10) adductor longus muscle, (11) gracilis muscle, and (12) “choke” anastomoses between the external posterior and anterior scrotal arteries. (Below, right) Main afferent vessels to the anterior perineal region and their relations with the scrotal-spermatic fascias. (1) Deep external pudendal artery, (2) internal anterior scrotal arteries, (3) external anterior scrotal arteries, (4) superficial cutaneous artery of the penile shaft, (5) superficial perineal vascular pedicle,
Recommended publications
  • Functional Anatomy of the Hypothalamic–Pituitary–Gonadal Axis and 1 the Male Reproductive Tract
    Cambridge University Press 978-1-107-01212-7 - Fertility Preservation in Male Cancer Patients Editor-in-Chief John P. Mulhall Excerpt More information Section 1 Anatomy and physiology Chapter Functional anatomy of the hypothalamic–pituitary–gonadal axis and 1 the male reproductive tract Nelson E. Bennett Jr. Anatomy of reproductive function The reproductive functional axis of the male can be divided into three major subdivisions: (1) the hypo- thalamus, (2) the pituitary gland, and (3) the testis. Each level elaborates a signal, or transmitter molecule, that stimulates or inhibits the subsequent level of the axis. The end result is the production and expulsion of semen that contains spermatozoa. This chapter exam- ines the hypothalamic–pituitary–gonadal (HPG) axis, and reviews the functional anatomy of the testis, epi- didymis, vas deferens, seminal vesicles, prostate, and penis. Hypothalamus and anterior pituitary gland The control of male sexual and reproductive func- tion begins with secretion of gonadotropin-releasing hormone (GnRH) by the hypothalamus (Fig. 1.1). This hormone in turn stimulates the anterior pituitary gland to secrete two downstream hormones (termed gonadotropins). These hormones are luteinizing hor- mone (LH) and follicle-stimulating hormone (FSH). LH is the primary stimulus for the testicular secre- tion of testosterone, while FSH mainly stimulates spermatogenesis. Gonadotropin-releasing hormone (GnRH) Figure 1.1. Feedback regulation of the hypothalamic– The neuronal cells of the arcuate nuclei of the hypo- pituitary–gonadal (HPG) axis in males. Positive (stimulatory) effects are shown by + and inhibitory (negative feedback) effects by –. thalamus secrete GnRH, a 10-amino-acid peptide. The GnRH, gonadotropin-releasing hormone; LH, luteinizing hormone; endingsoftheseneuronsterminateinthemedian FSH, follicle-stimulating hormone.
    [Show full text]
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat
    IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 10, Issue 1 Ver. I (January. 2017), PP 46-53 www.iosrjournals.org Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat Reda Mohamed1, 2*, ZeinAdam2 and Mohamed Gad2 1Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, Trinidad and Tobago. 2Anatomy and Embryology Department, Faculty of Veterinary Medicine, Beni Suef University Egypt. Abstract: The main purpose of this study was to convey a more precise explanation of the arterial supply of the intestinal tract of the goat. Fifteen adult healthy goats were used. Immediately after slaughtering of the goat, the thoracic part of the aorta (just prior to its passage through the hiatus aorticus of the diaphragm) was injected with gum milk latex (colored red) with carmine. The results showed that the duodenum was supplied by the cranial pancreaticoduodenal and caudal duodenal arteries. The jejunum was supplied by the jejunal arteries. The ileum was supplied by the ileal; mesenteric ileal and antimesenteric ileal arteries. The cecum was supplied by the cecal artery. The ascending colon was supplied by the colic branches and right colic arteries. The transverse colon was supplied by the middle colic artery. The descending colon was supplied by the middle and left colic arteries. The sigmoid colon was supplied by the sigmoid arteries. The rectum was supplied by the cranial; middle and caudal rectal arteries. Keywords: Anatomy,Arteries, Goat, Intestine I. Introduction Goats characterized by their high fertility rate and are of great economic value; being a cheap meat, milk and some industrial substances.
    [Show full text]
  • The Reproductive System
    27 The Reproductive System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The reproductive system is designed to perpetuate the species • The male produces gametes called sperm cells • The female produces gametes called ova • The joining of a sperm cell and an ovum is fertilization • Fertilization results in the formation of a zygote © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • Overview of the Male Reproductive System • Testis • Epididymis • Ductus deferens • Ejaculatory duct • Spongy urethra (penile urethra) • Seminal gland • Prostate gland • Bulbo-urethral gland © 2012 Pearson Education, Inc. Figure 27.1 The Male Reproductive System, Part I Pubic symphysis Ureter Urinary bladder Prostatic urethra Seminal gland Membranous urethra Rectum Corpus cavernosum Prostate gland Corpus spongiosum Spongy urethra Ejaculatory duct Ductus deferens Penis Bulbo-urethral gland Epididymis Anus Testis External urethral orifice Scrotum Sigmoid colon (cut) Rectum Internal urethral orifice Rectus abdominis Prostatic urethra Urinary bladder Prostate gland Pubic symphysis Bristle within ejaculatory duct Membranous urethra Penis Spongy urethra Spongy urethra within corpus spongiosum Bulbospongiosus muscle Corpus cavernosum Ductus deferens Epididymis Scrotum Testis © 2012 Pearson Education, Inc. Anatomy of the Male Reproductive System • The Testes • Testes hang inside a pouch called the scrotum, which is on the outside of the body
    [Show full text]
  • Netter's Anatomy Flash Cards – Section 5 – List 4Th Edition
    Netter's Anatomy Flash Cards – Section 5 – List 4th Edition https://www.memrise.com/course/1577366/ Section 5 Pelvis and Perineum (24 cards) Plate 5-1 Bones and Ligaments of Pelvis 1.1 Iliolumbar ligament 1.2 Supraspinous ligament 1.3 Posterior sacro-iliac ligaments 1.4 Greater sciatic foramen 1.5 Sacrotuberous ligament 1.6 Anterior longitudinal ligament 1.7 Posterior sacrococcygeal ligaments 1.8 Iliac fossa 1.9 Iliac crest 1.10 Anterior sacro-iliac ligament 1.11 Anterior superior iliac spine 1.12 Sacrospinous ligament 1.13 Lesser sciatic foramen 1.14 Pecten pubis 1.15 Pubic tubercle 1.16 Pubic symphysis Plate 5-2 Pelvic Diaphragm: Male 2.1 Levator ani muscle (Puborectalis; Pubococcygeus; Iliococcygeus) Plate 5-3 Pelvic Diaphragm: Male 3.1 Coccygeus (ischiococcygeus) muscle Plate 5-4 Female Perineum 4.1 Ischiocavernosus muscle with deep perineal (investing, or Gallaudet’s) fascia removed 4.2 Bulbospongiosus muscle with deep perineal (investing, or Gallaudet’s) fascia removed 4.3 Perineal membrane 4.4 Superficial transverse perineal muscle with deep perineal (investing, or Gallaudet’s) fascia removed 4.5 Perineal body 4.6 Parts of external anal sphincter muscle (Deep; Superficial; Subcutaneous) 4.7 Levator ani muscle (Pubococcygeus; Puborectalis; Iliococcygeus) 4.8 Gluteus maximus muscle Plate 5-5 Perineum and Deep Perineum 5.1 Compressor urethrae muscle 5.2 Sphincter urethrovaginalis muscle Plate 5-6 Perineum and Deep Perineum 6.1 Sphincter urethrae muscle (female) Plate 5-7 Male Perineum 7.1 Bulbospongiosus muscle with deep perineal
    [Show full text]
  • On Cysts of the Prepuce and Raphé, with an Illustrative Case
    ON CYSTS OF THE PREPUCE AND RAPHE, WITH AN ILLUSTRATIVE CASE* By GEO. HENRY EDINGTON, M.D., M.R.C.S. Eng., Surgeon to the Central Dispensary, and Extra Surgeon to the Dispensary of the Western Infirmary, Glasgow. Cysts of the prepuce receive but scant notice in the general text-books of surgery, and it is partly on this account that I now record the following case. I have been led, however, to do so also from the fact that recently cysts in this region have been engaging the minds of some writers in connection with their probable origin in a congenital abnormality. I shall first notice a case which has come under my own observation, and then refer to the literature of the subject. Willie D., aged 1 year, was brought to the Central Dispensary on 27th October, 1897, on account of his being the subject of " phimosis, accompanied by a small lump" at the distal extremity of the prepuce. This lump was first observed when he was 3 months old, and it increased in size till he reached the age of 6 months, since when no alteration in dimension had been noticed. It was stated, however, that, after ceasing to enlarge, the swelling had become harder than when first noticed. The prepuce (Fig. 1, p. 423), which was long, presented on inspection a spherical swelling on the under aspect of the free margin, with the antero-posterior vertical meridian corres- * Paper read and specimen shown at the meeting of the Glasgow Pathological and Clinical Society, 11th April, 1898.
    [Show full text]
  • Internal Pudendal Artery (Course and Relation)
    \ - 12 - Ensherah Mokheemer - Rama Nada - Ahmed Salman 1 | P a g e ❖ Contents of this lecture: 1- Ischiorectal Fossa 2- Internal Pudendal artery (Course and relation) 3- Pudendal nerve (Course and relation) 4-Superficial and deep perineal pouches (Boundaries and contents) 1-Ischiorectal fossa. Obturator internus muscle. Obturator fascia ❖ This figure indicates a coronal section in Levator ani the posterior of anal muscle canal. ❖ Location: It is a wedge-shaped space on either side Rectum of the anal canal. ❖ If you look at the External anal sphincter figure you will find the obturator internus muscle and obturator fascia on Perianal skin each side, the rectum and the anal canal in the middle, notice that the anal canal is surrounded by a muscle called external anal sphincter. ❖ The ischiorectal fossa is pyramidal in shape it has an apex, base and 4 walls: ❖ Apex: Origin of levator ani from the white line. ❖ Base: perianal skin. ❖ Medial wall: Levator ani and the external anal sphincter. ❖ Lateral wall: Obturator internus muscle and Obturator fascia. 2 | P a g e As for the anterior and the posterior relationships: (Look at the next figure): ❖ Note: Remember from the previous lecture we said that the urogenital triangle is covered by a membrane called perineal membrane. ❖ Anterior: posterior border of the perineal membrane. Perineal membrane ❖ Posterior: Sacrotuberous Urogenital triangle ligament, and the gluteus Ischial tuberosity maximus muscle. ** note that only gluteus maximus is related to the ischiorectal triangle, because it is the only one Anal canal surrounded by that originates from medial side external anal sphincter Anal (sacrum), gluteus Medius and triangle minimus originates from the ilium.
    [Show full text]
  • 82148117.Pdf
    beni-suef university journal of basic and applied sciences 5 (2016) 291–298 HOSTED BY Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/bjbas Full Length Article Anatomical and radiographical studies on the arterial supply of the udder in goat and their surgical importance Z.A. Adam a, G.A. Ragab b, A.S. Awaad a, M.G. Tawfiek a, M.K.M. Abdel Maksoud a,* a Anatomy and Embryology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt b Surgery, Anesthesiology, and Radiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt ARTICLE INFO ABSTRACT Article history: The present study aimed to show the arterial blood supply of the udder of the Egyptian native Received 15 August 2016 breed of goat (Baladi goat) to be used as a guide during mastectomy and other surgical in- Accepted 30 August 2016 terferences. The study was carried out on the udder of twelve apparently healthy adult female Available online 20 September 2016 Egyptian Baladi goats. Four goats were used for mastectomy, one specimen was used for radiography and the other specimens were subjected to gum-milk latex injection to clarify Keywords: the origin, course and distribution of the main arteries supplying the udder. The results re- Anatomy vealed that the udder of goat was supplied by the external pudendal artery and dorsal labial Radiography and mammary branch of the ventral perineal artery. The course of the external pudendal Artery artery through the inguinal canal before reaching the base of the udder, as well as that of Udder the dorsal labial and mammary branch of the ventral perineal artery in the perineal region, Goat were briefly described to determine the appropriate site for ligation of these vessels before Mastectomy mastectomy.
    [Show full text]
  • Pelvic Arteries in Macacus Cyclopsis Junji Fujita Introduction
    Pelvic Arteries in Macacus Cyclopsis Part 1. The Common Iliac Artery and the External Iliac Artery by Junji Fujita First Department of Anatomy, Faculty of Medicine, Nagasaki University (Under the supervision of Prof. Jun-ichiro Satoh) Introduction Although there are many reports on the results of anatomical studies of the arteries in the pelvic region of primates, only a few cases have been used in most of these investigations, and thus it is practically impossible to discuss the normal type (standard type) of the species from these findings. Because of this situation, a study has been in progress in this department under the supervi- sion of Professor Satoh in which a large number of Formosan monkey are investigated and the findings are considered from the statistical aspect for the determination of the standard type of the various characteristics of the different systems and organs. This paper, which deals with one part of this study, describes the state of origin, branches, course, distribution, etc., of the arteries which supply the inner aspect of the pelvis and the external genital region and their relation to the nerves. In addition, the findings were compared with previous reports on primates. For the purpose of this report, the arteries were classified into the common iliac artery, external iliac artery and the internal iliac artery. In this part of the report, only the common iliac artery and the external iliac artery and their branches will be discussed. Material and Method The material consisted of 50 bodies (23 male, 27 female) selected at random from among the Macacus cyclopsis which had been col- lected by Professor Satoh and preserved in this department.
    [Show full text]
  • Anatomy and Blood Supply of the Urethra and Penis J
    3 Anatomy and Blood Supply of the Urethra and Penis J. K.M. Quartey 3.1 Structure of the Penis – 12 3.2 Deep Fascia (Buck’s) – 12 3.3 Subcutaneous Tissue (Dartos Fascia) – 13 3.4 Skin – 13 3.5 Urethra – 13 3.6 Superficial Arterial Supply – 13 3.7 Superficial Venous Drainage – 14 3.8 Planes of Cleavage – 14 3.9 Deep Arterial System – 15 3.10 Intermediate Venous System – 16 3.11 Deep Venous System – 17 References – 17 12 Chapter 3 · Anatomy and Blood Supply of the Urethra and Penis 3.1 Structure of the Penis surface of the urogenital diaphragm. This is the fixed part of the penis, and is known as the root of the penis. The The penis is made up of three cylindrical erectile bodies. urethra runs in the dorsal part of the bulb and makes The pendulous anterior portion hangs from the lower an almost right-angled bend to pass superiorly through anterior surface of the symphysis pubis. The two dor- the urogenital diaphragm to become the membranous solateral corpora cavernosa are fused together, with an urethra. 3 incomplete septum dividing them. The third and smaller corpus spongiosum lies in the ventral groove between the corpora cavernosa, and is traversed by the centrally 3.2 Deep Fascia (Buck’s) placed urethra. Its distal end is expanded into a conical glans, which is folded dorsally and proximally to cover the The deep fascia penis (Buck’s) binds the three bodies toge- ends of the corpora cavernosa and ends in a prominent ther in the pendulous portion of the penis, splitting ven- ridge, the corona.
    [Show full text]
  • Gender-Specific Anatomical Distribution of Internal Pudendal Artery Perforator: a Radiographic Study for Perineal Reconstruction
    University of Massachusetts Medical School eScholarship@UMMS Open Access Publications by UMMS Authors 2020-10-29 Gender-specific Anatomical Distribution of Internal Pudendal Artery Perforator: A Radiographic Study for Perineal Reconstruction Regina Sonda Padova University Hospital Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Plastic Surgery Commons, Surgery Commons, Surgical Procedures, Operative Commons, and the Urogenital System Commons Repository Citation Sonda R, Monticelli A, Dalla Venezia E, Giraudo C, Giatsidis G, Bassetto F, Macchi V, Tiengo C. (2020). Gender-specific Anatomical Distribution of Internal Pudendal Artery Perforator: A Radiographic Study for Perineal Reconstruction. Open Access Publications by UMMS Authors. https://doi.org/10.1097/ GOX.0000000000003177. Retrieved from https://escholarship.umassmed.edu/oapubs/4434 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. ORIGINAL ARTICLE Reconstructive Gender-specific Anatomical Distribution of Internal Pudendal Artery Perforator: A Radiographic Study for Perineal Reconstruction Regina Sonda, MD* Andrea Monticelli, MD* Background: Cancer, trauma, infection, or radiation can cause perineal defects. Erica Dalla Venezia, MD* Fasciocutaneous flaps based on perforator vessels (PV) from the internal puden- Chiara Giraudo, MD† dal artery (IPA) provide an ideal reconstructive option for moderate defects. We Giorgio Giatsidis, MD, PhD‡ hypothesized that, due to gender differences in the pelvic–perineal region, the Franco Bassetto, MD* anatomical distribution of PV differs between genders.
    [Show full text]
  • Development of the Reproductive Organs
    ANNALS O F CLINICAL AND LABORATORY SCIENCE, Vol. 15, No. 5 Copyright © 1985, Institute for Clinical Science, Inc. Development of the Reproductive Organs BERNARD GONDOS, M.D. Department of Pathology, University of Connecticut, Farmington, CT 06032 ABSTRACT Understanding of the development of the reproductive organs is essen­ tial to the evaluation of abnormalities in sexual differentiation. Recent advances resulting from application of genetic, biochemical, and ultra- structural techniques have helped to clarify the mechanisms regulating gonadal and reproductive tract development. The present review consid­ ers the major processes of sexual differentiation, development of the female reproductive system and development of the male reproductive system with emphasis on current understanding of basic regulatory mech­ anisms involved in normal and abnormal development of the reproductive organs. Introduction development, however, there is an indif­ ferent stage in which the gonadal anlagen and other structural primordia appear The reproductive organs in each sex identical in male and female embryos. consist of gonads, an internal duct sys­ The process of sexual differentiation is tem, and external genitalia. During the initial event imposed on these prim­ development this basic organ system is itive structures. Subsequently, the male adapted to the different functional needs and female systems develop along sepa­ of the two sexes. Development of the rate pathways, but clearcut homologies reproductive organs involves complex remain as a result of their common or­ interaction of genetic, biochemical, mor­ igin. phologic, and hormonal factors. This Understanding of the development of intricate coordination leads to the estab­ the reproductive organs requires consid­ lishment of structural and functional eration of three main processes: (1 ) estab­ adaptations required for gamete matu­ lishment of sexual differentiation; (2 ) ration, sex hormone secretion, and development of the female reproductive reproduction.
    [Show full text]