Population Genetics and Sociality in the Sungazer (Smaug Giganteus)

Total Page:16

File Type:pdf, Size:1020Kb

Population Genetics and Sociality in the Sungazer (Smaug Giganteus) Population genetics and sociality in the Sungazer (Smaug giganteus) Shivan Parusnath Doctoral Thesis Supervisors: Prof. Graham Alexander Prof. Krystal Tolley Prof. Desire Dalton Prof. Antoinette Kotze A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. 30th October 2020 “My philosophy is basically this, and this is something that I live by, and I always have, and I always will: Don't ever, for any reason, do anything, to anyone, for any reason, ever, no matter what, no matter where, or who, or who you are with, or where you are going, or where you've been, ever, for any reason whatsoever.” - Michael G. Scott DECLARATION I declare that this thesis is my own, unaided work. It is being submitted for the Degree of Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other University. All protocols were approved by the University of the Witwatersrand Animal Ethics Screening Committee (2014/56/B; 2016/06/30/B), and the National Zoological Garden, South African National Biodiversity Institute (NZG SANBI) Research, Ethics and Scientific Committee (P14/18). Permits to work with Threatened or Protected Species were granted by the South African Department of Environmental Affairs (TOPS59). Permits to collect samples in the Free State and Mpumalanga provinces were provided by Department of Small Business Development, Tourism and Environmental Affairs (01/34741; JM938/2017) and Mpumalanga Tourism and Parks Agency (MPB. 5519) respectively. Research approval in terms of Section 20 of the Animal Diseases Act (35 of 1984) was granted by the South African Department of Agriculture, Forestry and Fisheries (12/11/1/1/18). All samples used in this project were stored at the National Zoological Garden Biobank in Pretoria. Shivan Parusnath 30th Day of October 2020 i ABSTRACT Establishing links between the evolution and ecology of a species is one of the central facets of organismal biology. Quantifying the past and present flow of genetic material between populations can provide insight into the landscape features and associated environmental variables that impede or facilitate this process. An integrative approach utilising a) genetic markers that evolve at different evolutionary rates, b) ecological niche models that indicate niche suitability across a landscape, and c) knowledge of the life-history, social system, and morphology of a species can allow for the formulation and testing of hypotheses of scenarios of genetic structure in a species. The Sungazer (Smaug giganteus) is a large cordylid lizard endemic to the Highveld grasslands of South Africa. It is unique amongst the Cordylidae family because of its adherence to primary grassland, reliance on self-excavated burrows as long-term refuge sites, and organisation of multiple Sungazer burrow systems into spatially discrete colonies. Young Sungazers are often seen sharing burrows with adults, and because of this behaviour and the unique spatial organisation of colonies, the species has long been touted as potentially exhibiting kin-based sociality. Little is known about the dispersal ability of Sungazers, the levels of genetic differentiation within and between colonies, the processes that influence genetic structure in the species, and the existence of kin-based sociality in the species. The primary aim of this thesis was to investigate the population and social structure of S. giganteus at multiple spatial and evolutionary scales, using mitochondrial DNA, nuclear DNA, and species-specific microsatellites. Smaug giganteus occurs in five distinct genetic populations across its distribution (Western 1, Western 2, Central, Eastern 1, Eastern 2), that belong to three divergent phylogenetic clades (Western, Central, Eastern). The genetic differentiation of these clades correlate spatially and temporally with geological features that arose during the most recent uplift of the eastern Great Escarpment, ~900 m into the Highveld grasslands, ~2.5-1.8 MYA. Within these clades, a combination of barriers such as mountains, rivers, and isolation by distance appear to be the primary drivers of population structure. The average Sungazer body size (snout-vent-length and mass) in each clade was significantly different, with an increasing size gradient from west to east. This size gradient correlates with an increase in elevation and precipitation, and decrease in temperature, and may result from local adaption to different climatic niches in these vicariant populations. Sungazer colonies comprise primarily of extended family members, and Sungazers are significantly more related to individuals within the same colony than to those in other colonies. Sungazers that share burrows tend to be immediate family members. Juveniles, in most cases, occupied burrows with either their mother or father, and full-siblings. The behaviours of refuge sharing by adults and their ii offspring, combined with delayed juvenile dispersal, are indicative of parental care in the species. Besides the sharing of burrows with nuclear family members, social structure within colonies appears to be relatively homogenous, likely due to the frequent moves between burrows by adults during mating periods. This is the first evidence of kin-based sociality in an African lizard. The new insights into genetic structure in S. giganteus presented in this thesis have ramifications for how long-term conservation and translocation strategies for S. giganteus are managed, such that the genetic structure and health of populations are preserved. This study extends the evidence of lizard family living to a new taxonomic group, and a new continent, elucidating the reality that kin-based sociality may be more widespread in lizards than has long been thought. This opens the door to studies of kin-based sociality in other cordylids and African lizards, as well as more detailed research on the complex system of sociality in S. giganteus. iii ACKNOWLEDGMENTS The research presented in this thesis would have not been possible without the assistance, cooperation and friendliness of many, many landowners across the distribution of the Sungazer. The respect and interest that these individuals maintain for Sungazers gives me a lot of hope that the species is in good hands. Some of my finest memories from the past decade have been driving their dirt roads and walking their open fields in search of Sungazers. This project came with considerable financial costs of fieldwork, labwork, and keeping me alive. Project funding provided by the National Zoological Gardens (previously under NRF, now under SANBI), the Rufford Foundation (Second Grant: 13956-2), the National Geographic Society (Young Explorer Grant: C288-14), and the Alexander Herp Lab, allowed for the collections of hundreds of samples from the field, developing and testing microsatellite markers, and processing these samples in the lab. Funding through the NRF Professional Development Plan allowed for me to pay for rent and food, and live a comfortable life for the first three years of my PhD. It became a hustle after that, but my parents, Vinesh and Sashi Parusnath (and my third parent, Prianka), were always there to help pay bills when times got tough. I cannot be appreciative enough of their support, long after the normal duties of parenthood had passed. I owe an immeasurable thank you to the Carnegie Corporation of New York for a grant awarded to University of the Witwatersrand for the Next Generation of African Scholars, which covered in full, my final year of PhD fees. To complete this PhD without fee debt is truly a rare gift. Thank you. My supervisors, Graham Alexander, Krystal Tolley, Desire Dalton, and Antoinette Kotze were vital mentors to me on my journey of genetics, ecology and evolution. Each of you has imparted valuable life lessons onto me in multifarious ways. In particular I would like to thank Krystal Tolley and Graham Alexander who make for a supervisory dream team. Any student to have either of you supervising them can consider themselves lucky, but to land the pair is indeed great fortune. I think it was Tolkien that said, “in the company of friends, peril becomes adventure”. Wade Stanton- Jones, Thilo Beck, Mareike Dinberger, Hiral Naik, Bevan Dell, Ashadee Miller, and Mimmie Kgaditse all assisted in collecting tissue samples and making difficult decisions in the field. Thanks for the adventures. Wade in particular, who also spent several years doing research on Sungazers, was always a welcome field companion. Not only for the assistance, but for the great conversations about Sungazers, and the many memories made in the field together. Special thanks must also be given to Allan Vorster, who has welcomed me to Welkom on many occasions, to show friends, colleagues and film crews the colony of Sungazers that he watches over. He has also shared many interesting observations and photographs of Sungazers with me that have stimulated enthralling discussion. iv While labwork may appear to be more comfortable and simple than fieldwork to the uninitiated, this could not be further from the truth. It can in fact be far more terrifying. Many skilled students and technicians at the National Zoological Gardens taught me the ropes, and were always available to help solve problems. Almero Oosthuizen, Thabang Madisha, Antonie Kloppers, and Clearance Mnisi in particular made labwork more accessible. My labmates at the Alexander Herp Lab at Wits provided support in various ways throughout the PhD. In particular, Dr. Hanlie Engelbrecht went far beyond her duties as a post-doc in assisting me with the complex statistical analyses involved in this study. Her fervour to teach and upskill others is something that I endeavour to match. I hope to in turn pass these lessons and skills on to others. Other staff members at Wits have also served as important mentors to me, Stuart Sym, Dave Mycock, Marcus Byrne, and Carol Still chief among them. A special thanks also to Rose Sephton-Poultney, who proofread my thesis before submission.
Recommended publications
  • Role of Wild Leguminous Plants in Grasslands Management in Forest Ecosystem of Protected Areas of Madhya Pradesh State
    Vol-6 Issue-2 2020 IJARIIE-ISSN(O)-2395-4396 Role of wild leguminous plants in grasslands management in forest ecosystem of Protected Areas of Madhya Pradesh State Muratkar G. D. , Kokate U. R G. D. Muratkar Department of Environmental Science , Arts , Science and Commerce college Chikhaldara , District Amravati 444807 U. R. Kokate Department of Botany , Arts , Science and Commerce college Chikhaldara , District Amravati 444807 ABSTRACT Grasslands in melghat forest are of annual , taller type with course grasses. The dominant grasses are Themeda quadrivalvis , Heteropogon contortus , Apluda mutica , Chloris barbata . The soil is murmi red with low water holding capacity , in some parts the soil diversity observed black , red soil with clay , silt , sand and loam. The grasses are annual and very few are perennials like Dicanthium annulatum , Dicanthium caricosum , Cynodon barberi , Bothrichloa bladhii. The palatability of th grasses depends upon the soil nutrients , chemicals. The soil in which the wild leguminous plants like Vigna trilobata , Phaseolus radiate , Glycine max , Rhyncosia minima shows the more distribution of wild leguminous plants the soil is with more nitrogenous content due to biological nitrogen fixation and the soil shows the effects on fodder value of the grasses. Keywords : Grasslands Protected Areas , palatable grasses , soil fertility , Wild leguminous plants Introduction Madhya Pradesh is one of those promising states in India.Whether it's Bandhavgarh or Kanha or Pench, each and every national park is far from the civilization and has a rustic charm of its own. Remarkable flora and fauna of these nine National Parks is matched by scenic landscapes along with the incredible diversity.
    [Show full text]
  • A Preliminary Phytolith Reference Collection for the Mountains of Dhufar, Oman
    The use of phytoliths as a proxy for distinguishing ecological communities: A preliminary phytolith reference collection for the mountains of Dhufar, Oman Undergraduate Research Thesis Presented in Partial Fulfillment of the Requirements for Graduation “with Honors Research Distinction in Evolution and Ecology” in the Undergraduate Colleges of The Ohio State University by Drew Arbogast The Ohio State University May 2019 Project Co-Advisors: Professor Ian Hamilton, Department of Evolution, Ecology, and Organismal Biology Professor Joy McCorriston, Department of Anthropology 2 Table of Contents Page List of Tables...................................................................................................................................3 List of Figures..................................................................................................................................4 Abstract............................................................................................................................................5 Introduction......................................................................................................................................6 Background......................................................................................................................................7 Materials and Methods...................................................................................................................11 Results............................................................................................................................................18
    [Show full text]
  • Complex Patterns of Phenotypic Plasticity: Interactive Effects of Temperature During Rearing and Oviposition
    Ecology, 86(4), 2005, pp. 924±934 q 2005 by the Ecological Society of America COMPLEX PATTERNS OF PHENOTYPIC PLASTICITY: INTERACTIVE EFFECTS OF TEMPERATURE DURING REARING AND OVIPOSITION R. CRAIG STILLWELL1 AND CHARLES W. F OX Department of Entomology, University of Kentucky, S-225 Ag Science Center North, Lexington, Kentucky 40546-0091 USA Abstract. Temperature profoundly affects growth and life history traits in ectothermic animals through selection (i.e., genetic) and through direct effects on the phenotype (i.e., nongenetic/plasticity). We examined the effects of rearing temperature (248,308, and 368C) on adult body size and development time and the interactive effects of temperature ex- perienced during rearing and oviposition on several life history traits (age-at-®rst-repro- duction, fecundity, egg size, egg development, and egg hatching) in two populations of the seed beetle, Stator limbatus, collected at different elevations. The higher elevation popu- lation was larger and matured sooner than the low-elevation population when raised at the lower temperature, but the reverse was true at the higher temperature suggesting that these populations have adapted to local temperature. There were interactions between the effects of rearing temperature and oviposition temperature for age-at-®rst-reproduction, fecundity, egg development, egg hatching, and two composite measures of ®tness, generating complex reaction norms. The most dramatic example of this was a large maternal effect on egg hatching; females raised at low temperature produced eggs that had substantially reduced hatching when laid at high temperature. Our experimental design also allowed us to explore the adaptive signi®cance of acclimation. Beetles reared at intermediate or low temperature had the highest ®tness at multiple oviposition temperatures.
    [Show full text]
  • On the Andaman and Nicobar Islands, Bay of Bengal
    Herpetology Notes, volume 13: 631-637 (2020) (published online on 05 August 2020) An update to species distribution records of geckos (Reptilia: Squamata: Gekkonidae) on the Andaman and Nicobar Islands, Bay of Bengal Ashwini V. Mohan1,2,* The Andaman and Nicobar Islands are rifted arc-raft of 2004, and human-mediated transport can introduce continental islands (Ali, 2018). Andaman and Nicobar additional species to these islands (Chandramouli, 2015). Islands together form the largest archipelago in the In this study, I provide an update for the occurrence Bay of Bengal and a high proportion of terrestrial and distribution of species in the family Gekkonidae herpetofauna on these islands are endemic (Das, 1999). (geckos) on the Andaman and Nicobar Islands. Although often lumped together, the Andamans and Nicobars are distinct from each other in their floral Materials and Methods and faunal species communities and are geographically Teams consisted of between 2–4 members and we separated by the 10° Channel. Several studies have conducted opportunistic visual encounter surveys in shed light on distribution, density and taxonomic accessible forested and human-modified areas, both aspects of terrestrial herpetofauna on these islands during daylight hours and post-sunset. These surveys (e.g., Das, 1999; Chandramouli, 2016; Harikrishnan were carried out specifically for geckos between and Vasudevan, 2018), assessed genetic diversity November 2016 and May 2017, this period overlapped across island populations (Mohan et al., 2018), studied with the north-east monsoon and summer seasons in the impacts of introduced species on herpetofauna these islands. A total of 16 islands in the Andaman and and biodiversity (e.g., Mohanty et al., 2016a, 2019), Nicobar archipelagos (Fig.
    [Show full text]
  • Hemidactylus Frenatus Across an Urban Gradient in Brisbane: Influence of Habitat and Potential for Impact on Native Gecko Species
    Presence of Asian House Gecko Hemidactylus frenatus across an urban gradient in Brisbane: influence of habitat and potential for impact on native gecko species Author Newbery, Brock, Jones, Darryl Published 2007 Book Title Pest or Guest: The Zoology of Overabundance Copyright Statement © 2007 Royal Zoological Society of NSW. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the book link for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/18554 Link to published version http://www.rzsnsw.org.au/ Griffith Research Online https://research-repository.griffith.edu.au Presence of Asian House Gecko Hemidactylus frenatus across an urban gradient in Brisbane: influence of habitat and potential for impact on native gecko species Brock Newbery1 and Darryl N. Jones1,2 1Suburban Wildlife Research Group, Australian School of Environmental Studies, Griffith University, Nathan, Qld. 4111, Australia. 2Corresponding author: Darryl Jones, [email protected] The Asian House Gecko Hemidactylus frenatus is an internationally significant invasive reptile which T has spread rapidly though the Pacific and elsewhere and has been implicated in the decline and extinction of a number of native gecko species. Although present in Darwin for some time, the C species has only recently become widespread in the Brisbane region. We investigated the density A and distribution of this and two native house-dwelling geckos in urban, suburban and bushland R environments within Brisbane. The spatially clumped insect resources associated with external light T sources were effectively utilised by both urban and suburban populations of Asian House Geckos, S suggesting likely competitive interactions between the species on structures where the species co-existed.
    [Show full text]
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Trade in Live Reptiles, Its Impact on Wild Populations, and the Role of the European Market
    BIOC-06813; No of Pages 17 Biological Conservation xxx (2016) xxx–xxx Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/bioc Review Trade in live reptiles, its impact on wild populations, and the role of the European market Mark Auliya a,⁎,SandraAltherrb, Daniel Ariano-Sanchez c, Ernst H. Baard d,CarlBrownd,RafeM.Browne, Juan-Carlos Cantu f,GabrieleGentileg, Paul Gildenhuys d, Evert Henningheim h, Jürgen Hintzmann i, Kahoru Kanari j, Milivoje Krvavac k, Marieke Lettink l, Jörg Lippert m, Luca Luiselli n,o, Göran Nilson p, Truong Quang Nguyen q, Vincent Nijman r, James F. Parham s, Stesha A. Pasachnik t,MiguelPedronou, Anna Rauhaus v,DannyRuedaCórdovaw, Maria-Elena Sanchez x,UlrichScheppy, Mona van Schingen z,v, Norbert Schneeweiss aa, Gabriel H. Segniagbeto ab, Ruchira Somaweera ac, Emerson Y. Sy ad,OguzTürkozanae, Sabine Vinke af, Thomas Vinke af,RajuVyasag, Stuart Williamson ah,1,ThomasZieglerai,aj a Department Conservation Biology, Helmholtz Centre for Environmental Conservation (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany b Pro Wildlife, Kidlerstrasse 2, 81371 Munich, Germany c Departamento de Biología, Universidad del Valle de, Guatemala d Western Cape Nature Conservation Board, South Africa e Department of Ecology and Evolutionary Biology,University of Kansas Biodiversity Institute, 1345 Jayhawk Blvd, Lawrence, KS 66045, USA f Bosques de Cerezos 112, C.P. 11700 México D.F., Mexico g Dipartimento di Biologia, Universitá Tor Vergata, Roma, Italy h Amsterdam, The Netherlands
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Sexual Selection and Signalling in the Lizard Platysaurus Minor
    SEXUAL SELECTION AND SIGNALLING IN THE LIZARD PLATYSAURUS MINOR Belinda Ann Lewis A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2006 I declare that this dissertation is my own unaided work. It is being submitted for the degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. ________________________ Belinda A. Lewis 6th day of December 2006 i ABSTRACT Sexual selection may influence aspects of male morphology associated with territoriality, female choice, aggression and contest success. Attributes that are most commonly selected for include body size, condition, weaponry, endurance and bright coloration. I investigated the relationships between morphology, use of space and home range quality, and access to females. Specifically, I examined the relationships between colour, body size and condition, and whether morphology could predict aggression or contest success. Colour spectral data were analyzed using both traditional measures of colour (hue, chroma, brightness) and principal components. Males with darker, more saturated chests, and more saturated throats, had larger home ranges. Home range quality, as determined by refuge number and prey availability, was associated with blue chests and blue throats and chests, respectively. Males with larger home ranges had higher numbers of associated females and spent more time courting females. Larger males in better condition had darker, more saturated chests. Males in better body condition were also more aggressive. There was a consistent trend for larger males to win more contests, but this relationship was only significant in analyses using traditional measures of colour.
    [Show full text]
  • On Bruquids Associated with Fabaceae Seeds in Northern Sinaloa, Mexico
    Vol. 16(6), pp. 902-908, June, 2020 DOI: 10.5897/AJAR2020.14748 Article Number: 43D25EA63973 ISSN: 1991-637X Copyright ©2020 African Journal of Agricultural Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Research Full Length Research Paper Natural parasitism of hymenoptera (insect) on bruquids associated with Fabaceae seeds in Northern Sinaloa, Mexico Isiordia-Aquino N.1, Lugo-García G. A.2, Reyes-Olivas A.2, Acuña-Soto J. A.3, Arvizu-Gómez J. L.4, López-Mora F.5 and Flores-Canales R. J.1* 1Universidad Autónoma de Nayarit, Unidad Académica de Agricultura. Km 9 Carretera Tepic-Puerto Vallarta, Colonia centro, C.P. 63780 Xalisco, Nayarit, México. 2Universidad Autónoma de Sinaloa, Colegio de Ciencias Agropecuarias, Facultad de Agricultura Del Valle Del Fuerte, Calle 16 y Avenida Japaraqui, C.P. 81110 Juan José Ríos, Ahome, Sinaloa, México. 3Instituto Tecnológico Superior de Tlatlaquitepec. Km 122 + 600, Carretera Federal Amozoc – Nautla, C. P. 73907 Almoloni, Tlatlaquitepec, Puebla, México. 4Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Ciudad de la Cultura “Amado Nervo”, C. P. 63000 Tepic, Nayarit, México. 5Universidad Autónoma de Nayarit, Posgrado Ciencias Biológico Agropecuarias. Km 9 carretera Tepic-Puerto Vallarta, Colonia centro, C.P. 63780 Xalisco, Nayarit, México. Received 29 Janaury, 2020; Accepted 13 March, 2020 With the purpose of identifying the parasitic hymenoptera species associated with the diversity of bruchidae over Fabaceae, in 2017 seeds of 25 plant species were collected from the municipalities of Ahome, El Fuerte, Choix and Guasave (Sinaloa, Mexico). From 68,344 seeds, 19,396 adult bruquids were obtained, distributed in nine species: Acanthoscelides desmanthi, Callosobruchus maculatus, Merobruchus insolitus, Mimosestes mimosae, Mimosestes nubigens, Microsternus ulkei, Stator limbatus, S.
    [Show full text]
  • Description of a New Flat Gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320043814 Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique Article in Zootaxa · September 2017 DOI: 10.11646/zootaxa.4324.1.8 CITATIONS READS 2 531 8 authors, including: William R Branch Jennifer Anna Guyton Nelson Mandela University Princeton University 250 PUBLICATIONS 4,231 CITATIONS 7 PUBLICATIONS 164 CITATIONS SEE PROFILE SEE PROFILE Andreas Schmitz Michael Barej Natural History Museum of Geneva Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiver… 151 PUBLICATIONS 2,701 CITATIONS 38 PUBLICATIONS 274 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems View project Ad hoc herpetofauna observations View project All content following this page was uploaded by Jennifer Anna Guyton on 27 September 2017. The user has requested enhancement of the downloaded file. Zootaxa 4324 (1): 142–160 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4324.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:B4FF9A5F-94A7-4E75-9EC8-B3C382A9128C Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique WILLIAM R. BRANCH1,2,13, JENNIFER A. GUYTON3, ANDREAS SCHMITZ4, MICHAEL F. BAREJ5, PIOTR NASKRECKI6,7, HARITH FAROOQ8,9,10,11, LUKE VERBURGT12 & MARK-OLIVER RÖDEL5 1Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa 2Research Associate, Department of Zoology, Nelson Mandela University, P.O.
    [Show full text]