Complex Patterns of Phenotypic Plasticity: Interactive Effects of Temperature During Rearing and Oviposition

Total Page:16

File Type:pdf, Size:1020Kb

Complex Patterns of Phenotypic Plasticity: Interactive Effects of Temperature During Rearing and Oviposition Ecology, 86(4), 2005, pp. 924±934 q 2005 by the Ecological Society of America COMPLEX PATTERNS OF PHENOTYPIC PLASTICITY: INTERACTIVE EFFECTS OF TEMPERATURE DURING REARING AND OVIPOSITION R. CRAIG STILLWELL1 AND CHARLES W. F OX Department of Entomology, University of Kentucky, S-225 Ag Science Center North, Lexington, Kentucky 40546-0091 USA Abstract. Temperature profoundly affects growth and life history traits in ectothermic animals through selection (i.e., genetic) and through direct effects on the phenotype (i.e., nongenetic/plasticity). We examined the effects of rearing temperature (248,308, and 368C) on adult body size and development time and the interactive effects of temperature ex- perienced during rearing and oviposition on several life history traits (age-at-®rst-repro- duction, fecundity, egg size, egg development, and egg hatching) in two populations of the seed beetle, Stator limbatus, collected at different elevations. The higher elevation popu- lation was larger and matured sooner than the low-elevation population when raised at the lower temperature, but the reverse was true at the higher temperature suggesting that these populations have adapted to local temperature. There were interactions between the effects of rearing temperature and oviposition temperature for age-at-®rst-reproduction, fecundity, egg development, egg hatching, and two composite measures of ®tness, generating complex reaction norms. The most dramatic example of this was a large maternal effect on egg hatching; females raised at low temperature produced eggs that had substantially reduced hatching when laid at high temperature. Our experimental design also allowed us to explore the adaptive signi®cance of acclimation. Beetles reared at intermediate or low temperature had the highest ®tness at multiple oviposition temperatures. There was little support for the ``bene®cial acclimation hypothesis,'' which predicts that beetles should have higher ®tness at the temperature at which they were reared; acclimation had only a small effect on ®tness. This study shows that temperature-mediated plasticity can be complex, but these complex patterns can yield new insights into the evolution of phenotypic plasticity. Key words: acclimation; adaptation; bene®cial acclimation hypothesis; body size; maternal ef- fects; phenotypic plasticity; Stator limbatus; temperature. INTRODUCTION in nature. Body size and egg size of ectotherms exhibit clinal variation along latitudinal (e.g., Lonsdale and For many ectothermic animals, the temperature ex- Levinton 1985, Armbruster et al. 2001) and altitudinal perienced during development strongly affects many gradients (e.g., Berven 1982). When individuals are growth and life history traits. For instance, body size reared in a common environment, these differences are (Atkinson 1994), development time (Atkinson 1994), usually found to be partially genetically based. In Dro- and egg/offspring size (Fox and Czesak 2000) generally sophila melanogaster, body size clines are often re- increase with decreasing temperature, whereas fecun- peatable across continents (e.g., James et al. 1995, dity (e.g., Fischer et al. 2003a) generally declines with Van't Land et al. 1995). These clines can evolve rap- decreasing temperature. These phenotypic responses idly, only a couple of decades after introduction to a may be a result of adaptation to different thermal en- new continent (Huey et al. 2000), indicating strong vironments or may be an unavoidable consequence of natural selection on either body size, egg size, or some a temperature effect on the organism's physiology dur- correlated trait. Laboratory natural selection experi- ing development (developmental plasticity). The extent to which temperature-mediated natural selection vs. the ments, in which insects are allowed to adapt to high environmental effect of temperature differentially af- or low temperature, also demonstrate that both body fect traits at different temperatures has generated de- size and egg size evolve to be larger at colder tem- bate between adaptive (genetic) and developmental peratures (Partridge et al. 1994, Azevedo et al. 1996; (nongenetic) hypotheses (Van Voorhies 1996, 1997, but see Santos et al. 2004). Mousseau 1997, Partridge and Coyne 1997). Nongenetic responses to developmental temperature Evidence for genetic adaptation to temperature (phenotypic plasticity) are widespread. For example, comes from studies of patterns of geographic variation growth at lower temperature results in increased adult body size in .80% of ectothermic animals (Atkinson 1994), and many arthropods typically lay larger eggs Manuscript received 22 March 2004; accepted 26 July 2004; ®nal version received 21 September 2004. Corresponding Editor: at lower temperatures (Fox and Czesak 2000). Non- E. Brodie III. genetic responses to developmental temperature are 1 E-mail: [email protected] thus very similar to those produced by evolution at 924 April 2005 COMPLEX PATTERNS OF PLASTICITY 925 different temperatures making it dif®cult to distinguish and the interactive effects of rearing vs. oviposition between genetic (evolution due to selection) and non- temperature and to assess the adaptive signi®cance of genetic (plasticity) causes for geographic patterns. acclimation. Within central Arizona, USA, S. limbatus Common garden and reciprocal transplant experiments experiences large daily (ranging from 248 to 398C; are required to disentangle these factors. mean minimum daily temperature compared to mean Adding to this complexity, patterns of phenotypic maximum daily temperature in Phoenix, Arizona) and plasticity may change if the temperature encountered spatial (258±318C; monthly mean in Oracle, Arizona, in an earlier vs. a later life stage interact to affect a compared to Phoenix, Arizona; Western Regional Cli- phenotype. For instance, immature stages of many in- mate Center, Desert Research Institute) variation in sects develop at different times of the year and in other temperature during August when beetles are most ac- physical localities than adults, subjecting these life tive. S. limbatus is a generalist seed parasite of le- stages to different thermal environments. Also, im- gumes; adults are the only dispersing stage of the life matures are less mobile than adults and are often unable cycle, with larvae being restricted to the seed their to leave unfavorable thermal environments. Neverthe- mother has chosen for them. Since larvae cannot move less, few studies have considered both the separate and between seeds they cannot move between thermal en- interactive effects of temperature experienced during vironments. immature development (rearing) vs. adult (oviposition) In this study, we examine two populations of S. lim- stages of the life cycle (Fox and Czesak 2000). We batus from central Arizona that occur at different el- need to understand how these interactions affect re- evations (Phoenix, ;500 m above sea level; Oracle, action norm shape to predict response to selection in ;1400 m above sea level) and experience different more complex environments. local thermal environments (mean temperature differ- Studies on the effects of temperature experienced at ence in August of ;68C). Our a priori expectations an early and later life stage provide a unique oppor- were that these populations are adapted to a ``warm'' tunity to study the adaptive signi®cance of acclimation and ``cool'' environment and should be genetically dif- (a nongenetic, physiological alteration in a phenotype ferentiated in a number of traits. We ®rst assessed how caused by a change in the environment). It is commonly temperature during rearing affects adult body size and assumed that development at a certain temperature will larval development time in both populations. We then enhance ®tness in the adult stage at that temperature examined the separate and interactive effects of tem- (``bene®cial acclimation hypothesis''; Leroi et al. perature experienced by beetles during rearing vs. ovi- 1994). Alternatively, acclimation may be nonadaptive position periods of the life cycle on age-at-®rst-repro- if rearing in one environment enhances ®tness in al- duction, fecundity, egg size, egg development, and egg ternate environments to which the organism is not ac- hatching. Finally, using the approach described by climated (Huey et al. 1999). For example, development Huey et al. (1999) we tested the bene®cial acclimation, at an intermediate (``optimal developmental tempera- optimal developmental temperature, hotter is better, ture hypothesis''), low (``colder is better hypothesis''), and colder is better hypotheses. or high (``hotter is better hypothesis'') temperature may enhance ®tness in a variety of adult thermal environ- METHODS ments. Recently, factorial designs have been developed Natural history of Stator limbatus to explore the adaptive signi®cance of acclimation (Huey and Berrigan 1996). These designs and recently The seed beetle, Stator limbatus (Horn) (Coleoptera: developed statistical models allow for several com- Chrysomelidae: Bruchinae), is distributed from north- peting hypotheses to be tested simultaneously (Huey ern South America to the southwestern United States et al. 1999). Assessments using this approach have (Johnson and Kingsolver 1976, Johnson et al. 1989, shown that while the bene®cial acclimation hypothesis Nilsson and Johnson 1993). It is a generalist seed her- is supported in some cases, alternative hypotheses often bivore that has been collected from .70 species of have a greater in¯uence
Recommended publications
  • Effects of Off-Road Vehicles on Rodents in the Sonoran Desert By
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ASU Digital Repository Effects of Off-road Vehicles on Rodents in the Sonoran Desert by John Simon Reid A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved May 2012 by the Graduate Supervisory Committee: Ward Brady, Chair Heather Bateman William Miller ARIZONA STATE UNIVERSITY August 2012 ABSTRACT Human recreation on rangelands may negatively impact wildlife populations. Among those activities, off-road vehicle (ORV) recreation carries the potential for broad ecological consequences. A study was undertaken to assess the impacts of ORV on rodents in Arizona Uplands Sonoran Desert. Between the months of February and September 2010, rodents were trapped at 6 ORV and 6 non-ORV sites in Tonto National Forest, AZ. I hypothesized that rodent abundance and species richness are negatively affected by ORV use. Rodent abundances were estimated using capture-mark-recapture methodology. Species richness was not correlated with ORV use. Although abundance of Peromyscus eremicus and Neotoma albigula declined as ORV use increased, abundance of Dipodomys merriami increased. Abundance of Chaetodipus baileyi was not correlated with ORV use. Other factors measured were percent ground cover, percent shrub cover, and species-specific shrub cover percentages. Total shrub cover, Opuntia spp., and Parkinsonia microphylla each decreased as ORV use increased. Results suggest that ORV use negatively affects rodent habitats in Arizona Uplands Sonoran Desert, leading to declining abundance in some species. Management strategies should mitigate ORV related habitat destruction to protect vulnerable populations. i This is dedicated to my mother, Sarah Gilmer Reid, who instilled in me an abiding respect for nature, and a mindset for conservation.
    [Show full text]
  • 3 Invasive Species in the Sonoran Desert Region
    3 Invasive Species in the Sonoran Desert Region 11 INVASIVE SPECIES IN THE SONORAN DESERT REGION Invasive species are altering the ecosystems of the Sonoran Desert Region. Native plants have been displaced resulting in radically different habitats and food for wildlife. Species like red brome and buffelgrass have become dense enough in many areas to carry fire in the late spring and early summer. Sonoran Desert plants such as saguaros, palo verdes and many others are not fire- adapted and do not survive these fires. The number of non-native species tends to be lowest in natural areas of the Sonoran Desert and highest in the most disturbed and degraded habitats. However, species that are unusually aggressive and well adapted do invade natural areas. In the mid 1900’s, there were approximately 146 non-native plant species (5.7% of the total flora) in the Sonoran Desert. Now non-natives comprise nearly 10% of the Sonoran Desert flora overall. In highly disturbed areas, the majority of species are frequently non-native invasives. These numbers continue to increase. It is crucial that we monitor, control, and eradicate invasive species that are already here. We must also consider the various vectors of dispersal for invasive species that have not yet arrived in Arizona, but are likely to be here in the near future. Early detection and reporting is vital to prevent the spread of existing invasives and keep other invasives from arriving and establishing. This is the premise of the INVADERS of the Sonoran Desert Region program at the Arizona-Sonora Desert Museum.
    [Show full text]
  • Tree and Tree-Like Species of Mexico: Asteraceae, Leguminosae, and Rubiaceae
    Revista Mexicana de Biodiversidad 84: 439-470, 2013 Revista Mexicana de Biodiversidad 84: 439-470, 2013 DOI: 10.7550/rmb.32013 DOI: 10.7550/rmb.32013439 Tree and tree-like species of Mexico: Asteraceae, Leguminosae, and Rubiaceae Especies arbóreas y arborescentes de México: Asteraceae, Leguminosae y Rubiaceae Martin Ricker , Héctor M. Hernández, Mario Sousa and Helga Ochoterena Herbario Nacional de México, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70- 233, 04510 México D. F., Mexico. [email protected] Abstract. Trees or tree-like plants are defined here broadly as perennial, self-supporting plants with a total height of at least 5 m (without ascending leaves or inflorescences), and with one or several erect stems with a diameter of at least 10 cm. We continue our compilation of an updated list of all native Mexican tree species with the dicotyledonous families Asteraceae (36 species, 39% endemic), Leguminosae with its 3 subfamilies (449 species, 41% endemic), and Rubiaceae (134 species, 24% endemic). The tallest tree species reach 20 m in the Asteraceae, 70 m in the Leguminosae, and also 70 m in the Rubiaceae. The species-richest genus is Lonchocarpus with 67 tree species in Mexico. Three legume genera are endemic to Mexico (Conzattia, Hesperothamnus, and Heteroflorum). The appendix lists all species, including their original publication, references of taxonomic revisions, existence of subspecies or varieties, maximum height in Mexico, and endemism status. Key words: biodiversity, flora, tree definition. Resumen. Las plantas arbóreas o arborescentes se definen aquí en un sentido amplio como plantas perennes que se pueden sostener por sí solas, con una altura total de al menos 5 m (sin considerar hojas o inflorescencias ascendentes) y con uno o varios tallos erectos de un diámetro de al menos 10 cm.
    [Show full text]
  • The Canadian Ent~~S&O'gis T
    The Canadian Ent~~s&o'gist - - Vol. 100 Ottawa, Canada, October 1 29 1968 No. 10 NOTES ON BRUCHIDAE OF AMERICA NORWFMEXICO WITH A LIST OF WORLD GEI^~^^~'~^ L. J. BOTTIMER' Entomology Research Institute, Canada Department of Agriculture, Ottawa Abstract Can. Ent. 100: 1009-1049 (1968) This paper contains notes affecting the classification of the Bruchidae of United States and Canada, a list of all species found north of AfIexico, and a list of World genera and their type-species. The Mexican Merobrzichzis vacillator (Sharp) is added to the fauna of this area. Transferred from our list to that of Latin America are: Acanthoscelides ca1ifornicu.r (Boheman), Megacerus ez~genie new name for Brucbus micornis Boheman nec Erichson, and Mimosestes innotatits (Pic.). The following are synonynlizecl: Spernwpl~gzis (Zabrotes) se~fiicinctzisHorn (1894) with Zabrotes snbfasciatzis (Bohenlan 1833) ; Brzicbus siibserripes Fall (1910) with Acanthoscelides compressicornis (Schaeffer 1907); Litl~raeus electus Bridwell (1952) with Litbraens elegans (Blanchard 1851); Brzicbus a/lioguttatus Motschoulsky (1874) with Meibomeus in-iisculiis (Say 1831) ; Britcbzis bivzilneratus Horn ( 1873) with Brzicbus abbreviates, inadvertently validated by Say = Sennius abbreviates (Say 1824); Br-nc/~zisnigrinus Horn (1873), B. nictitans Motschoulsliy (1874), and B. depresses Fall (1912) with Sennius cmentatits (Horn 1873) ; Br-nchus pytboniciis Pic (191 3) with Stator midialis (Schaeffer 1907) ; and Brzicl7zis bigzittatus Fabricius (1801) = Bruclms bignttellzis Schocnherr (1833) with Callosobr-ncbus chinensis (Linnaeus 1758). Original spellings of the specific names of two species are revived: Megacerus pygidatis (Mot~~h~~l~liy)nec pygidialis Pic, and Megacms discoidus (Say) nec discoidens: authors. Knichus lividus J. E. LeContc 1824 is placed in our list as an unrccogni~cdspecies.
    [Show full text]
  • The Adaptive Significance of Maternal Effects Timothy A
    REVIEWS The adaptive significance of maternal effects Timothy A. Mousseau and Charles W. Fox he causes and conse- Recently, the adaptive significance Maternal effects on offspring quences of phenotypic of maternal effects has been development variation among individ- increasingly recognized. No longer are There are numerous reported Tuals are of fundamental maternal effects relegated as simple examples of maternal environ- interest to students of evolution- ‘troublesome sources of environmental mental influences on offspring de- ary ecology because it is this vari- resemblance’ that confound our ability velopment. In many insects, the ation that provides the raw ma- to estimate accurately the genetic photoperiod, temperature, or host terial for natural selection. We are basis of traits of interest. Rather, it has availability experienced by an ovi- accustomed to envisioning an indi- become evident that many maternal positing female will determine the vidual’s phenotype as the result effects have been shaped by the action probability of diapause in her off- of its own genotype plus the en- of natural selection to act as a spring5 (Box 2). In general, fe- vironmental effects experienced mechanism for adaptive phenotypic males that experience short photo- during development. However, in response to environmental heterogeneity. periods, cool temperatures or few recent years, with the increasing Consequently, maternal experience potential hosts (i.e. cues that pre- use of quantitative genetic de- is translated into variation in dict deteriorating environmental signs for the study of life history, offspring fitness. conditions) tend to produce a behavior and development, it is high proportion of diapausing off- becoming evident that individual spring.
    [Show full text]
  • On Bruquids Associated with Fabaceae Seeds in Northern Sinaloa, Mexico
    Vol. 16(6), pp. 902-908, June, 2020 DOI: 10.5897/AJAR2020.14748 Article Number: 43D25EA63973 ISSN: 1991-637X Copyright ©2020 African Journal of Agricultural Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Research Full Length Research Paper Natural parasitism of hymenoptera (insect) on bruquids associated with Fabaceae seeds in Northern Sinaloa, Mexico Isiordia-Aquino N.1, Lugo-García G. A.2, Reyes-Olivas A.2, Acuña-Soto J. A.3, Arvizu-Gómez J. L.4, López-Mora F.5 and Flores-Canales R. J.1* 1Universidad Autónoma de Nayarit, Unidad Académica de Agricultura. Km 9 Carretera Tepic-Puerto Vallarta, Colonia centro, C.P. 63780 Xalisco, Nayarit, México. 2Universidad Autónoma de Sinaloa, Colegio de Ciencias Agropecuarias, Facultad de Agricultura Del Valle Del Fuerte, Calle 16 y Avenida Japaraqui, C.P. 81110 Juan José Ríos, Ahome, Sinaloa, México. 3Instituto Tecnológico Superior de Tlatlaquitepec. Km 122 + 600, Carretera Federal Amozoc – Nautla, C. P. 73907 Almoloni, Tlatlaquitepec, Puebla, México. 4Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Ciudad de la Cultura “Amado Nervo”, C. P. 63000 Tepic, Nayarit, México. 5Universidad Autónoma de Nayarit, Posgrado Ciencias Biológico Agropecuarias. Km 9 carretera Tepic-Puerto Vallarta, Colonia centro, C.P. 63780 Xalisco, Nayarit, México. Received 29 Janaury, 2020; Accepted 13 March, 2020 With the purpose of identifying the parasitic hymenoptera species associated with the diversity of bruchidae over Fabaceae, in 2017 seeds of 25 plant species were collected from the municipalities of Ahome, El Fuerte, Choix and Guasave (Sinaloa, Mexico). From 68,344 seeds, 19,396 adult bruquids were obtained, distributed in nine species: Acanthoscelides desmanthi, Callosobruchus maculatus, Merobruchus insolitus, Mimosestes mimosae, Mimosestes nubigens, Microsternus ulkei, Stator limbatus, S.
    [Show full text]
  • Floristic Surveys of Saguaro National Park Protected Natural Areas
    Floristic Surveys of Saguaro National Park Protected Natural Areas William L. Halvorson and Brooke S. Gebow, editors Technical Report No. 68 United States Geological Survey Sonoran Desert Field Station The University of Arizona Tucson, Arizona USGS Sonoran Desert Field Station The University of Arizona, Tucson The Sonoran Desert Field Station (SDFS) at The University of Arizona is a unit of the USGS Western Ecological Research Center (WERC). It was originally established as a National Park Service Cooperative Park Studies Unit (CPSU) in 1973 with a research staff and ties to The University of Arizona. Transferred to the USGS Biological Resources Division in 1996, the SDFS continues the CPSU mission of providing scientific data (1) to assist U.S. Department of Interior land management agencies within Arizona and (2) to foster cooperation among all parties overseeing sensitive natural and cultural resources in the region. It also is charged with making its data resources and researchers available to the interested public. Seventeen such field stations in California, Arizona, and Nevada carry out WERC’s work. The SDFS provides a multi-disciplinary approach to studies in natural and cultural sciences. Principal cooperators include the School of Renewable Natural Resources and the Department of Ecology and Evolutionary Biology at The University of Arizona. Unit scientists also hold faculty or research associate appointments at the university. The Technical Report series distributes information relevant to high priority regional resource management needs. The series presents detailed accounts of study design, methods, results, and applications possibly not accommodated in the formal scientific literature. Technical Reports follow SDFS guidelines and are subject to peer review and editing.
    [Show full text]
  • The Biology, Host Range, Parasites, and Hyperparasites of Koa Seed Insects in Hawaii: a Review
    Vol. 24, Nos. 2 & 3, October 15,1983 317 The Biology, Host Range, Parasites, and Hyperparasites of Koa Seed Insects in Hawaii: a Review JOHN D. STEIN1 ABSTRACT The biology and host range of koa seed insects, their parasites, and hyperparasites in Hawaii are reviewed. The information reported may be applicable to other native or introduced legumes because of the wide hosthnst rangeranopt ofrtf a fewfi»w ofnf thetht* insects.inc^Wc Koa, Acacia koa Gray, is considered the most valuable native timber species in Hawaii. Pure stands of koa cover approximately 7.5 thousand hectares (18.6 thousand acres) with an additional 172.4 thousand hectares (426 thousand acres) of koa-ohia mixture in the native forest ecosystems within the State. Selective logging has reduced the quality of koa to less desirable commercial grade trees. Since 1978, the Hawaii State Department of Land and Natural Resources has been replanting sites where koa once grew. The emphasis on reforestation of this high value hardwood has stimulated research by the Forest Service, U.S. Department of Agriculture, to select and propagate genetically superior trees. Progeny from these trees will then be used to establish viable seed orchards. Insects present a potentially serious threat to koa seed production. In a recent survey, I found that up to 86% of the seed was destroyed by insects, and three insects were responsible for 93% of the damage (Stein 1983). This review discusses the biology and host range of the koa seed insects, and lists their parasites. Previously published biological data for these insects were augmented with information from the Bernice P.
    [Show full text]
  • Approved Plant Species (By Watershed) for Use in Riparian Mitigation Areas, Pima County, Arizona
    APPROVED PLANT SPECIES (BY WATERSHED) FOR USE IN RIPARIAN MITIGATION AREAS, PIMA COUNTY, ARIZONA Western Pima County Botanical Name Common Name Life Form Water Requirements HYDRORIPARIAN TREES Celtis laevigata (Celtis reticulata) Netleaf/Canyon hackberry Perennial Tree Moderate Populus fremontii ssp. fremontii Fremont cottonwood Perennial Tree High Salix gooddingii Goodding’s willow Perennial Tree High SHRUBS Celtis ehrenbergiana (Celtis pallida) Desert hackberry, spiny hackberry Perennial Shrub Low GRASSES Plains bristlegrass, large-spike Setaria macrostachya Perennial Bunchgrass Moderate bristlegrass Sporobolus airoides Alkali sacaton Perennial Bunchgrass Moderate MESORIPARIAN TREES Acacia constricta Whitethorn Acacia Perennial shrub/small tree Low-moderate Acacia greggii Catclaw Acacia Perennial Tree Low Celtis laevigata (Celtis reticulata) Netleaf/Canyon hackberry Perennial Tree Moderate Chilopsis linearis Desert Willow Perennial Tree Moderate Parkinsonia florida Blue Palo Verde Perennial Tree Low- Moderate Populus fremontii ssp. fremontii Fremont cottonwood Perennial Tree High Prosopis pubescens Screwbean mesquite Perennial Tree Moderate Prosopis velutina Velvet mesquite Perennial Tree Low Salix gooddingii Goodding’s willow Perennial Tree High SHRUBS Anisacanthus thurberi (Drejera thurberi) Desert honeysuckle Perennial Shrub Moderate Celtis ehrenbergiana (Celtis pallida) Desert hackberry, spiny hackberry Perennial Shrub Low Lycium andersonii var. andersonii Anderson Wolfberry, water jacket Perennial Shrub Low Fremont Wolfberry, Fremont's
    [Show full text]
  • List of Approved Plants
    APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var.
    [Show full text]
  • John M. Kingsolver (1925-2013)
    Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 54 (30/6/2014): 505–508. Obituario John M. Kingsolver (1925-2013) Rafael Yus-Ramos & Jesús Romero-Nápoles El 13 de diciembre del 2013 falleció, en Gainesville (USA), a los 88 vo Méjico), este último especializado en las larvas de estos mismos años de edad, el afamado entomólogo norteamericano John M. insectos. Precisamente, tras su jubilación, y como reconocimiento de Kingsolver, especialista en coleópteros brúquidos (Bruchidae). Hijo su valía profesional y humana, gran parte de estos colaboradores de Roy L. y Rena I. Kingsolver, nació en el año 1925 en Delaware escribieron un artículo en 1990 titulado: “A tribute to John M. King- County (Indiana), siendo el mayor de cuatro niños. De pequeño, solver, bruchidologist and friend”. Eventualmente también caloboró asistió a escuelas rurales de Indiana central; en su juventud se incor- con otros colegas del Viejo Mundo, como J. Decelle, L. Borowiec, poró en la US Navy, participando en la II Guerra Mundial. En 1948 R. Yus, etc. se casó con Cynthia L. Lindesmith, con la que tuvo dos hijos, John Kingsolver comenzó la entomología con estudios sobre otros Mark y Rebecca Diane. Se graduó en la Purdue University (Indiana) grupos de insectos, siendo su primer trabajo, en el año 1961, justo en en el año 1951 y entró en la University of Illinois en 1954, recibien- el año de su doctorado, sobre tricópteros, siguiendo luego otro sobre do el Master en Entomología en 1956 y doctorándose en el año curculiónidos fósiles, derméstidos, etc. Pero al poco tiempo se inte- 1961.
    [Show full text]
  • Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List
    Arizona Department of Water Resources Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Phoenix Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Phoenix Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Phoenix AMA list was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn. Jeff Sargent, City of Peoria Mary Irish, Garden writer Mark Schalliol, ADOT Matt Johnson, U of A Desert Legum Christy Ten Eyck, Ten Eyck Landscape Architects Jeff Lee, City of Mesa Gordon Wahl, ADWR Kirti Mathura, Desert Botanical Garden Karen Young, Town of Gilbert Cover Photo: Blooming Teddy bear cholla (Cylindropuntia bigelovii) at Organ Pipe Cactus National Monutment.
    [Show full text]