Structure, petrophysics, AUTHORS Peter Eichhubl Department of Geologi- and diagenesis of shale cal and Environmental Sciences, Stanford University, Stanford, California 94305; present entrained along a normal address: Department of Physical and Life Sci- ences, Texas A&M University–Corpus Christi, fault at Black Diamond Mines, 6300 Ocean Drive, Corpus Christi, Texas 78412;
[email protected] California— Implications Peter Eichhubl received his M.S. degree at the University of Vienna, Austria, and his Ph.D. at the University of California, Santa Barbara. for fault seal After research positions at Stanford University and Monterey Bay Aquarium Research In- Peter Eichhubl, Peter S. D’Onfro, Atilla Aydin, stitute, he joined the faculty at Texas A&M John Waters, and Douglas K. McCarty University–Corpus Christi. His research inter- ests include the interaction of chemical mass transfer and brittle deformation, diagenesis, and fault and fracture mechanics. ABSTRACT Peter S. D’Onfro ConocoPhillips, P.O. The structure, texture, composition, and capillary-pressure resis- Box 2197, Houston, Texas 77252-2197; tancewereassessedforshaledeformedalonganormalfaultwith
[email protected] 9 m (29 ft) of dip separation. Shale is entrained from a 1.6-m (5-ft)- Peter D’Onfro earned his B.S. and M.S. degrees thick source layer into the fault zone and attenuated to about 5 cm from Boston College. After a research posi- (2 in.). A quantitative analysis of shale mineral composition indi- tion at Los Alamos National Laboratories, he cates that little material is contributed to the fault rock from the joined Conoco in 1979 and then ConocoPhillips sandstone units that over- and underlie the shale source layer.