Effect of Anconeus Muscle Blocking on Elbow Kinematics: Electromyographic, Inertial Sensors and Finite Element Study

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Anconeus Muscle Blocking on Elbow Kinematics: Electromyographic, Inertial Sensors and Finite Element Study Annals of Biomedical Engineering (Ó 2016) DOI: 10.1007/s10439-016-1715-2 Effect of Anconeus Muscle Blocking on Elbow Kinematics: Electromyographic, Inertial Sensors and Finite Element Study 1 1 1 1,2 ISRAEL MIGUEL-ANDRES, TERESA ALONSO-RASGADO, ALAN WALMSLEY, and ADAM C. WATTS 1Bioengineering Research Group, School of Materials, The University of Manchester, Manchester M13 9PL, UK; and 2Wrightington Hospital, Wigan and Leigh NHS Foundation Trust, Lancashire, UK (Received 22 April 2016; accepted 15 August 2016) Associate Editor Peter E. McHugh oversaw the review of this article. Abstract—The specific contribution of the anconeus muscle is the most common instability of the elbow. The an- to elbow function is still uncertain. This study aimed to coneus muscle is currently used in clinical practice in investigate the effect on elbow kinematics and kinetics of the rehabilitation of patients with this condition as it is blocking anconeus using lidocaine. Ten healthy volunteers thought to be an important secondary stabiliser of the performed experimental trials involving flexion–extension 15,22 and supination–pronation movements in horizontal and elbow. sagittal planes. Inertial sensors and surface electromyogra- Patients are trained in anconeus activation and phy were used to record elbow kinematics and kinetics and strengthening programmes are initiated. This function electrical activity from the anconeus, biceps and triceps may be compromised if iatrogenic denervation occurs. brachii before and after blocking anconeus. Moreover, a finite element model of the elbow was created to further The anconeus may be denervated during surgical investigate the contribution of anconeus to elbow kinematics. approaches to the elbow such as when performing elbow The electrical activity results from the trials before blocking arthroscopy, or an olecranon osteotomy.18,31,36,37,50,51 clearly indicated that activity of anconeus was increased While surgical approaches have been described that will during extension, suggesting that it behaves as an extensor. preserve anconeus function they increase surgical time However, blocking anconeus had no effect on the elbow and are often avoided because the anconeus may be kinematics and kinetics, including the angular velocity, net 38 torque and power of the joint. The electrical activity of the perceived to be unimportant. Whilst some studies biceps and triceps brachii did not alter significantly following have reported that patients have experienced no defi- anconeus blocking. These results suggest that anconeus is a ciencies in elbow function after anconeus sacrificing weak extensor, and the relative small contribution of surgery,31,50 these claims have been questioned and a anconeus to extension before blocking was compensated by triceps brachii. The finite element results indicated that more recent study has suggested that there may be anconeus does not contribute significantly to elbow kine- consequences for elbow function and stability of matics. removing anconeus.5 If it is shown that anconeus is important to normal Keywords—Lidocaine, Weak extensor, Flexion–extension, elbow kinematics then surgeons would be encouraged Pronation–supination, Net torque, Power. to employ techniques that preserve the muscle and the nerve supply to it. The specific function and contribution of the anco- INTRODUCTION neus muscle to elbow kinematics is yet to be clearly established. Electromyographic studies have found The anconeus muscle has been implicated in com- that the electrical activity of the anconeus is greater in mon elbow conditions such as lateral epicondylosis extension,28–30,41,44,53 suggesting that it is an elbow 10 and posterolateral rotatory instability (PLRI). PLRI extensor muscle. Furthermore, it has been proposed that the anconeus could abduct the ulna during pronation.13 This idea was later supported by Ray Address correspondence to Teresa Alonso-Rasgado, Bioengineering 46 20 Research Group, School of Materials, The University of Manchester, et al. and Gleason et al. Other studies have Manchester M13 9PL, UK. Electronic mail: israel.miguelandres@ observed that the anconeus is active during resisted manchester.ac.uk, [email protected], alan.walmsley@ pronation–supination movement, implying that it manchester.ac.uk, [email protected] Ó 2016 The Author(s). This article is published with open access at Springerlink.com MIGUEL-ANDRES et al. could contribute to elbow stability.24,41,53 In addition, before and after the anconeus muscle was blocked with several studies have suggested that the strong adher- lidocaine. Measurements were taken using elec- ence between the lateral joint capsule and the anconeus tromyography (EMG) and motion tracking devices (3D makes the latter an active stabiliser of the elbow.3,35,39 inertial sensors) during the performance of three flex- Recent anatomical studies have been undertaken to ion–extension movements and supination–pronation. clarify the function of anconeus. For example, Cori- olano et al.12 found that the muscle fibres of anconeus Subjects were penniform, a formation proficient for force pro- duction. In another anatomical and biomechanical Ten right-handed volunteers, five males and five fe- study, it was observed that anconeus behaves as an males, mean age 29.3 ± 2.21 years and mean body mass extensor muscle and provides posterolateral stability of 66.80 ± 9.56 kg, with no history of neuromuscular or the elbow.42 musculoskeletal disease took part in this investigation. Although it has been argued that anconeus is an All trials were carried out using the dominant hand of accessory muscle at the elbow, some researchers have the participant. The participants were informed about suggested that the muscle could contribute up to 15% the procedures before the tests and the protocol was of the extension moment during isometric contrac- approved by the ethics committee of the University of tions.56 In addition, it has been suggested that anco- Manchester (approval number 11335). neus plays an important role when torque values are low.29,30 However, a re-examination of these results Subject Preparation indicates that anconeus was active tonically at torques First, the skin on the belly of anconeus, biceps and below 39 Nm and exhibited approximately constant triceps brachii of each participant was cleaned with activity at all elbow angles at a constant torque of 70% isopropyl alcohol and then shaved before being 6 Nm. In addition, anconeus activity was observed to cleaned for a second time. increase markedly with increasing angular velocity For the trials where the anconeus was blocked, the with maximum activation occurring concurrently with skin was prepared with an alcoholic chlorhexidine maximum angular velocity. The close correspondence solution, then a trained orthopaedic surgeon injected with maximum angular velocity appears to indicate 10 ml of plain lidocaine through a 25 gauge hypoder- that anconeus contributes to the centripetal force mic needle into the soft tissue at a point midway required to maintain joint integrity. between the tip of the olecranon and the lateral epi- A potential reason as to why research to date has condyle of humerus. The injection was performed with failed to elucidate anconeus function was put forward by the elbow flexed approximately 90°. At least 10 min Capdarest-Arest et al.8 who suggested there is evidence were allowed for the local anaesthetic to work before to argue that the anconeus muscle has a primary func- the experimental protocol was initiated. tion as a stabilizer in human infants during the period when infants crawl but that as they grow and develop, the anconeus then takes on a more accessory-type role. Equipment The current study aims to elucidate the role of an- coneus in order to determine its importance to normal Myoelectric Activity: Electromyography (EMG) elbow kinematics and in doing so to help inform the A BTS pocket EMG Electromyography system debate as to whether surgeons should be encouraged to (BTS Bioengineering, Milan, Italy) was used to record employ techniques that preserve the muscle and the the electrical activity of the anconeus, biceps and tri- nerve supply to it during surgery or could potentially ceps brachii muscles. Bipolar paediatric electrodes (Ag/ consider its sacrifice without a risk to elbow function. AgCl) were used at a sampling frequency of 2000 Hz to In this study the role of anconeus was investigated by obtain the required data from these muscles. Elec- determining the effect of blocking the action of anco- trodes were positioned on the belly of the anconeus, neus muscle on elbow kinematics and kinetics, and the biceps and triceps brachii muscles and on the styloid activation of biceps and triceps brachii, using experi- process of the ulna at the wrist. The electrode placed mental trials and computational modelling. on the ulna was used for ground/reference purposes. Kinematics and Kinetics: Inertial Measurement Units MATERIALS AND METHODS (IMUs) In order to clarify the contribution of the anconeus To obtain the kinematic data for the elbow of each muscle to the motion of the elbow, the electrical activity participant, 3D wireless inertial measurement units of anconeus, biceps and triceps were recorded both (Xsens Technologies, Enschede Netherlands) were Effect of Anconeus Muscle Blocking on Elbow Kinematics used. Before the trial began, the sensors were cali- Flexion–extension in a sagittal plane with the spine brated by placing them on a flat surface and then bent forward 90° and the upper arm aligned hori- executing a heading reset. This was to ensure that the zontally and parallel to the ground gravitational acceleration vector and the global Z axis Supination–pronation with the elbow flexed 90° remained vertical. The active range of motion for flexion–extension Data were acquired at a sampling rate of 75 Hz. was constrained to 90° by a custom-made frame con- Three inertial measurement units (IMUs) were em- structed out of wood. The frame was attached to the ployed; the first sensor (IMU1) was attached below the lateral side of the arm. Supination–pronation motions external notch of the thorax.
Recommended publications
  • M1 – Muscled Arm
    M1 – Muscled Arm See diagram on next page 1. tendinous junction 38. brachial artery 2. dorsal interosseous muscles of hand 39. humerus 3. radial nerve 40. lateral epicondyle of humerus 4. radial artery 41. tendon of flexor carpi radialis muscle 5. extensor retinaculum 42. median nerve 6. abductor pollicis brevis muscle 43. flexor retinaculum 7. extensor carpi radialis brevis muscle 44. tendon of palmaris longus muscle 8. extensor carpi radialis longus muscle 45. common palmar digital nerves of 9. brachioradialis muscle median nerve 10. brachialis muscle 46. flexor pollicis brevis muscle 11. deltoid muscle 47. adductor pollicis muscle 12. supraspinatus muscle 48. lumbrical muscles of hand 13. scapular spine 49. tendon of flexor digitorium 14. trapezius muscle superficialis muscle 15. infraspinatus muscle 50. superficial transverse metacarpal 16. latissimus dorsi muscle ligament 17. teres major muscle 51. common palmar digital arteries 18. teres minor muscle 52. digital synovial sheath 19. triangular space 53. tendon of flexor digitorum profundus 20. long head of triceps brachii muscle muscle 21. lateral head of triceps brachii muscle 54. annular part of fibrous tendon 22. tendon of triceps brachii muscle sheaths 23. ulnar nerve 55. proper palmar digital nerves of ulnar 24. anconeus muscle nerve 25. medial epicondyle of humerus 56. cruciform part of fibrous tendon 26. olecranon process of ulna sheaths 27. flexor carpi ulnaris muscle 57. superficial palmar arch 28. extensor digitorum muscle of hand 58. abductor digiti minimi muscle of hand 29. extensor carpi ulnaris muscle 59. opponens digiti minimi muscle of 30. tendon of extensor digitorium muscle hand of hand 60. superficial branch of ulnar nerve 31.
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • Anatomy Module 3. Muscles. Materials for Colloquium Preparation
    Section 3. Muscles 1 Trapezius muscle functions (m. trapezius): brings the scapula to the vertebral column when the scapulae are stable extends the neck, which is the motion of bending the neck straight back work as auxiliary respiratory muscles extends lumbar spine when unilateral contraction - slightly rotates face in the opposite direction 2 Functions of the latissimus dorsi muscle (m. latissimus dorsi): flexes the shoulder extends the shoulder rotates the shoulder inwards (internal rotation) adducts the arm to the body pulls up the body to the arms 3 Levator scapula functions (m. levator scapulae): takes part in breathing when the spine is fixed, levator scapulae elevates the scapula and rotates its inferior angle medially when the shoulder is fixed, levator scapula flexes to the same side the cervical spine rotates the arm inwards rotates the arm outward 4 Minor and major rhomboid muscles function: (mm. rhomboidei major et minor) take part in breathing retract the scapula, pulling it towards the vertebral column, while moving it upward bend the head to the same side as the acting muscle tilt the head in the opposite direction adducts the arm 5 Serratus posterior superior muscle function (m. serratus posterior superior): brings the ribs closer to the scapula lift the arm depresses the arm tilts the spine column to its' side elevates ribs 6 Serratus posterior inferior muscle function (m. serratus posterior inferior): elevates the ribs depresses the ribs lift the shoulder depresses the shoulder tilts the spine column to its' side 7 Latissimus dorsi muscle functions (m. latissimus dorsi): depresses lifted arm takes part in breathing (auxiliary respiratory muscle) flexes the shoulder rotates the arm outward rotates the arm inwards 8 Sources of muscle development are: sclerotome dermatome truncal myotomes gill arches mesenchyme cephalic myotomes 9 Muscle work can be: addacting overcoming ceding restraining deflecting 10 Intrinsic back muscles (autochthonous) are: minor and major rhomboid muscles (mm.
    [Show full text]
  • Deep Dry Needling of the Arm and Hand Muscles 8
    Deep dry needling of the arm and hand muscles 8 César Fernández-de-las-Peñas Javier González Iglesias Christian Gröbli Ricky Weissmann CHAPTER CONTENT conditions. Symptoms in the upper quadrant, including the neck, shoulder, arm, forearm, or Introduction . 107 hand not related to an acute trauma or underly- Clinical relevance of TrPs in arm ing systemic diseases, can be provoked by trigger and hand pain syndromes . 108 points (TrPs). In fact, there are several neck and Dry needling of the arm and hand muscles . 108 shoulder muscles with referred pain pattern being perceived throughout the upper extremity, e.g. Coracobrachialis muscle. 108 the scalenes, subclavius, pectoralis minor, supra- Biceps brachii muscle (short head) . 109 spinatus, infraspinatus, subscapularis, pectoralis Triceps brachii muscle (lower portion) . 109 major, latissimus dorsi, serratus posterior supe- Anconeus muscle . 110 rior and serratus anterior muscles ( Simons et al. Brachialis muscle . 110 1999 ). For instance, Qerama et al. (2009) dem- Brachioradialis muscle . 111 onstrated that 49% of individuals with normal electrophysiological findings in the median nerve, Supinator muscle . 111 but with symptoms mimicking carpal tunnel syn- Wrist and fi nger extensor muscles. 112 drome, presented with active TrPs in the infra- Pronator teres muscle . 113 spinatus muscle with paresthesia and referred Wrist and fi nger fl exor muscles . 113 pain to the arm and fingers. In the same study, Flexor pollicis longus, extensor pollicis patients with mild electrophysiological signs of longus, and abductor pollicis longus . 114 carpal tunnel syndrome exhibited a significantly Extensor indicis muscle . 115 higher occurrence of infraspinatus muscle TrPs in the symptomatic arm as compared with patients Adductor pollicis, opponens pollicis, with moderate to severe electrophysiological fl exor pollicis brevis, and abductor pollicis brevis muscles .
    [Show full text]
  • The Region of the Forearm
    Thomas Jefferson University Jefferson Digital Commons Regional anatomy McClellan, George 1896 Vol. 1 Jefferson Medical Books and Notebooks November 2009 The Region of the Forearm Follow this and additional works at: https://jdc.jefferson.edu/regional_anatomy Part of the History of Science, Technology, and Medicine Commons Let us know how access to this document benefits ouy Recommended Citation "The Region of the Forearm" (2009). Regional anatomy McClellan, George 1896 Vol. 1. Paper 18. https://jdc.jefferson.edu/regional_anatomy/18 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Regional anatomy McClellan, George 1896 Vol. 1 by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. 372 THE REGION OF THE FOREARilI. nerve, owing to its close relation to the internal epicondyle and the difficulty of detaching th e soft structures from that bony prominence. It is very important to preserve the periosteum over the olecranon and the strong fascia over the anconeus muscle, so that the triceps may not be altogether severed from the ulna. The relations of the parts exposed in the procedure by a posterior vertical incision (on the left side) are as follows (Plate 52, Fig.
    [Show full text]
  • FIPAT-TA2-Part-2.Pdf
    TERMINOLOGIA ANATOMICA Second Edition (2.06) International Anatomical Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TA2, PART II Contents: Systemata musculoskeletalia Musculoskeletal systems Caput II: Ossa Chapter 2: Bones Caput III: Juncturae Chapter 3: Joints Caput IV: Systema musculare Chapter 4: Muscular system Bibliographic Reference Citation: FIPAT. Terminologia Anatomica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, 2019 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Anatomica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput II: OSSA Chapter 2: BONES Latin term Latin synonym UK English US English English synonym Other 351 Systemata Musculoskeletal Musculoskeletal musculoskeletalia systems systems
    [Show full text]
  • Cubital Tunnel Syndrome Due to the Anconeus Epitrochlearis in an Amateur Weight Lifter
    Sicot Case-Reports: July 2002 Cubital tunnel syndrome due to the anconeus epitrochlearis in an amateur weight lifter In-Ho Jeon MD, Poong-Taek Kim MD , II-Hyung Park MD, Hee-Soo Kyung MD, Joo-Chul Ihn MD Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University Taegu, Korea Correspondence: Poong-Taek Kim, Department of Orthopaedic Surgery Kyungpook National University Hospital 50, 2-Ga, Samduk, Chung-Gu Taegu, 700-721, KOREA (South). Tel: +82-53-420-5630 Fax: +82-53-422-6605 E-mail: [email protected] Abstract A Cubital tunnel syndrome caused by hypertrophy of the aberrant muscle, anconeus epitrochlearis in an amateur weight lifter is presented. Résumé Un syndrome de tunnel cubital causé par l'hypertrophie du muscle aberrant, anconeus epitrochlearis chez un haltérophile amateur est présenté. Page 1 Sicot Case-Reports: July 2002 Introduction We present a case of a cubital tunnel syndrome secondary to the aberrant muscle anconeus epitrochlearis in an amateur weight lifter. Case-Report This 28-year-old right-handed man had an eight-week history of tingling sensation and weakness of the grip power. He denied any trauma to his elbow and his symptoms progressed despite the use of splints and medication for 3 months. He was a businessman and had to do computer works for several hours a day. He attended classes in physical fitness and lifted weight to develop his muscles. Numbness of the 4th and 5th fingers and difficulty in fine motion like touching computer key board became constant recently and weakness of flexor profundus of ulnar 2 digits was present.
    [Show full text]
  • Anconeus Epitrochlearis As a Source of Medial Elbow Pain in Baseball Pitchers
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229074131 Anconeus Epitrochlearis as a Source of Medial Elbow Pain in Baseball Pitchers Article in Orthopedics · July 2012 DOI: 10.3928/01477447-20120621-39 · Source: PubMed CITATIONS READS 9 422 6 authors, including: Xinning Li Joshua S Dines Boston University Hospital for Special Surgery 104 PUBLICATIONS 867 CITATIONS 245 PUBLICATIONS 3,258 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Commentary & Perspective Total Hip Arthroplasty View project All content following this page was uploaded by Xinning Li on 01 June 2014. The user has requested enhancement of the downloaded file. n Case Report Anconeus Epitrochlearis as a Source of Medial Elbow Pain in Baseball Pitchers XINNING LI, MD; JOSHUA S. DINES, MD; MATTHEW GORMAN, MD; ORR LIMPISVASTI, MD; RALPH GAMBARDELLA, MD; LOU YOCUM, MD abstract Full article available online at Healio.com/Orthopedics. Search: 20120621-39 Medial elbow pain is reported in 18% to 69% of baseball players aged of 9 and 19 years. This is due to the large valgus stresses focused on the medial side of the elbow during overhead activities. In overhead throwers and pitchers, pain can be attributed to valgus extension overload with resultant posteromedial impingement, overuse of the flexor–pronator musculature resulting in medial epicondylitis, or occasional muscle tears or ruptures. The anconeus epitrochlearis is a known cause of cubital tunnel syn- drome and has been postulated as a source of medial elbow pain in overhead athletes. Figure: Axial T1-weighted magnetic resonance im- age showing the anconeus epitrochlearis muscle This article describes the cases of 3 right-handed baseball pitchers with persistent (arrow) attaching from the inferior surface of the right-sided medial elbow pain during throwing despite a prolonged period of rest, medial epicondyle to the medial olecranon.
    [Show full text]
  • ANATOMY of the SHOULDER and ARM MUSCLES of Cebus Libidinosus Tales Alexandre Aversi-Ferreira1, Jarbas Pereira-De-Paula1, Yandra
    REGULA R PA P E R ANATOMY OF THE SHOULDER AND ARM MUSCLES OF Cebus libidinosus Tales Alexandre Aversi-Ferreira1, Jarbas Pereira-de-Paula1, Yandra Cássia Lobato do Prado1, Mário Souza Lima-e-Silva1, João Roberto da Mata2 1 Neuroscience and Behavior of Primates Laboratory, Department of Morphology, Institute of Biological Science and 2 Department of Morphology, Institute of Biological Science, Federal University of Goiás, Goiânia, GO, Brazil. ABSTRACT Cebus are a very cognitive species. They have expansive motor abilities, demonstrate a high level of proficiency in using tools to obtain food; and play, using thoracic members. Our objective in this work is to study the shoulder and arm muscles of Cebus genus, comparing the findings with the literature data on humans, chimpanzees and baboons, and assume these aspects are associated with behavioral characteristics. We conclude that the shoulder and arm muscles of Cebus, in general terms, are more similar to baboons, perhaps due to the quadruped behavior exhibited in these ani- mals. The conventional term “hand abilities” in primates, specifically in Cebus, originate in motor abilities, generally, from thoracic members. They are controlled by a high encephalic index, and not by specific motor abilities from the intrinsic muscles of the hand and forearm which act on the hand. Key words: Capuchin monkey, muscles, primates, thoracic member INTRODUCTION chiation (hand used for locomotion on the trees). There are evolutionary and morphologic simi- Lately, many studies about the Cebus libidino- larities between Cebus and humans [11,15,16], sus [30] have been performed on the encephalic ves- as well as noted similarities in bipedal nature [8].
    [Show full text]
  • Laboratory Instructions and Study Guide for Human Anatomy. Part One, Fourth Edition
    DOCUMENT RESUME ED 315 321 SE 051 219 AUTHOR Conrey, Kathleen TITLE Laboratory Instructions and Study Guide for Human Anatomy. Part One, Fourth Edition. PUB DATE Sep 89 NOTE 91p.; For related documents, see SE 051 218-221. Black and white illustrations will not reproduce clearly. AVAILABLE FROM Aramaki Design and Publications, 12077 Jefferson Blvd., Culver City, CA 90506 ($7.75). PUB TYPE Guides - Classroom Use - Materials (For Learner, (051) EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS *Anatomy; *Biological Sciences; *College Science; Higher Education; *Human Body; *Laboratory Procedures; Science Activities; Science Education; Secondary Education; Secondary School Science; Teaching Guides; Teaching Methods ABSTRACT During the process of studying the specific course content of human anatomy, students are being educated to expand their vocabulary, deal successfully with complex tasks, and use a specific way of thinking. This is the first volume in a set of laboratory instructions and study notes which are designed to accompany a lecture series in human anatomy. This volum includes investigations of the skeleton including bones and joints; studies of the musculature of the body; and studies of the nervous system including the central, autonomic, motor and sensory systems. General instructions and laboratory procedures are followed by illustrations of anatomical concepts using cat and sheep organs as dissection specimens. Appendices include anatomical checklists and a set of homework sheets to accompany the laboratory
    [Show full text]
  • Anatomical Variations of the Caudomedial Antebrachial Muscles in the Crab-Eating Fox (Cerdocyon Thous)
    Int. J. Morphol., 36(4):1193-1196, 2018. Anatomical Variations of the Caudomedial Antebrachial Muscles in the Crab-Eating Fox (Cerdocyon thous) Variaciones Anatómicas de los Músculos Caudo-Mediales del Antebrazo del Zorro Perruno (Cerdocyon thous) Juan Fernando Vélez-García1; Catalina Patiño-Holguín2 & Jorge Eduardo Duque-Parra3 VÉLEZ-GARCÍA, J. F.; PATIÑO-HOLGUÍN, C. & DUQUE-PARRA, J. E. Anatomical variations of the caudomedial antebrachial muscles in the crab-eating fox (Cerdocyon thous). Int. J. Morphol., 36(4):1193-1196, 2018. SUMMARY: The crab-eating fox (Cerdocyon thous) is a wild canid distributed in South America, which is susceptible to traumas caused by captors, accidents on roads, and traps. Due to these events their thoracic limbs can be involved at the level of the forearm, therefore, knowledge of the gross anatomy of its muscles is important in order to develop clinical and surgical procedures at this level compared with the domestic dog. The main objective of this investigation was report the intra and interspecific anatomical variations of the caudomedial forearm muscles in Cerdocyon thous in comparison mainly with the domestic dog. Six dead specimens from wildlife care centres of CORPOCALDAS were used. These were fixed with a solution of formaldehyde, mineral oil and phenic acid. Both thoracic limbs of each specimen were dissected from superficial to deep, emphasizing the caudomedial part of the forearm in order to review the anatomical characteristics of each muscle. These muscles were similar to those reported in the domestic dog, but some variations were observed such as the innervation of the pronator teres muscle by the musculocutaneous nerve in a specimen unilaterally; the formation of an accessory muscle from the ulnar head of the flexor carpi ulnaris muscle in most specimens; and the vestigial presence of the anconeus epitrochlearis muscle in a specimen bilaterally.
    [Show full text]
  • Revisiting the Anatomy and Biomechanics of the Anconeus Muscle and Its Role in Elbow Stability
    G Model AANAT-50709; No. of Pages 6 ARTICLE IN PRESS Annals of Anatomy xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Annals of Anatomy j ournal homepage: www.elsevier.de/aanat Research article Revisiting the anatomy and biomechanics of the anconeus muscle and its role in elbow stability ∗ Barry P. Pereira Musculoskeletal Research Laboratories, Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore a r t i c l e i n f o a b s t r a c t Article history: Background: Recent studies have designated the anconeus muscle as an option for use as a pedicled flap Received 9 April 2012 for covering soft tissue defects about the elbow, with reported minimal risk of morbidity. This has raised Received in revised form 9 May 2012 the question as to the importance of the anconeus muscle and as to whether this is truly an accessory Accepted 25 May 2012 muscle that can be sacrificed, or whether the anconeus muscle significantly contributes to elbow and forearm stability? This study revisits the anatomy and biomechanics of the anconeus muscle and aims to Keywords: investigate the neuromuscular compartments of the anconeus muscle and to determine the changes in the Elbow muscle length, fibre length and moment arm over a range of elbow flexion angles for each compartment. Posterolateral stability Methods: An anatomical study on 8 human cadavers (51–77 years of age) was done and a 2-dimensional Neuromuscular compartments kinematic elbow model developed to determine changes in the muscle length and moment arm of the muscle related to changes in elbow flexion angles.
    [Show full text]