Massive Erosion in Monsoonal Central India Linked to Late Holocene Land Cover Degradation

Total Page:16

File Type:pdf, Size:1020Kb

Massive Erosion in Monsoonal Central India Linked to Late Holocene Land Cover Degradation Earth Surf. Dynam., 5, 781–789, 2017 https://doi.org/10.5194/esurf-5-781-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation Liviu Giosan1, Camilo Ponton1,2,a, Muhammed Usman3, Jerzy Blusztajn1, Dorian Q. Fuller4, Valier Galy5, Negar Haghipour3, Joel E. Johnson6, Cameron McIntyre3,7,b, Lukas Wacker7, and Timothy I. Eglinton3,5 1Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 2MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA, USA 3Geological Institute, ETH Zurich, 8092 Zurich, Switzerland 4Institute of Archaeology, University College London, London, UK 5Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 6Earth Sciences, University of New Hampshire, Durham, NH, USA 7Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich, Switzerland anow at: Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA bnow at: Scottish Universities Environmental Research Center, E. Kilbride, G75 0QF, UK Correspondence to: Liviu Giosan ([email protected]) Received: 26 May 2017 – Discussion started: 20 June 2017 Revised: 23 October 2017 – Accepted: 30 October 2017 – Published: 1 December 2017 Abstract. Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions. 1 Soil erosion in the Holocene gomery, 2007; Wilkinson and McElroy, 2007; Dotterweich, 2013). Transfer of sediment, carbon and solutes from land to On decadal to millennial timescales, climate is the princi- ocean is of crucial importance for understanding continen- pal natural control on soil erosion via changes in tempera- tal margin architecture as well as carbon and other elemental ture and precipitation as well as their impact on vegetation cycles. For example, soils contain about 2 times more carbon type and cover (Allen and Breshears, 1998; Reichstein et al., than the atmosphere and, as a result, small changes in the 2013). Global sediment budgets for the Holocene indicate residence time of organic carbon in soils can significantly af- that humans surpassed these natural controls and became the fect the atmospheric inventory of carbon dioxide (Lal, 2004). main driver of soil erosion by at least 2000 years ago (Mont- Besides heterotrophic microbial respiration, erosion is the Published by Copernicus Publications on behalf of the European Geosciences Union. 782 L. Giosan et al.: Massive erosion in monsoonal central India principal process that releases carbon from soils. Eroded car- bon can subsequently be degraded/reburied along the aquatic 70º 80º 90º continuum to the ocean (Stallard, 1998; Aufdenkampe et al., 2011; van Oost et al., 2012). a 35º In the absence of historical documentation of human im- Tibet pacts, the complexity of soil erosion hampers the recon- Himalayas struction of carbon transfer processes prior to the last few 30º Indo-Gangetic Plain centuries (e.g., Hoffmann et al., 2013; Dotterweich, 2013; Vanwalleghem et al., 2017). Consequently, global carbon 25º Deccan budgets implicitly assume steady state conditions for lateral Plateau 20º transport and carbon degradation along the aquatic contin- E. Ghats uum in pre-industrial times (Battin et al., 2009; Regnier et al., 2013; Chappell et al., 2016). In contrast, abundant ar- 15º chaeological and geological evidence (e.g., van Andel et al., Arabian Sea Sahyadri Bay of Bengal 1990; Bork and Lang, 2003; Bayon et al., 2012; Dotterweich, 10º 2013) as well as modeling (Kaplan et al., 2010; Wang et al., 2017) suggests widespread impacts of early human land use 5º on continental landscapes, soil erosion and associated carbon transfer processes. 50ºE 60ºE b Here we present a soil erosion history from the Indian Peninsula recorded in a sediment core retrieved near the mouth of the Godavari River (Fig. 1) in the Bay of Ben- gal (NGHP-01-16A at 16◦ 35.60 N, 82◦41.00 E; 1268 m water > 3200 depth; Collett et al., 2015). The age model for the core based < 800 mm yr -1 1600–3200 1200–1600 on 11 radiocarbon dates on mixed planktonic foraminifera 800–1200 was previously published by Ponton et al. (2012). The Go- c davari Basin was not affected by tectonics on the Holocene timescale or by glacial/snow meltwater and strong oro- graphic precipitation, which augment and complicate the wa- ter and sediment discharge of the larger Himalayan rivers Wet evergreen like the Ganges or Brahmaputra. Instead, it integrates rain- Moist deciduous Moist/dry deciduous Dry deciduous fall from the Core Monsoon Zone (CMZ), the region of cen- Arid/semiarid thorny tral India that is representative of both the mean monsoon regime and its fluctuations over the peninsula (see Ponton et d al., 2012, and references therein). Consequently, over 90 % of the Godavari’s water discharge into the Bay of Bengal de- rives from summer monsoon precipitation (Rao et al., 2005), making its sedimentary deposits a prime target for continen- - 1 ± 5 Cenozoic tal climate reconstructions and a repository for sedimentary - 35 ± 8 Deccan volcanics Mesozoic proxies of erosion prior and after the Neolithic adoption of Proterozoic/archean agriculture in central India. e 2 The Godavari sediment system Black soils Red/black soils Originating at an elevation of 920 m in the Sahyadri coastal Red soils Red/yellow soils range (aka Western Ghats) near the Arabian Sea coast, the Laterites Godavari crosses the entire Indian Peninsula toward the Bay of Bengal (Fig. 1a). Currently the water discharge of the Figure 1. Godavari River drainage basin in its (a) physiographical, river is ∼ 85 km3 yr−1 with a sediment load of ∼ 175 Mt yr−1 (b) hydroclimatic (Asouti and Fuller, 2008), (c) ecological (Asouti (Syvitski and Saito, 2007). Because the coastal range lim- and Fuller, 2008), (d) geological (Bikshamaiah and Subramanian, its penetration of the Arabian Sea moisture delivered by the 1988) and (e) soil cover (NBSS & LUP, 1983) context. Core NGHP- monsoon, precipitation in the Godavari Basin primarily orig- 01-16A location is indicated in (a) by the red dot. Average bedrock inates from the Bay of Bengal (Gunnell et al., 2007). As a "Nd values are shown in (d). result, the climate is most humid at the coast (i.e., Eastern Earth Surf. Dynam., 5, 781–789, 2017 www.earth-surf-dynam.net/5/781/2017/ L. Giosan et al.: Massive erosion in monsoonal central India 783 Ghats range) and becomes increasingly arid toward the inte- iment is discharged (Sridhar et al., 2008). Because the shelf rior on the Deccan Plateau (Fig. 1b). The natural vegetation in front of the delta is unusually narrow (i.e., under 10 km reflects this gradual decrease in moisture: the headwaters on at our core location) copious sediment deposition takes place the Deccan Plateau are dominated by C4-plant thornbush sa- directly on the continental slope, resulting in sediment accu- −1 vannah adapted to dry conditions, whereas C3 flora (decid- mulation rates as high as 250 cm kyr (Ponton et al., 2012). uous forests) are dominant in the Eastern Ghats (Asouti and Owing to the narrow shelf, changes in sea level would also Fuller, 2008; Fig. 1c). have minimal effects on sediment deposition at our site, es- Sediments transported by the Godavari are sourced from pecially after the early Holocene when the global sea level two major geological units (Bikshamaiah and Subramanian, reached within a few meters of modern values (Lambeck et 1988). The upper river basin developed on the Deccan Traps, al., 2014). For these reasons our core located close to the a large igneous province consisting of relatively young flood river mouth (∼ 35 km) is unlikely to contain any significant basalts (Cretaceous to early Neogene) that largely span the contributions from other sediment sources, in agreement with Deccan Plateau. The lower river basin developed over old previous studies (e.g., Bejugam and Nayak, 2017). Proterozoic to Archaean crystalline igneous/metamorphic The relatively simple sedimentary regime of the Godavari rocks of the Indian Craton (Fig. 1d). The relatively young system in combination with the monsoon-dominated clima- Deccan basalts retain a highly radiogenic mantle-derived Nd tology and simple geology of the Godavari Basin allows for isotope composition ("Nd of C1 ± 5), while the old conti- relatively straightforward interpretation of sediment sources nental crust of the Indian Craton
Recommended publications
  • Geology of Eastern Ghats in Andhra Pradesh
    GEOLOGY OF EASTERN GHATS IN ANDHRA PRADESH BY A. SRIRAaMADAS (Geology Departrael;t, Andhra UMversity, Waltair) Received October 2, 1967 (Communicated by Prof. C. S. Pi¢lmmuthu,t.A.sc.) ABSTRACT The lithology, structure, metamorphism and stratigraphy of the granite gneisses, charnoekite series, khondalite series and .granites occur- ring in the Eastern Ghats of Andhra Pradesh are described. The granite gneisses consist of the garnetiferous granite gneiss, the grey granite gneiss and porphyritic granite gneiss. The charnockite series consists of granite, diorite, gabbro, norite, amphibolite and pyroxenite. The khondalite series comprises gneisses, schists, quattzites, and granulites, metamorphosed from argillaceous, arenaceous and calcareous sediments. The granites include the pink granites and pegmatites. The formations are highly folded with thrusts and strike slip faults. The granite gneisses, charnockite series and khondalite series are metamorphosed to the gra. nulite facies, with a few members in the amphibolite facies and occasional members in the eclogite facies. Some granite gneisses are the oldest rocks present, and others contempolaneous with charnockite selies, which are themselves older than or contemporaneous with the khondalite series. The pink granites and pegmatites are the youngest rocks of the region. LOCATION TttE Eastern Ghats in Andhra Pradesh are situated between Latitudes 16° and 19 °, and Longitudes 80 ° and 85 ° , and stretch for about 350 miles from Srikakulam District in the north, through Visakhapatnam, Godavari and Krishna Districts, to Guntur District in the south. They include Kurupam, Madugula, Anantagiri, Gudem, Chodavaram, Papikonda, Kondapalli and Kondavidu hill ranges. GEOLOGICAL FORMATIONS Fermor ~1936) included the Eastern Ghsts in the garnetiferous type (manganese ore) marble provine belonging to the charnockite region.
    [Show full text]
  • GRMB Annual Report 2017-18
    Government of India Ministry of Water Resources, RD & GR Godavari River Management Board ANNUAL REPORT 2017-18 GODAVARI BASIN – Dakshina Ganga Origin Brahmagiri near Trimbakeshwar, Nasik Dist., Maharashtra Geographical Area 9.50 % of Total GA of India Area & Location Latitude - 16°19’ to 22°34’ North Longitude – 73°24’ to 83° 4’ East Boundaries West: Western Ghats North: Satmala hills, the Ajanta range and the Mahadeo hills East: Eastern Ghats & the Bay of Bengal South: Balaghat & Mahadeo ranges stretching forth from eastern flank of the Western Ghats & the Anantgiri and other ranges of the hills and ridges separate the Gadavari basin from the Krishna basin. Catchment Area 3,12,812 Sq.km Length of the River 1465 km States Maharashtra (48.6%), Telangana (18.8%), Andhra Pradesh (4.5%), Chhattisgarh (10.9%), Madhya Pradesh (10.0%), Odisha (5.7%), Karnataka (1.4%) and Puducherry (Yanam) and emptying into Bay of Bengal Length in AP & TS 772 km Major Tributaries Pravara, Manjira, Manair – Right side of River Purna, Pranhita, Indravati, Sabari – Left side of River Sub- basins Twelve (G1- G12) Dams Gangapur Dam, Jayakwadi dam, Vishnupuri barrage, Ghatghar Dam, Upper Vaitarna reservoir, Sriram Sagar Dam, Dowleswaram Barrage. Hydro power stations Upper Indravati 600 MW Machkund 120 MW Balimela 510 MW Upper Sileru 240 MW Lower Sileru 460 MW Upper Kolab 320 MW Pench 160 MW Ghatghar pumped storage 250 MW Polavaram (under 960 MW construction) ANNUAL REPORT 2017-18 GODAVARI RIVER MANAGEMENT BOARD 5th Floor, Jalasoudha, Errum Manzil, Hyderabad- 500082 FROM CHAIRMAN’S DESK It gives me immense pleasure to present the Annual Report of Godavari River Management Board (GRMB) for the year 2017-18.
    [Show full text]
  • Hydrothermal Alteration at the Lonar Lake Impact Structure, India: Implications for Impact Cratering on Mars
    Meteoritics & Planetary Science 38, Nr 3, 365–381 (2003) Abstract available online at http://meteoritics.org Hydrothermal alteration at the Lonar Lake impact structure, India: Implications for impact cratering on Mars Justin J. HAGERTY* and Horton E. NEWSOM Institute of Meteoritics, Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA *Corresponding author. E-mail: [email protected] (Received 12 June 2002; revision accepted 20 February 2003) Abstract–The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post-impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X-ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact-induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface.
    [Show full text]
  • Western Ghats & Sri Lanka Biodiversity Hotspot
    Ecosystem Profile WESTERN GHATS & SRI LANKA BIODIVERSITY HOTSPOT WESTERN GHATS REGION FINAL VERSION MAY 2007 Prepared by: Kamal S. Bawa, Arundhati Das and Jagdish Krishnaswamy (Ashoka Trust for Research in Ecology & the Environment - ATREE) K. Ullas Karanth, N. Samba Kumar and Madhu Rao (Wildlife Conservation Society) in collaboration with: Praveen Bhargav, Wildlife First K.N. Ganeshaiah, University of Agricultural Sciences Srinivas V., Foundation for Ecological Research, Advocacy and Learning incorporating contributions from: Narayani Barve, ATREE Sham Davande, ATREE Balanchandra Hegde, Sahyadri Wildlife and Forest Conservation Trust N.M. Ishwar, Wildlife Institute of India Zafar-ul Islam, Indian Bird Conservation Network Niren Jain, Kudremukh Wildlife Foundation Jayant Kulkarni, Envirosearch S. Lele, Centre for Interdisciplinary Studies in Environment & Development M.D. Madhusudan, Nature Conservation Foundation Nandita Mahadev, University of Agricultural Sciences Kiran M.C., ATREE Prachi Mehta, Envirosearch Divya Mudappa, Nature Conservation Foundation Seema Purshothaman, ATREE Roopali Raghavan, ATREE T. R. Shankar Raman, Nature Conservation Foundation Sharmishta Sarkar, ATREE Mohammed Irfan Ullah, ATREE and with the technical support of: Conservation International-Center for Applied Biodiversity Science Assisted by the following experts and contributors: Rauf Ali Gladwin Joseph Uma Shaanker Rene Borges R. Kannan B. Siddharthan Jake Brunner Ajith Kumar C.S. Silori ii Milind Bunyan M.S.R. Murthy Mewa Singh Ravi Chellam Venkat Narayana H. Sudarshan B.A. Daniel T.S. Nayar R. Sukumar Ranjit Daniels Rohan Pethiyagoda R. Vasudeva Soubadra Devy Narendra Prasad K. Vasudevan P. Dharma Rajan M.K. Prasad Muthu Velautham P.S. Easa Asad Rahmani Arun Venkatraman Madhav Gadgil S.N. Rai Siddharth Yadav T. Ganesh Pratim Roy Santosh George P.S.
    [Show full text]
  • The Crafts and Textiles of Hyderabad and Telangana 11 Days/10 Nights
    The Crafts and Textiles of Hyderabad and Telangana 11 Days/10 Nights Activities Overnight Day 1 Fly U.S. to Hyderabad. Upon arrival, you will be transferred to Hyderabad your hotel by private car. Day 2 The city of Hyderabad was constructed in 1591 by King Hyderabad Muhammad Quli Qutb Shah of the Qutb Shahi dynasty, which ruled this region of the Deccan plateau from 1507 to 1687. During this time, the Sultanate faced numerous incursions by the Mughals and the Hindu Marathas. In 1724, the Mughal governor of the Deccan arrived to govern the city. His official title was the Nizam- ul-Muluk, or Administrator of the Realm. After the death of Emperor Aurangzeb, he declared his independence and established the Asaf Jahi dynasty of Nizams. The Nizams of Hyderabad were known for their tremendous wealth, which came from precious gems mined in nearby Golconda (see Day 3), the area's natural resources, a vibrant pearl trade, agricultural taxes and friendly cooperation with the British. Much of the architecture still existing in Hyderabad thus dates from the reigns of the Qutb Shahi Sultans or the Nizams. European influences were introduced by the British in the 19th and 20th centuries. At the center of old Hyderabad sits the Charminar, or "four towers," which dates to 1591 and is surrounded by a lively bazaar and numerous mosques and palaces. This morning we will enjoy a leisurely walk through the area. We will stop to admire the colorful tile mosaics found inside the Badshahi Ashurkhana. This Royal House of Mourning was built in 1595 as a congregation hall for Shia Muslims during Muharram.
    [Show full text]
  • Committee for Consultations on the Situation in Andhra Pradesh
    COMMITTEE FOR CONSULTATIONS ON THE SITUATION IN ANDHRA PRADESH REPORT December 2010 THE COMMITTEE CHAIRPERSON Shri Justice B N Srikrishna (Retd.) Former Judge, Supreme Court of India MEMBER SECRETARY Shri Vinod Kumar Duggal, IAS (Retd.) Former Home Secretary, Government of India MEMBERS Prof (Dr.) Ranbir Singh Vice Chancellor, National Law University, Delhi Dr. Abusaleh Shariff Chief Economist /Senior Fellow, National Council of Applied Economic Research, Delhi Prof (Dr.) Ravinder Kaur Department of Humanities and Social Sciences, IIT, Delhi The Inter State Council Secretariat (ISCS) provided full secretarial assistance including technical and budgetary support to the Committee C O N T E N T S VOLUME - I Prologue i Approach and Methodology iv Acknowledgements xii List of Tables, Figures, Appendices xvii Abbreviations xxix Chapter 1 Developments in Andhra Pradesh-A Historical Background 1 Chapter 2 Regional Economic and Equity Analysis 63 Chapter 3 Education and Health 125 Chapter 4 Water Resources, Irrigation and Power Development 177 Chapter 5 Public Employment Issues 245 Chapter 6 Issues Relating to Hyderabad Metropolis 295 Chapter 7 Sociological and Cultural Issues 341 Chapter 8 Law & Order and Internal Security Dimensions 423 Chapter 9 The Way Forward 425 VOLUME - II Appendices 1-173 Index 174 “In ages long past a great son of India, the Buddha, said that the only real victory was one in which all were equally victorious and there was defeat for no one. In the world today that is the only practical victory; any other way will lead to disaster”. Pt. Jawaharlal Nehru speaking on „Disputes and Discord‟ in the United Nations General Assembly on October 3, 1960 Prologue It has not been an easy task.
    [Show full text]
  • Neoglacial Climate Anomalies and the Harappan Metamorphosis 2 3 Authors: 4 5 Liviu Giosan1*, William D
    Clim. Past Discuss., https://doi.org/10.5194/cp-2018-37 Manuscript under review for journal Clim. Past Discussion started: 4 April 2018 c Author(s) 2018. CC BY 4.0 License. 1 Neoglacial Climate Anomalies and the Harappan Metamorphosis 2 3 Authors: 4 5 Liviu Giosan1*, William D. Orsi2,3, Marco Coolen4, Cornelia Wuchter4, 6 Ann G. Dunlea1, Kaustubh Thirumalai5, Samuel E. Munoz1, Peter D. Clift6, 7 Jeffrey P. Donnelly1, Valier Galy7, Dorian Q. Fuller8 8 9 10 Affiliations: 11 12 1Geology & Geophysics, Woods Hole Oceanographic Institution, MA, USA 13 2Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig- 14 Maximilians-Universität München, 80333 Munich, Germany 15 3GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 16 4Curtin University, Perth, Australia 17 5Brown University, Providence, RI, USA 18 6Geology & Geophysics, Louisiana State University, USA 19 8Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, MA, USA 20 7Institute of Archaeology, University College London, London, UK 21 22 *Correspondence: [email protected] 23 24 25 26 1 Clim. Past Discuss., https://doi.org/10.5194/cp-2018-37 Manuscript under review for journal Clim. Past Discussion started: 4 April 2018 c Author(s) 2018. CC BY 4.0 License. 27 Abstract: 28 29 Climate exerted constraints on the growth and decline of past human societies but our knowledge 30 of temporal and spatial climatic patterns is often too restricted to address causal connections. At 31 a global scale, the inter-hemispheric thermal balance provides an emergent framework for 32 understanding regional Holocene climate variability. As the thermal balance adjusted to gradual 33 changes in the seasonality of insolation, the Inter-Tropical Convergence Zone migrated 34 southward accompanied by a weakening of the Indian summer monsoon.
    [Show full text]
  • International Journal of Academic Research ISSN: 2348-7666; Vol.3, Issue-4(2), April, 2016 Impact Factor: 3.075; Email: [email protected]
    International Journal of Academic Research ISSN: 2348-7666; Vol.3, Issue-4(2), April, 2016 Impact Factor: 3.075; Email: [email protected] , Assistant Professor, Dept. of Civil Engineering, Sri. Indu College of Engineering and Technology, Seriguda , Ibrahim patnam (M) R.R District. Telangana State. , Lecturer in Dept. of Economics, Govt. (UG &PG) College, Anantapur, Andhra Pradesh , Post-Doctoral Fellow , Dept. of Economics , S.K. University , S.V. Puram , Anantapur , District, Andhra Pradesh. Floods are the most devastating natural calamities by their nature since time immemorial. Flooding is mainly caused by over spilling of river banks Severity increases where there is obstruction like encroachment in water ways in urban areas etc. The present paper analysed flood management. The main objectives are (i) To describe the river system, Rainfall, forecasting system and affected areas, (ii) To identify the causes vulnerability, impacts, losses, strategies, controlling measures of floods affected areas. The paper discuss the river basin wise flood situations rainfall , forecasting systems sites cause , losses, risk reduction measures strategies and flood management of the study area. flood management, calamities, forecasting, river basin catchment, vulnerability, strategies. Flood waters are simply going as a waste Floods are one of the most devastating in to seas and oceans. To control the natural calamities, by their nature and floods and utilize the waters for irrigation since time immemorial. It is most and other purposes, Interlinking of rivers commonly observed during monsoon can be a substantial solution. A variety of season and severe floods occurring every mitigation measures can be identified and year in one part or the throughout the implemented measures include flood country which has been causing forecasting and warning, adopting proper recurrent tremendous extensive damage land-use planning, flood-prone area to Agriculture, life and property besides zoning, and management.
    [Show full text]
  • Bugs R Al, No
    ISSN 2230 – 7052 Newsletter of the $WIU4#NNInvertebrate Conservation & Information Network of South Asia (ICINSA) No. 22, MAY 2016 C. Sunil Kumar Photo: CONTENTS Pages Authenc report of Ceresium leucosccum White (Coleoptera: Cerambycidae: Callidiopini) from Pune and Satara in Maharashtra State --- Paripatyadar, S., S. Gaikwad and H.V. Ghate ... 2-3 First sighng of the Apefly Spalgis epeus epeus Westwood, 1851 (Lepidoptera: Lycaenidae: Milenae: Spalgini) from the Garhwal Himalaya --- Sanjay Sondhi ... 4-5 On a collecon of Odonata (Insecta) from Lonar (Crater) Lake and its environs, Buldhana district, Maharashtra, India --- Muhamed Jafer Palot ... 6-9 Occurrence of Phyllodes consobrina Westwood 1848 (Noctuidae: Lepidoptera) from Southern Western Ghats, India and a review of distribuonal records --- Prajith K.K., Anoop Das K.S., Muhamed Jafer Palot and Longying Wen ... 10-11 First Record of Gerosis bhagava Moore 1866 (Lepidoptera: Hesperiidae) from Bangladesh --- Ashis Kumar Daa ... 12 Present status on some common buerflies in Rahara area, West Bengal --- Wrick Chakraborty & Partha P. Biswas ... 13-17 Addions to the Buerfly fauna of Sundarbans Mangrove Forest, Bangladesh --- Ashis Kumar Daa ... 18 Study on buerfly (Papilionoidea) diversity of Bilaspur city --- Shubhada Rahalkar ... 19-23 Bio-ecology of Swallowtail (Lepidoptera:Papilionidae) Buerflies in Gautala Wildlife Sanctuary of Maharashtra India -- Shinde S.S. Nimbalkar R.K. and Muley S.P. ... 24-26 New report of midge gall (Diptera: Cecidomyiidae) on Ziziphus xylopyrus (Retz.) Willd. (Rhamnaceae) from Northern Western Ghats. Mandar N. Datar and R.M. Sharma ... 27 Rapid assessment of buerfly diversity in a ecotone adjoining Bannerghaa Naonal Park, South Bengaluru Alexander R. Avinash K. Phalke S. Manidip M.
    [Show full text]
  • 006-Chapter-3 (30 to 48).Cdr
    CHAPTER – 3 DRAINAGE PATTERN The word 'Drainage' means flow of water. If you look at the physical map of India, you will find that small streams that flows in different areas combine together to form a major river. In the end, these rivers discharge themselves in large water bodies like Lake or Sea or Bay. The water of a region that flows through a river system is called drainage basin. When a highland, e.g., Mountain, separates two neighbouring drainage basin then this type of highland is called 'Water Divide'. The development of any drainage pattern is determined by the topography of that particular region. The rivers of India can be divided into two parts on the basis of land forms: 1. Rivers of Himalayas 2. Peninsular Rivers As these rivers originate in different geographical regions, they are different from each other. Their difference is evident from the following description: DO YOU KNOW? RIVERS OF HIMALAYAS Amazon river basin is the Most of the Himalayan rivers are largest drainage basin of the perennial. Apart from rainfall, these World. rivers continuously receive supply of FIND OUT water, all the year round, by the melting Which river has largest snow on the peaks of the Mountains. drainage basin in India? Rivers like Indus and Brahmaputra originate from Himalayas. These rivers have cut down the Mountains to form gorges during the course of their flow (Fig. 3.1). The rivers originating from Himalayas, right from their origin point to their journey up to the Sea, they perform several functions. On the upper parts of their course they cause massive erosion and carry with them loads of eroded materials like silt, sand, soil, etc.
    [Show full text]
  • Pomegranate Culture in Deccan Plateau of India
    ® Fruit, Vegetable and Cereal Science and Biotechnology ©2010 Global Science Books Pomegranate Culture in Deccan Plateau of India Ram Chandra* • Deodas Tarachand Meshram National Research Centre on Pomegranate, NH-9 By-pass Road, Shelgi, Solapur 413 006, Maharashtra, India Corresponding author : * [email protected] ABSTRACT The Deccan Plateau is a large plateau in India, making up the majority of the southern part of the country, ranging in elevation from 100 m in the north to 1000 m in the south. The main pomegranate producing areas are distributed between 300 and 950 m above mean sea level in hot arid and semi-arid regions having tropical and subtropical climate. Interestingly, the major production of pomegranate in India is from Deccan Plateau, especially from Maharashtra followed by Karnataka. The agro-climatic condition of Deccan Plateau is congenial for staggering of pomegranate production throughout the year. Maharashtra contributes about 84% in area and 75% in production of pomegranate in Deccan Plateau. Mainly three flowering seasons viz. winter (January-February flowering), rainy season (June-July flowering) and autumn season (September-October flowering) are promoted for fruit production in this plateau. In the present paper, information pertaining to Deccan Plateau and its climatic and soil conditions and existing cultivation practices of pomegranate has been envisaged. _____________________________________________________________________________________________________________ Keywords: climatic conditions of Deccan
    [Show full text]
  • Deccan Plateau
    HAND OUTS (3/3) PHYSICAL FEATURES OF INDIA Acknowledgment 1) Reference : NCERT SOCIAL SCIENCE TEXT BOOK 2) Google Web page for Maps & images Deccan Plateau . a triangular landmass that lies to the south of the river Narmada. Satpura range flanks its broad base in the north . The Mahadev, the Kaimur hills and the Maikal range form its eastern extensions . It is higher in the west and slopes gently eastwards. An extension of the Plateau is also visible in the northeast– locally known as the Meghalaya, Karbi-Anglong Plateau and North Cachar Hills. It is separated by a fault from the Chotanagpur Plateau. Three Prominent hill ranges from the west to east are the Garo, the Khasi and the Jaintia Hills. The Western Ghats and the Eastern Ghats mark the western and the eastern edges of the Deccan Plateau respectively. A. Western Ghats . Lies parallel to the western coast. They are continuous and can be crossed through passes only. The Western Ghats are higher than the Eastern Ghats. Their average elevation is 900– 1600 metres. B Eastern Ghats . Its average height is 600 metres. The Eastern Ghats stretch from the Mahanadi Valley to the Nilgiris in the south. The Eastern Ghats are discontinuous and irregular and dissected by rivers draining into the Bay of Bengal. the Doda Betta (2,637metres). Mahendragiri (1,501 metres) is the highest peak in the Eastern Ghats. Shevroy Hills and the Javadi Hills are located to the southeast of the Eastern Ghats. Famous hill stations are Udagamandalam, popularly known as Ooty and the Kodaikanal. Important features of Peninsular Plateau • One of the distinct features of the peninsular plateau is the black soil area known as Decean Trap.
    [Show full text]