Briefly Vegetative Anatomy Issue Of

Total Page:16

File Type:pdf, Size:1020Kb

Briefly Vegetative Anatomy Issue Of BLUMEA 22 (1975) 175—195 Comparative anatomy of the Crypteroniaceae sensu lato 1 G.J.C.M. van Vliet and P. Baas Rijksherbarium, Leiden, Netherlands Summary The and nodal of and leaf, twig, anatomy Alzatea, Axinandra, Crypteronia, Dactylocladus, Rhynchocalyx described detail. This delimited and Van is in family, as newly by VanBeusekom-Osinga Beusekom, appears the wood anatomical in to be very heterogeneous, a conclusion supported by diversity reported another The nodes be unilacunar with of the paper. may simply unilacunar, a complete girdling trace, common gap in Further (or split lateral) plus median trace type, or trilacunar. Cortical bundles may be present addition. is in cuticular stomatal of diversity present e.g. texture, type, hypodermal development, arrangement vascular bundles in petiole and midrib, mechanical support of the veins, the crystal complement, foliar sclereids, and cork origin. evidence character of all and close mutual of Anatomical only supports the Myrtalean genera, a affinity Axinandra and Crypteronia. These genera, together with Dactylocladus show several features characteristic wide for some Melastomataceae, which family with its anatomical range would also cover most of the anatomical diversity of Lythraceae, Sonneratiaceae, Oliniaceae, Alzatea, and Rhynchocalyx. Rhynchocalyx ap- to be closer in its to and Melastomataceae than to the other mem- pears anatomy some Lythraceae, Oliniaceae, bers of Crypteroniaceae. Alzatea shows affinities with all families mentioned, but remains problematic with its in families. The anatomical trilacunar node notknown to occur the other complex pattern ofoverlapping of Crypteroniaceae s.l., Melastomataceae, Oliniaceae and Sonneratiaceae may be ranges Lythraceae, , interpreted between families. as evidence ofintimate relationships these Introduction the of Beusekom delimitation of the In present issue Blumea, Van proposes a new family Crypteroniaceae, uniting Alzatea, Axinandra, and Rhynchocalyx with Crypteronia number of and Dactylocladus. These five genera share a supposedly primitive relic char- of acters, absent or rare occurrence in other Myrtalean families, implying that mutual between affinities the individual genera are not necessarily very close. Furthermore, they are also characterized by a combination ofmore specialized features by which the delimi- of the factual base tation the Crypteroniaceae in new sense appears to have a comparable to that of Melastomataceae and Sonneratiaceae. The naturalness of the family remains, however, open to some doubt. A detailed anatomical study was therefore undertaken to intra contribute to our understanding of and inter-family relationships of these genera, and and to compare the results on macromorphology (Van Beusekom, 1975) pollen with those of wood and this morphology (Muller, 1975) anatomy (Van Vliet, 1975, paper) and leaf, twig, and nodal anatomy (this paper). The of all five has been reviewed complicated taxonomic history genera by Van Beusekom. Since the anatomical evidence clearly supports a Myrtalean affinity for all of in the wood and in leaf genera (presence vestured pits intraxylary phloem and twig) literature only families from this order, mentioned in the as putative relatives (e.g. Melastomataceae, Lythraceae, Sonneratiaceae) will be considered in the comparisons. leafand of the s.l. Hallier Data on twiganatomy Crypteroniaceae are very scanty. (1911) and described the of Alzatea. Nie- Stant (in Lourteig, 1965) briefly vegetative anatomy 176 BLUMEA VOL. 22, No. 2, 1975 denzu (1892) recorded some anatomical characters for Crypteronia, and Sprague & from Metcalfe (1937) did so for Rhynchocalyx. Metcalfe & Chalk(1950) in compiling data the older literature only included some information on Axinandra and Crypteronia. the Reference to these publications will only be made as far as is relevant for discussion of the results. present attention is Apart from a detailed histological study of leaf and twig, special given to the course of vascular bundles in the nodal region. MATERIALS AND METHODS available for data will be Only herbarium specimens were this study. Collecting given for each species. Since the specimens used in this study were also used for the revision herbaria (Van Beusekom-Osinga & Van Beusekom, 1975) no of origin will be cited. and Sections macerations were prepared according to standard techniques (Baas, 1970; sections unembedded ofnodal and Bongers, 1973). Serial were made of twigs large parts serial of internodal regions. These sections were only bleached and studied in semi- permanent glycerin mounts. All nodal regions were studied at some stage of secondary thickening. Specimens used for the study ofnodalanatomy are marked with an asterisk. far of the The anatomical terminology employed, as as uncommon use, is same as ex- elsewhere & & plained (Jansen Baas, 1973; Bongers 1973; Van Staveren Baas, 1973). RESULTS AND DISCUSSIONS Nodal anatomy (Fig. 1—4) the literature the term node has been different this study the In applied in ways. For definition the node that of the which the of following is employed: is part stem in course the vascular bundles from the leafto the stele (or vice versa) produces a deviation of the vascular pattern in the stem. For practical reasons the course of vascular bundles will be described as descending from the leaf into the stem. This should not be taken as a devel- data the ofthe vascular bundles opmental interpretation, since no on ontogeny in Crypter- available. The classification ofnodal based on the number of and oniaceae are types gaps useful tool in traces (Sinnott, 1914) provides a descriptive (Howard, 1974). However, the such that this classification be some Crypteroniaceae pattern is a complex one cannot employed for all genera or species. the sections In all Crypteroniaceae leaves are oppositely arranged. Serial through one of with the nodal region therefore afford the study vascular connections of two leaves node stele. It appeared that even within a single differences may exist between the vascular the of the of patterns at opposite sides stem. More evidence variability within a species was found in the few instances that several nodes per species or specimen were studied. descend from the leaf. The median bundle fuses In Crypteronia three traces large im- mediately with the stele in all species. In C. griffithii and C. macrophylla (fig. la) lateral stele the leaf traces girdle around the and fuse with those from opposite to enter a com- the lateral condition described Howard mon gap, conforming to split or common gap by for (1970) several families e.g. Rhizophoraceae. In C. cumingii an additional centric bundle from each lateral the stele level below (lateral anastomosis) splits off trace to enter at a just in the the medianbundle In C. or same gap as (fig. ib). paniculata var. paniculata (Kochum- men 97773, fig. ic) the situation is comparable to that in C. cumingii but the girdling lateral the would traces fail to enter the stele after fusion on place where one expect a common gap. On one side of the node the lateral anastomosis was found to fuse with the median G. J. C. M. van Vliet & P. Baas: Anatomy of Crypteroniaceae 177 Idealized three-dimensional of nodal C. similar to Fig. 1—4. diagrams types. 1. Crypteronia 1a. griffithii, Dactylocladus; 1b.C. cumingii;1c. C. paniculata var. paniculata (KochummenKEP. F. 97773). — 2.Axinandra; A. A. 2a. A. beccariana (similar toCrypteronia paniculatap.p.); 2b. alata; 2c. zeylanica.— 3. Alzatea verticillata. — 4. Rhynchocalyx lawsonioides. l.t. c.b. = cortical bundle; e.g. = common gap; c.t. = complete girdlingtrace; l = lateral anastomosis; = lateral trace; m = median trace. No. 178 BLUMEA VOL. 22, 2, 1975 bundle above the level of its entrance into the stele. In the other three specimens of the C. paniculata laterals form a complete horizontal girdling path showing no special from in locus of fusion; the lateral anastomoses both leaves enter the stele the same gaps the Axinandra as the median traces (similar to situation pictured in fig. 2a for beccariana). The fact that in Crypteronia these lateral anastomoses vary in their connections with the and stele from a three-traced condition at the median gap (C. paniculata var. affinis, partly in C. paniculata var. paniculata and C. cumingii) to a situation where these anastomoses their have own gaps at a lower level (partly in C. paniculata var. paniculata and C. cumingii) makes it impossible to fit them into the nodalclassification of Sinnott. Their absence in other and the above makes difficult two Crypteronia species reported variability it to assess the systematic value of these lateral anastomoses. In the formal descriptions the different conditions will be referred to follows: Nodes with will be described as a common gap as with laterals median these from having a common gap split plus one trace (to distinguish where several lateral traces and be types gaps may present as reported by Howard, 1970). The nodal will be referred to a trace pattern as in C. paniculata as complete girdling plus median bundle. Lateral if will be mentioned in addition. one anastomoses, present, Axinandra the nodal all similar that In patterns are to in Crypteronia paniculata var. affinis (fig. 2a—c). Cortical bundles may, however, be present in addition. These bundles be collateral if centric sections may or, sufficiently large, (amphicribal). In transverse through the internode these bundles are situated at the four corners, sometimes in wing- in radial with like extensions, and occasionally arranged rows the bundles decreasing in size towards the periphery. In the latter instance the bundles are always fused with each other just below the node. In the nodal region the cortical bundles descend from the lateral traces at the points of insertion of the lateral anastomoses and bend into the outer cortical region, passing through the layer ofcork tissue. In Axinandra zeylanica the cortical bundles end in the outer cortex at various distances from the node.In A. alata no complete internodes were sectioned but the fact that both above and below the lateral trace a (the is is cortical continuous same?) cortical bundle attached, suggestive ofa bundle system over several nodes(fig.
Recommended publications
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Phylogeny and Classification of the Melastomataceae and Memecylaceae
    Nord. J. Bot. - Section of tropical taxonomy Phylogeny and classification of the Melastomataceae and Memecy laceae Susanne S. Renner Renner, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecy- laceae. - Nord. J. Bot. 13: 519-540. Copenhagen. ISSN 0107-055X. A systematic analysis of the Melastomataceae, a pantropical family of about 4200- 4500 species in c. 166 genera, and their traditional allies, the Memecylaceae, with c. 430 species in six genera, suggests a phylogeny in which there are two major lineages in the Melastomataceae and a clearly distinct Memecylaceae. Melastomataceae have close affinities with Crypteroniaceae and Lythraceae, while Memecylaceae seem closer to Myrtaceae, all of which were considered as possible outgroups, but sister group relationships in this plexus could not be resolved. Based on an analysis of all morph- ological and anatomical characters useful for higher level grouping in the Melastoma- taceae and Memecylaceae a cladistic analysis of the evolutionary relationships of the tribes of the Melastomataceae was performed, employing part of the ingroup as outgroup. Using 7 of the 21 characters scored for all genera, the maximum parsimony program PAUP in an exhaustive search found four 8-step trees with a consistency index of 0.86. Because of the limited number of characters used and the uncertain monophyly of some of the tribes, however, all presented phylogenetic hypotheses are weak. A synapomorphy of the Memecylaceae is the presence of a dorsal terpenoid-producing connective gland, a synapomorphy of the Melastomataceae is the perfectly acrodro- mous leaf venation. Within the Melastomataceae, a basal monophyletic group consists of the Kibessioideae (Prernandra) characterized by fiber tracheids, radially and axially included phloem, and median-parietal placentation (placentas along the mid-veins of the locule walls).
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Final97-10-30-2.Pdf
    Vol. 53, No. 2(2018) 133-145• Habitat heterogeneity promotes intraspecific trait variability of shrub species in Australian granite inselbergs/ P. De Smedt, G. Ottaviani, G. Wardell-Johnson, K. V. Sýkora, L. Mucina 147-158• Naturally recruited herbaceous vegetation in abandoned Belgian limestone quarries: towards habitats of conservation interest analogues?/ Carline Pitz, Julien Piqueray, Arnaud Monty, Grégory Mahy 159-173• Long-term hay meadow management maintains the target community despite local-scale species turnover/ Elizabeth R. Sullivan, Ian Powell, Paul A. Ashton 175-190• Presence of bark influences the succession of cryptogamic wood- inhabiting communities on conifer fallen logs/ Helena Kushnevskaya, Ekaterina Shorohova 191-200• Seasonal differences in arbuscular mycorrhizal fungal communities in two woody species dominating semiarid caatinga forests/ Thaís Teixeira-Rios, Danielle Karla Alves da Silva, Bruno Tomio Goto 201-211• Distribution of C4 plants in sand habitats of different climatic regions/ Parastoo Mahdavi, Erwin Bergmeier 213-225• Interannual dynamics of a rare vegetation on emerged river gravels with special attention to the critically endangered species Corrigiola litoralis L/ Jan Rottenborn, Kamila Vítovcová, Karel Prach 227-239• Investigating the floral and reproductive biology of the endangered microendemic cactus Uebelmannia buiningii Donald (Minas Gerais, Brazil)/ Valber Dias Teixeira, Christiano Franco Verola Vol. 73, No. 3(2018) 43• Lectotypification of Thismia arachnites (Thismiaceae), a mysterious species newly reported for Thailand/ Sahut Chantanaorrapint 42• Thismia kelantanensis (Thismiaceae), a new species from Kelantan, Peninsular Malaysia/ Siti-Munirah Mat Yunoh 41• Elatostema muluense (Urticaceae), a new species from the extraordinary caves of Gunung Mulu National Park, Malaysia/ M. Rodda, A. K. Monro 40• Elatostema brachyodontum subsp.
    [Show full text]
  • Wood Anatomy of Lythraceae Assigned to The
    Ada Bot. Neerl. 28 (2/3), May 1979, p.117-155. Wood anatomy of the Lythraceae P. Baas and R.C.V.J. Zweypfenning Rijksherbarium, Leiden, The Netherlands SUMMARY The wood anatomy of 18 genera belonging to the Lythraceae is described. The diversity in wood structure of extant Lythraceae is hypothesized to be derived from a prototype with scanty para- I tracheal parenchyma, heterogeneous uniseriate and multiseriate rays, (septate)libriform fibres with minutely bordered pits, and vessels with simple perforations. These characters still prevail in a number of has been limited in of Lythraceae. Specialization very most Lythraceae shrubby or herbaceous habit: these have juvenilistic rays composed mainly of erect rays and sometimes com- pletely lack axial parenchyma. Ray specialization towards predominantly uniseriate homogeneous concomitant with fibre abundant and with rays, dimorphism leading to parenchyma differentiation, the advent of chambered crystalliferous fibres has been traced in the “series” Ginoria , Pehria, Lawsonia , Physocalymma and Lagerstroemia. The latter genus has the most specialized wood anatomy in the family and has species with abundant parenchyma aswell as species with alternating fibres. with its bands of dimorphous septate Pemphis represents an independent specialization vasicentric parenchyma and thick-walled nonseptate fibres. The affinities of with other are discussed. Pun Psiloxylon, Lythraceae Myrtales ica, Rhynchocalyx , Oliniaceae,Alzatea, Sonneratiaceae, Onagraceae and Melastomataceae all resemble Lythraceae in former accommodated in the without their wood anatomy. The three genera could even be family its wood anatomical Alzatea and Sonneratia differ in minor details extending range. Oliniaceae, only from order facilitate identification of wood tentative the Lythraceae. In to samples, keys to genera or groups ofgenera of Lythraceae as well as to some species of Lagerstroemiaare presented.
    [Show full text]
  • Volume 4 No. 2 ISSN 1027–4286 August 1999
    Volume 4 No. 2 ISSN 1027–4286 August 1999 | IN THIS ISSUE | EditorialEditorialEditorial 828282 PPPrrrofile: Moffat Setshogo 838383 How to write articles for publication (6) 868686 7th S7th SSC in Siavonga 888888 SABSABSABONET Report Series No. 6 published 898989 Miombo Woodlands Training Course 929292 Update on the inventory of taxonomic experts on southern AAAfrican plants 969696 FFFrrrom the Wom Webebeb 979797 ObituarObituarObituary: Py: Peter Smith 103103103 ObituarObituarObituary: Hugh Ty: Taylorayloraylor 105 ThrThrThreatened knowledge in southern Africa ... some thoughts 106106106 A Plant Red Data List for southern Africafricafrica 111 SABSABSABONET Nyika Expedition 118118118 The genus PPPeperepereperomiaomiaomia in southern Africa: the final words? 124124124 PPPiperaceae in southern Africa: a very brief summaryyy 125125125 Some notes on Linnean typification 127127127 PPPostgraduates supported by SABONETONETONET 131131131 Index herbariorum: southern African supplement 136136136 The PThe Paper Chase 140140140 Sehlabathebe National Park-Lesotho’s Mountain Paradisearadisearadise 147147147 E-mail addressesessesesses 159159159 Regional News Update 166166166 FRONT COVER: Course participants and resource persons who attended SABONET’s Miombo Woodland Course, Zambia, during May/June 1999. they may not know about or have access to. Thanks to all those individuals who have, over the past three years (this issue also celebrates the third year of the newsletter—the first issue was published in August 1996) since this newsletter started, provided
    [Show full text]
  • Systematics and Relationships of Tryssophyton (Melastomataceae
    A peer-reviewed open-access journal PhytoKeys 136: 1–21 (2019)Systematics and relationships of Tryssophyton (Melastomataceae) 1 doi: 10.3897/phytokeys.136.38558 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana Kenneth J. Wurdack1, Fabián A. Michelangeli2 1 Department of Botany, MRC-166 National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA 2 The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA Corresponding author: Kenneth J. Wurdack ([email protected]) Academic editor: Ricardo Kriebel | Received 25 July 2019 | Accepted 30 October 2019 | Published 10 December 2019 Citation: Wurdack KJ, Michelangeli FA (2019) Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana. PhytoKeys 136: 1–21. https://doi.org/10.3897/ phytokeys.136.38558 Abstract The systematics of Tryssophyton, herbs endemic to the Pakaraima Mountains of western Guyana, is re- viewed and Tryssophyton quadrifolius K.Wurdack & Michelang., sp. nov. from the summit of Kamakusa Mountain is described as the second species in the genus. The new species is distinguished from its closest relative, Tryssophyton merumense, by striking vegetative differences, including number of leaves per stem and leaf architecture. A phylogenetic analysis of sequence data from three plastid loci and Melastomata- ceae-wide taxon sampling is presented. The two species of Tryssophyton are recovered as monophyletic and associated with mostly Old World tribe Sonerileae. Fruit, seed and leaf morphology are described for the first time, biogeography is discussed and both species are illustrated.
    [Show full text]
  • Conti Et Al. 2004
    Evolution, 58(8), 2004, pp. 1874–1876 CALIBRATION OF MOLECULAR CLOCKS AND THE BIOGEOGRAPHIC HISTORY OF CRYPTERONIACEAE: A REPLY TO MOYLE ELENA CONTI,1,2 FRANK RUTSCHMANN,1 TORSTEN ERIKSSON,3 KENNETH J. SYTSMA,4 AND DAVID A. BAUM4 1Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland 2E-mail: [email protected] 3Bergius Foundation, Royal Swedish Academy of Sciences, SE-10405 Stockholm, Sweden 4Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin 53706-1381 Received April 28, 2004. Accepted June 2, 2004. To test the molecular dating results and biogeographic in- A second point of disagreement concerns the properties terpretations reported by Conti et al. (2002), R. G. Moyle and inferential value of the estimated age ranges. Moyle reanalyzed our published dataset of 13 rbcL sequences rep- (2004) states: ‘‘Because of the wide range of age estimates resenting Melastomataceae and five small taxa: the Southeast produced by the different calibration points and molecular Asian Crypteroniaceae (the C clade) and their western Gond- dating procedures, I re-examined the biogeographic history wanan sister clade, formed by the South American Alzatea of Crypteroniaceae with particular attention to calibration and the African Rhynchocalyx, Oliniaceae, and Penaeaceae procedure.’’ He then elaborates on results based on a single (the AROP clade). Using a single calibration point and non- dating method (NPRS) and a single calibration point (an age parametric rate smoothing (NPRS; Sanderson 2003), Moyle of 23 mya assigned to node E). This methodological approach (2004) estimated an age of 68 million years ago (mya; Ϯ will tend to provide a narrower range of estimated ages than 10.6 mya) for the split between Crypteroniaceae and the would be obtained by using a number of different methods, AROP clade, which contrasts with our published age of 116 but such a superficially precise result may not be indicative mya (Ϯ 24 mya), obtained with fossil calibration and pe- of increased accuracy.
    [Show full text]
  • MOLECULAR DATING EVIDENCE from Rbcl, Ndhf, and Rpl16 INTRON SEQUENCES
    Int. J. Plant Sci. 165(4 Suppl.):S69–S83. 2004. Ó 2004 by The University of Chicago. All rights reserved. 1058-5893/2004/1650S4-0006$15.00 DID CRYPTERONIACEAE REALLY DISPERSE OUT OF INDIA? MOLECULAR DATING EVIDENCE FROM rbcL, ndhF, AND rpl16 INTRON SEQUENCES Frank Rutschmann,1,* Torsten Eriksson,y Ju¨rg Scho¨nenberger,z and Elena Conti* *Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland; yBergius Foundation, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden; and zDepartment of Botany, Stockholm University, Lilla Frescativa¨gen 5, SE-106 91 Stockholm, Sweden Biogeographical and paleontological studies indicated that some ancient Gondwanan taxa have been carried by the rafting Indian plate from Gondwana to Asia. During this journey, the Indian island experienced dramatic latitudinal and climatic changes that caused massive extinctions in its biota. However, some taxa survived these conditions and dispersed ‘‘out of India’’ into South and Southeast Asia, after India collided with the Asian continent in the Early Tertiary. To test this hypothesis, independent estimates for lineage ages are needed. A published rbcL tree supported the sister group relationship between the South and Southeast Asian Crypteroniaceae (comprising Crypteronia, Axinandra, and Dactylocladus) and a clade formed by the African Oliniaceae, Penaeaceae, and Rhynchocalycaceae and the Central and South American Alzateaceae. Molecular dating estimates indicated that Crypteroniaceae split from their West Gondwanan sister clade in the Early to Middle Cretaceous and reached Asia by rafting on the Indian plate. Here we present molecular evidence from additional chloroplast DNA regions and more taxa to test the validity of the out-of-India hypothesis for Crypteroniaceae.
    [Show full text]
  • Molecular Differentiation and Phylogenetic Relationship of the Genus Punica (Punicaceae) with Other Taxa of the Order Myrtales
    Rheedea Vol. 26(1) 37–51 2016 ISSN: 0971 - 2313 Molecular differentiation and phylogenetic relationship of the genus Punica (Punicaceae) with other taxa of the order Myrtales D. Narzary1, S.A. Ranade2, P.K. Divakar3 and T.S. Rana4,* 1Department of Botany, Gauhati University, Guwahati – 781 014, Assam, India. 2Genetics and Molecular Biology Laboratory, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow – 226 001, India. 3Departamento de Biologia Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid Plaza de Ramón y Cajal, 28040, Madrid, Spain. 4Molecular Systematics Laboratory, CSIR – National Botanical Research Institute, Rana Pratap Marg, Lucknow – 226 001, India. *E-mail: [email protected] Abstract Phylogenetic analyses were carried out in two species of Punica L. (P. granatum L. and P. protopunica Balf.f.), and twelve closely related taxa of the order Myrtales based on sequence of the Internal Transcribed Spacer (ITS) and the 5.8S coding region of the nuclear ribosomal DNA. All the accessions of the Punica grouped into a distinct clade with strong support in Bayesian, Maximum Likelihood and Maximum Parsimony analyses. Trapaceae showed the most distant relationship with other members of Lythraceae s.l. Phylogenetic tree exclusively generated for 42 representative taxa of the family Lythraceae s.l., revealed similar clustering pattern of Trapaceae and Punicaceae in UPGMA and Bayesian trees. All analyses strongly supported the monophyly of the family Lythraceae s.l., nevertheless, the sister relation with family Onagraceae is weakly supported. The analyses of the ITS sequences of Punica in relation to the other taxa of the family Lythraceae s.l., revealed that the genus Punica is distinct under the family Lythraceae, however this could be further substantiated with comparative sequencing of other phylogenetically informative regions of chloroplast and nuclear DNA.
    [Show full text]
  • Article Type: Original Article
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.12.037960; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Article type: Original article RUNNING TITLE Historical biogeography of Western Ghats Myrtaceae Western Ghats Myrtaceae are not Gondwana elements but likely dispersed from south-east Asia Rajasri Ray1,2, Balaji Chattopadhyay3, Kritika M Garg3, TV Ramachandra1, and Avik Ray2,4* 1 - Center for Ecological Sciences, Indian Institute of Science, Bangalore - 560012, Karnataka, India 2 - Center for Studies in Ethnobiology, Biodiversity, and Sustainability (CEiBa), Malda, West Bengal, India 3 - Department of Biological Sciences, National University of Singapore, Singapore - 117543 4 - Ashoka Trust for Research In Ecology and Environment (ATREE), Royal Enclave, Srirampura, Jakkur Post, Bangalore - 560054, Karnataka, India * [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.04.12.037960; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Gondwana break-up is one of the key sculptors of the global biogeographic pattern including Indian subcontinent. Myrtaceae, a Gondwana family, demonstrates a high diversity across Indian Western Ghats. A rich paleo-records in Deccan Intertrappean bed in India strive to reconcile two contending hypothesis of origin and diversification of Myrtaceae in India, namely Gondwana elements floated on peninsular India or lineages invading from south-east Asia.
    [Show full text]
  • Molecular Phylogenetics of Melastomataceae and Memecylaceae: Implications for Character Evolution1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Access LMU American Journal of Botany 88(3): 486±498. 2001. MOLECULAR PHYLOGENETICS OF MELASTOMATACEAE AND MEMECYLACEAE: IMPLICATIONS FOR CHARACTER EVOLUTION1 G. CLAUSING2,4 AND S. S. RENNER3,4 2Institut fuÈr Spezielle Botanik, UniversitaÈt Mainz, D-55099 Mainz, Germany; 3Department of Biology, University of Missouri-St. Louis, 8001 Natural Bridge Rd., St. Louis, Missouri 63121 USA; and The Missouri Botanical Garden, St. Louis, Missouri 63166 USA Melastomataceae are among the most abundant and diversi®ed groups of plants throughout the tropics, but their intrafamily rela- tionships and morphological evolution are poorly understood. Here we report the results of parsimony and maximum likelihood (ML) analyses of cpDNA sequences from the rbcL and ndhF genes and the rpl16 intron, generated for eight outgroups (Crypteroniaceae, Alzateaceae, Rhynchocalycaceae, Oliniaceae, Penaeaceae, Myrtaceae, and Onagraceae) and 54 species of melastomes. The sample represents 42 of the family's currently recognized ;150 genera, the 13 traditional tribes, and the three subfamilies, Astronioideae, Melastomatoideae, and Memecyloideae (5 Memecylaceae DC.). Parsimony and ML yield congruent topologies that place Memecy- laceae as sister to Melastomataceae. Pternandra, a Southeast Asian genus of 15 species of which ®ve were sampled, is the ®rst- branching Melastomataceae. This placement has low bootstrap support (72%), but agrees with morphological treatments that placed Pternandra in Melastomatacaeae because of its acrodromal leaf venation, usually ranked as a tribe or subfamily. The interxylary phloem islands found in Memecylaceae and Pternandra, but not most other Melastomataceae, likely evolved in parallel because Pternandra resembles Melastomataceae in its other wood characters.
    [Show full text]