Port of Nelson Second Baseline Survey for Non-Indigenous Marine Species (Research Project ZBS2000-04)

Total Page:16

File Type:pdf, Size:1020Kb

Port of Nelson Second Baseline Survey for Non-Indigenous Marine Species (Research Project ZBS2000-04) Port of Nelson Second baseline survey for non-indigenous marine species (Research Project ZBS2000-04) MAF Biosecurity New Zealand Technical Paper No: 2008/05 Prepared for MAFBNZ Post Border Directorate by Graeme Inglis, Nick Gust, Isla Fitridge, Don Morrisey, Oliver Floerl, Chris Woods, Marie Kospartov, Barbara Hayden, Graham Fenwick ISBN No: 978-0-478-32139-5 (Print) ISBN No: 978-0-478-32132-6 (Online) ISSN No: 1176-838X (Print) ISSN No: 1177-6412 (Online) June 2006 Disclaimer While every effort has been made to ensure the information in this publication is accurate, the Ministry of Agriculture and Forestry does not accept any responsibility or liability for error or fact omission, interpretation or opinion which may be present, nor for the consequences of any decisions based on this information. Any view or opinions expressed do not necessarily represent the official view of the Ministry of Agriculture and Forestry. The information in this report and any accompanying documentation is accurate to the best of the knowledge and belief of the National Institute of Water & Atmospheric Research Ltd (NIWA) acting on behalf of the Ministry of Agriculture and Forestry. While NIWA has exercised all reasonable skill and care in preparation of information in this report, neither NIWA nor the Ministry of Agriculture and Forestry accept any liability in contract, tort or otherwise for any loss, damage, injury, or expense, whether direct, indirect or consequential, arising out of the provision of information in this report. Requests for further copies should be directed to: Biosecurity Surveillance Group Post-border Directorate MAF Biosecurity New Zealand Pastoral House, 25 The Terrace P O Box 2526 WELLINGTON Tel: 04 894 4100 Fax: 04 894 4227 This publication is also available on the MAF Biosecurity New Zealand website at http://www.biosecurity.govt.nz/about-us/our-publications/technical-papers © Crown Copyright - Ministry of Agriculture and Forestry Contents Page Executive summary 1 Introduction 3 Biological baseline surveys for non-indigenous marine species 3 Description of the Port of Nelson 5 Existing biological information 13 Results of the first baseline survey 16 Methods 16 Survey method development 16 Diver observations and collections on wharf piles 17 Benthic fauna 17 Epibenthos 19 Sediment sampling for cyst-forming species 19 Mobile epibenthos 19 Sampling effort 21 Sorting and identification of specimens 21 Definitions of species categories 25 Data analysis 26 Survey results 28 Native species 29 Cryptogenic species 30 Non-indigenous species 31 Species indeterminata 47 Notifiable and unwanted species 47 Previously undescribed species in New Zealand 48 Cyst-forming species 48 Comparison of results from the initial and repeat baseline surveys of the Port of Nelson 48 i Possible vectors for the introduction of non-indigenous species to the port 57 Assessment of the risk of new introductions to the port 57 Assessment of translocation risk for introduced species found in the port 57 Management of existing non-indigenous species in the port 58 Prevention of new introductions 59 Conclusions and recommendations 60 Acknowledgements 61 References 62 Appendix 1: Definitions of vessel types and geographical areas used in analyses of the LMIU SeaSearcher.com database. Appendix 2: Geographic locations of the sample sites in the Port of Nelson. Appendix 3: Specialists engaged to identify specimens obtained from the New Zealand Port surveys. Appendix 4: Generic descriptions of representative groups of the main marine taxonomic groups collected during sampling. Appendix 5: Criteria for assigning non-indigenous status to species sampled from the Port of Nelson. Appendix 6a: Results from the pile scrapings. Appendix 6b: Results from the benthic grab samples. Appendix 6c: Results from the benthic sled samples. Appendix 6d: Results from the dinoflagellate cyst core samples. Appendix 6e: Results from the fish trap samples. Appendix 6f: Results from the crab trap samples. Appendix 6g: Results from the starfish trap samples. Appendix 6h: Results from the shrimp trap samples. ii Executive summary This report describes the results of a repeat port baseline survey of the Port of Nelson undertaken in December 2004. The survey provides a second inventory of native, non indigenous and cryptogenic marine species within the port and compares the biota with the results of an earlier port baseline survey of the Port of Nelson undertaken in January 2002. The survey is part of a nationwide investigation of native and non-native marine biodiversity in 13 international shipping ports and three marinas of first entry for yachts entering New Zealand from overseas. To allow a direct comparison between the initial baseline survey and the resurvey of the Port of Nelson, the survey used the same methodologies and sampled the same sites used in the initial baseline survey. To improve the description of the biota of the port, some additional survey sites were added during the repeat survey. Sampling methods used in both surveys were based on protocols developed by the Australian Centre for Research on Introduced Marine Pests (CRIMP) for baseline surveys of non-indigenous species (NIS) in ports. Modifications were made to the CRIMP protocols for use in New Zealand port conditions. These are described in more detail in the body of the report. A wide range of sampling techniques was used to collect marine organisms from habitats within the Port of Nelson. Fouling assemblages were scraped from hard substrata by divers, benthic assemblages were sampled using a sled and benthic grabs, and a gravity corer was used to sample for dinoflagellate cysts. Mobile predators and scavengers were sampled using baited fish, crab, starfish and shrimp traps. Sampling effort was distributed in the Port of Nelson according to priorities identified in the CRIMP protocols, which are designed to maximise the chances of detecting non-indigenous species. Most effort was concentrated on high-risk locations and habitats where non-indigenous species were most likely to be found. Organisms collected during the survey were sent to local and international taxonomic experts for identification. A total of 193 species or higher taxa were identified in the first survey of the Port of Nelson in January 2002. They consisted of 130 native species, 13 non-indigenous species, 20 cryptogenic species (those whose geographic origins are uncertain) and 30 species indeterminata (taxa for which there is insufficient taxonomic or systematic information available to allow identification to species level). During the repeat survey, 257 species or higher taxa were recorded, including 176 native species, 13 non-indigenous species, 32 cryptogenic species and 36 species indeterminata. Many species were common to both surveys. Around 48% of the native species, 54% of non-indigenous species, and 38% of cryptogenic species recorded during the repeat survey were also found in the earlier survey. The 13 non-indigenous organisms found in the repeat survey of the Port of Nelson included representatives of 5 taxanomic groups. The non-indigenous species detected MAF Biosecurity New Zealand Port of Nelson: Second baseline survey for non-indigenous marine species 1 were: (Annelida) Hydroides elegans; (Bryozoa) Bugula flabellata, Cryptosula pallasiana, Electra tenella, Celleporaria nodulosa, Watersipora subtorquata; (Hydrozoa) Lafoeina amirantensis, Filellum serpens?, Synthecium campylocarpum, Synthecium subventricosum; (Mollusca) Crassostrea gigas, Theora lubrica and (Macroalgae) Undaria pinnatifida. Six of these species - Hydroides elegans, Electra tenella, Filellum serpens?, Synthecium campylocarpum, Synthecium subventricosum and Undaria pinnatifida - were not recorded in the earlier baseline survey of the Port of Nelson. In addition, 6 non-indigenous species that were present in the first survey – Polydora hoplura (Annelida), Conopeum seurati, Electra angulata, Schizoporella errata, Anguinella palmata (Bryozoa) and Ciona intestinalis (Urochordata) – were not found during the repeat survey. Ten species recorded in the repeat survey are new records for New Zealand waters. Two of these were newly discovered non-indigenous species (a bryozoan, Celleporaria nodulosa, and a hydroid, Lafoeina amirantensis). The others are sponges that do not correspond with existing descriptions from New Zealand or overseas and may be new to science. The only species from the Port of Nelson on the New Zealand register of unwanted organisms is the Asian kelp, Undaria pinnatifida. This alga is known to now have a wide distribution in southern and eastern New Zealand. Most non-indigenous species located in the Port are likely to have been introduced to New Zealand accidentally by international shipping or spread from other locations in New Zealand (including translocation by shipping). Approximately 68 % (13 of 19 species) of NIS in the Port of Nelson are likely to have been introduced in hull fouling assemblages, 5 % (one species) via ballast water and 22 % (four species) could have been introduced by either ballast water or hull fouling vectors. One species (5%) is suspected to have arrived on drift plastic. The predominance of hull fouling species in the introduced biota of the Port of Nelson (as opposed to ballast water introductions) is consistent with findings from similar port baseline studies overseas. 2 Port of Nelson: Second baseline survey for non-indigenous marine species MAF Biosecurity New Zealand Introduction Introduced (non-indigenous)
Recommended publications
  • Invertebrate Responses to Large-Scale Change: Impacts of Eutrophication and Cataclysmic Earthquake Events in a Southern New Zealand Estuary
    Invertebrate Responses to Large-Scale Change: Impacts of Eutrophication and Cataclysmic Earthquake Events in a Southern New Zealand Estuary A thesis submitted in partial fulfilment of the requirements for the degree of Doctorate of Philosophy in Ecology at the University of Canterbury, New Zealand Jennifer Erin Skilton 2013 Abstract Abstract Environmental stress and disturbance can affect the structure and functioning of marine ecosystems by altering their physical, chemical and biological features. In estuaries, benthic invertebrate communities play important roles in structuring sediments, influencing primary production and biogeochemical flux, and occupying key food web positions. Stress and disturbance can reduce species diversity, richness and abundance, with ecological theory predicting that biodiversity will be at its lowest soon after a disturbance with assemblages dominated by opportunistic species. The Avon-Heathcote Estuary in Christchurch New Zealand has provided a novel opportunity to examine the effects of stress, in the form of eutrophication, and disturbance, in the form of cataclysmic earthquake events, on the structure and functioning of an estuarine ecosystem. For more than 50 years, large quantities (up to 500,000m3/day) of treated wastewater were released into this estuary but in March 2010 this was diverted to an ocean outfall, thereby reducing the nutrient loading by around 90% to the estuary. This study was therefore initially focussed on the reversal of eutrophication and consequent effects on food web structure in the estuary as it responded to lower nutrients. In 2011, however, Christchurch was struck with a series of large earthquakes that greatly changed the estuary. Massive amounts of liquefied sediments, covering up to 65% of the estuary floor, were forced up from deep below the estuary, the estuary was tilted by up to a 50cm rise on one side and a corresponding drop on the other, and large quantities of raw sewage from broken wastewater infrastructure entered the estuary for up to nine months.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UNIVERSITY OF CALIFORNIA Santa Barbara Social organization in trematode parasitic flatworms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Ana Elisa Garcia Vedrenne Committee in charge: Professor Armand M. Kuris, Chair Professor Kathleen R. Foltz Professor Ryan F. Hechinger Professor Todd H. Oakley March 2018 The dissertation of Ana Elisa Garcia Vedrenne is approved. _____________________________________ Ryan F. Hechinger _____________________________________ Kathleen R. Foltz _____________________________________ Todd H. Oakley _____________________________________ Armand M. Kuris, Committee Chair March 2018 ii Social organization in trematode parasitic flatworms Copyright © 2018 by Ana Elisa Garcia Vedrenne iii Acknowledgements As I wrap up my PhD and reflect on all the people that have been involved in this process, I am happy to see that the list goes on and on. I hope I’ve expressed my gratitude adequately along the way– I find it easier to express these feeling with a big hug than with awkward words. Nonetheless, the time has come to put these acknowledgements in writing. Gracias, gracias, gracias! I would first like to thank everyone on my committee. I’ve been lucky to have a committee that gave me freedom to roam free while always being there to help when I got stuck. Armand Kuris, thank you for being the advisor that says yes to adventures, for always having your door open, and for encouraging me to speak my mind. Thanks for letting Gaby and me join your lab years ago and inviting us back as PhD students. Kathy Foltz, it is impossible to think of a better role model: caring, patient, generous and incredibly smart.
    [Show full text]
  • Parasite Effects on Growth of the Mud Whelk, Cominella
    PARASITE EFFECTS ON GROWTH OF THE MUD WHELK, COMINELLA GLANDIFORMIS (REEVE,. 1874). A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Zoology. By Brett ~.esney t;"''' University of Canterbury, 1989. Some specimens of the mud whelk, Cominella glandiformis, pictured with the principal means of dissection. TABLE OF CONTENTS. Abstract Page 1 General Introduction Page 2 Chapter 1 - A field study of Comine77a g7andiformis and its parasite fauna from the Avon-Heathcote estuary, with emphasis on the relationship between host size and parasite prevalence Page 12 Chapter 2 - General histology, and anthelmintic elimination of parasite infection in Comine77a g7andiformis Page 29 Chapter 3 - A brief description of Urosporidium sp., hyperparasite of a trematode from Comine77a g7 andiformi s Page 50 Chapter 4 - A comparison of laboratory growth rates for infected and non-infected Comine77a g7andiformis Page 59 General Discussion and Conclusion Page 72 Acknowledgements Page 81 References Page 82 Appendix - Scatterplots and correlation statistics for Comine77a g7andiformi.s collected from the field Page 88 1. ABSTRACT. The mud whelk, Comine77a glandiformis, from the Avon-Heathcote estuary in Christchurch, is infected by three species of larval digenean parasite. The prevalence of infection in C. g7andiformis was found to increase with snail length for each parasite species. This introduced the possibility that gigantism could be occurring, and investigation of this formed the study basis. Differences were apparent between sexes of snail, and juvenile and adult individuals, with respect to both infection and position on the shore. For the analyses used, a combination of length and shell weight was found to be the most effective measure of snail size, but wet and dry tissue weights could also be used.
    [Show full text]
  • Equal Partnership: Two Trematode Species, Not One, Manipulate the Burrowing Behaviour of the New Zealand Cockle, Austrovenus Stutchburyi
    Journal of Helminthology (2004) 78, 195–199 DOI: 10.1079/JOH2003231 Equal partnership: two trematode species, not one, manipulate the burrowing behaviour of the New Zealand cockle, Austrovenus stutchburyi C. Babirat, K.N. Mouritsen and R. Poulin* Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand Abstract Metacercariae of the trematode Curtuteria australis (Echinostomatidae) accumulate in the foot of the New Zealand cockle Austrovenus stutchburyi, severely impairing the cockle’s ability to burrow under the sediments. This results in increased predation by birds on cockles, and thus enhanced transmission rates of the parasite to its bird definitive hosts. This host manipulation by the trematode is costly: fish regularly crop the tip of the foot of cockles stranded on the sediment surface, killing any metacercariae they ingest. A second, previously undetected trematode species (characterized by 23 collar spines) co-existing with C. australis, has been found in the foot of cockles in the Otago Harbour, South Island, New Zealand. The relative abundance of the two species varies among localities, with the identity of the numerically dominant species also changing from one locality to the next. Both C. australis and the new species have a strong preference for encysting in the tip of the cockle’s foot, where their impact on the burrowing ability of the host is greatest, and where they both face the risk of cropping by fish. Results indicate that these two species are ecological equivalents, and their combined numbers determine
    [Show full text]
  • Prerequisites for Flying Snails: External Transport Potential of Aquatic Snails by Waterbirds Author(S): C
    Prerequisites for flying snails: external transport potential of aquatic snails by waterbirds Author(s): C. H. A. van Leeuwen and G. van der Velde Source: Freshwater Science, 31(3):963-972. 2012. Published By: The Society for Freshwater Science URL: http://www.bioone.org/doi/full/10.1899/12-023.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Freshwater Science, 2012, 31(3):963–972 ’ 2012 by The Society for Freshwater Science DOI: 10.1899/12-023.1 Published online: 17 July 2012 Prerequisites for flying snails: external transport potential of aquatic snails by waterbirds 1,2,3,5 2,4,6 C. H. A. van Leeuwen AND G. van der Velde 1 Department of Aquatic
    [Show full text]
  • Benthic Flora and Fauna of the Patea Shoals Region, South Taranaki Bight
    Benthic flora and fauna of the Patea Shoals region, South Taranaki Bight Prepared for Trans-Tasman Resources Ltd October 2013 (Updated November 2015) Authors/Contributors: J. Beaumont, T.J. Anderson, A.B. MacDiarmid For any information regarding this report please contact: Tara J. Anderson NIWA Nelson +64-3-545 7746 National Institute of Water & Atmospheric Research Ltd 301 Evans Bay Parade, Greta Point Wellington 6021 Private Bag 14901, Kilbirnie Wellington 6241 New Zealand Phone +64-4-386 0300 Fax +64-4-386 0574 NIWA Client Report No: WLG2012-55 Report date: October 2013 NIWA Project: TTR11301 © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client. 30 November 2015 12.33 p.m. Contents Executive summary ............................................................................................................. 9 1 Introduction ............................................................................................................ 12 1.1 Background ............................................................................................................. 12 1.1.1 Iron ore and seabed extraction ............................................................... 12 1.2 Previous research on the benthic fauna of the South Taranaki Bight .................... 13 1.3 NIWA’s brief ...........................................................................................................
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Appendix S3: TMO References
    Appendix S3: TMO References Abbott, M. B. (1973). Seasonal diversity and density in bryozoan populations of Block Island Sound (New York, U.S.A.). In G. P. Larwood (Ed.), Living and Fossil Bryozoa (pp. 37–51). London: Academic Press. Abdelsalam, K. M. (2014). Benthic bryozoan fauna from the northern Egyptian coast. Egyptian Journal of Aquatic Research, 40, 269–282. Abdelsalam, K. M. (2016a). Fouling bryozoan fauna from Hurghada, Red Sea, Egypt. I. Erect species. International Journal of Environmental Science and Engineering, 7, 59–70. Abdelsalam, K. M. (2016b). Fouling bryozoan fauna from Hurghada, Red Sea, Egypt. II. Encrusting species. Egyptian Journal of Aquatic Research, 42, 427–436. Abdelsalam, K. M., & Ramadan, S. E. (2008a). Fouling Bryozoa from some Alexandria harbours, Egypt. (I) Erect species. Mediterranean Marine Science, 9(1), 31–47. Abdelsalam, K. M., & Ramadan, S. E. (2008b). Fouling Bryozoa from some Alexandria harbours, Egypt. (II) Encrusting species. Mediterranean Marine Science, 9(2), 5–20. Abdelsalam, K. M., Taylor, P. D., & Dorgham, M. M. (2017). A new species of Calyp- totheca (Bryozoa: Cheilostomata) from Alexandria, Egypt, southeastern Mediterranean. Zootaxa, 4276(4), 582–590. Alder, J. (1864). Descriptions of new British Polyzoa, with remarks on some imperfectly known species. Quarterly Journal of Microscopical Science, 4, 95–109. Almeida, A. C. S., Alves, O., Peso-Aguiar, M., Dominguez, J., & Souza, F. (2015). Gym- nolaemata bryozoans of Bahia State, Brazil. Marine Biodiversity Records, 8. Almeida, A. C., & Souza, F. B. (2014). Two new species of cheilostome bryozoans from the South Atlantic Ocean. Zootaxa, 3753(3), 283–290. Almeida, A. C., Souza, F. B., & Vieira, L.
    [Show full text]
  • Genetic Structure and Shell Shape Variation Within a Rocky Shore Whelk Suggest Both Diverging and Constraining Selection with Gene Flow
    Biological Journal of the Linnean Society, 2018, XX, 1–17. With 4 figures. Downloaded from https://academic.oup.com/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/bly142/5139735 by Massey University user on 25 October 2018 Genetic structure and shell shape variation within a rocky shore whelk suggest both diverging and constraining selection with gene flow MICHAEL R. GEMMELL1, STEVEN A. TREWICK1, JAMES S. CRAMPTON2,3, FELIX VAUX1, SIMON F. K. HILLS1, ELIZABETH E. DALY1, BRUCE A. MARSHALL4, ALAN G. BEU2, and MARY MORGAN-RICHARDS1*, 1Ecology Group, College of Sciences, Massey University, Palmerston North, New Zealand 2GNS Science, PO Box 30-368, Lower Hutt, New Zealand 3School of Geography, Environment & Earth Sciences, Victoria University, Victoria University of Wellington, PO Box 600, Wellington, New Zealand 4Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Received 26 June 2018; revised 26 August 2018; accepted for publication 27 August 2018 Variation in snail shell shape has provided evolutionary biologists with excellent material for the study of local adaptation to local environments. However, the assumption that shell shape variation is evidence of distinct lineages (species) might have led to taxonomic inflation within some gastropod lineages. Here, we compare shell shape variation and genetic structure of two independent lineages of New Zealand rocky shore whelks in order to understand the process that leads to an unusual disjunct distribution. We examined the Buccinulum vittatum complex (three subspecies plus Buccinulum colensoi) using mitochondrial DNA sequences, 849 single nucleotide polymorphisms and geometric morphometric data on shell shape. Specimens within the range of B. colensoi shared nuclear markers and mitochondrial DNA haplotypes with the southern subspecies Buccinulum vittatum littorinoides, whereas the northern samples (Buccinulum vittatum vittatum) had distinct genotypes.
    [Show full text]
  • Genome Statistics and Phylogenetic Reconstructions for Southern Hemisphere Whelks (Gastropoda: Buccinulidae)
    Data in Brief 16 (2018) 172–181 Contents lists available at ScienceDirect Data in Brief journal homepage: www.elsevier.com/locate/dib Data Article Genome statistics and phylogenetic reconstructions for Southern Hemisphere whelks (Gastropoda: Buccinulidae) Felix Vaux a,n,1, Simon F.K. Hills a, Bruce A. Marshall b, Steve A. Trewick a, Mary Morgan-Richards a a Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand b Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand article info abstract Article history: This data article provides genome statistics, phylogenetic networks Received 29 June 2017 and trees for a phylogenetic study of Southern Hemisphere Buc- Received in revised form cinulidae marine snails [1]. We present alternative phylogenetic 1 November 2017 reconstructions using mitochondrial genomic and 45S nuclear Accepted 3 November 2017 ribosomal cassette DNA sequence data, as well as trees based on Available online 7 November 2017 short-length DNA sequence data. We also investigate the propor- tion of variable sites per sequence length for a set of mitochondrial and nuclear ribosomal genes, in order to examine the phylogenetic information provided by different DNA markers. Sequence align- ment files used for phylogenetic reconstructions in the main text and this article are provided here. & 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). DOI of original article: https://doi.org/10.1016/j.ympev.2017.06.018 ⁎ Corresponding author. E-mail address: [email protected] (F. Vaux). 1 Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand.
    [Show full text]
  • Dispersal Ability, Habitat Characteristics, and Sea-Surface
    Baptista et al. BMC Ecol Evo (2021) 21:128 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01862-1 RESEARCH Open Access Dispersal ability, habitat characteristics, and sea-surface circulation shape population structure of Cingula trifasciata (Gastropoda: Rissoidae) in the remote Azores Archipelago L. Baptista1,2,3,4*, H. Meimberg1, S. P. Ávila2,3,4,5, A. M. Santos4,6 and M. Curto1,7 Abstract Background: In the marine realm, dispersal ability is among the major factors shaping the distribution of species. In the Northeast Atlantic Ocean, the Azores Archipelago is home to a multitude of marine invertebrates which, despite their dispersal limitations, maintain gene fow among distant populations, with complex evolutionary and biogeo- graphic implications. The mechanisms and factors underlying the population dynamics and genetic structure of non- planktotrophic gastropods within the Azores Archipelago and related mainland populations are still poorly under- stood. The rissoid Cingula trifasciata is herewith studied to clarify its population structure in the Northeast Atlantic Ocean and factors shaping it, with a special focus in intra-archipelagic dynamics. Results: Coupling microsatellite genotyping by amplicon sequencing (SSR-GBAS) and mitochondrial datasets, our results suggest the diferentiation between insular and continental populations of Cingula trifasciata, supporting previously raised classifcation issues and detecting potential cryptic diversity. The fnding of connectivity between widely separated populations was startling. In unique ways, dispersal ability, habitat type, and small-scale oceano- graphic currents appear to be the key drivers of C. trifasciata’s population structure in the remote Azores Archipelago. Dispersal as non-planktotrophic larvae is unlikely, but its small-size adults easily engage in rafting.
    [Show full text]