Genetic Structure and Shell Shape Variation Within a Rocky Shore Whelk Suggest Both Diverging and Constraining Selection with Gene Flow
Biological Journal of the Linnean Society, 2018, XX, 1–17. With 4 figures. Downloaded from https://academic.oup.com/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/bly142/5139735 by Massey University user on 25 October 2018 Genetic structure and shell shape variation within a rocky shore whelk suggest both diverging and constraining selection with gene flow MICHAEL R. GEMMELL1, STEVEN A. TREWICK1, JAMES S. CRAMPTON2,3, FELIX VAUX1, SIMON F. K. HILLS1, ELIZABETH E. DALY1, BRUCE A. MARSHALL4, ALAN G. BEU2, and MARY MORGAN-RICHARDS1*, 1Ecology Group, College of Sciences, Massey University, Palmerston North, New Zealand 2GNS Science, PO Box 30-368, Lower Hutt, New Zealand 3School of Geography, Environment & Earth Sciences, Victoria University, Victoria University of Wellington, PO Box 600, Wellington, New Zealand 4Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Received 26 June 2018; revised 26 August 2018; accepted for publication 27 August 2018 Variation in snail shell shape has provided evolutionary biologists with excellent material for the study of local adaptation to local environments. However, the assumption that shell shape variation is evidence of distinct lineages (species) might have led to taxonomic inflation within some gastropod lineages. Here, we compare shell shape variation and genetic structure of two independent lineages of New Zealand rocky shore whelks in order to understand the process that leads to an unusual disjunct distribution. We examined the Buccinulum vittatum complex (three subspecies plus Buccinulum colensoi) using mitochondrial DNA sequences, 849 single nucleotide polymorphisms and geometric morphometric data on shell shape. Specimens within the range of B. colensoi shared nuclear markers and mitochondrial DNA haplotypes with the southern subspecies Buccinulum vittatum littorinoides, whereas the northern samples (Buccinulum vittatum vittatum) had distinct genotypes.
[Show full text]