Cyprinids in Estonian Small Lakes: Comparison Between Main Water Basins

Total Page:16

File Type:pdf, Size:1020Kb

Cyprinids in Estonian Small Lakes: Comparison Between Main Water Basins Cyprinids in Estonian Small Lakes: Comparison between Main Water Basins Anu Palm (1) amd Teet Krause (1), Ain Järvalt(1), Maidu Silm (1) (1) Estonian University for Life Sciences, Centre for Limnology at PKI, Tartu, Estonia Abstract In last 16 years, we sampled slightly over a hundred small lakes in Estonia with Nordic type of multimesh gillnets for cyprinids. We captured 15 cyprinid species out of 18 considered as natural of origin in Estonian inland waters. Rheophilic riffle minnow (Alburnoides bipunctatus) and minnow (Phoxinus phoxinus) in addition to stocked carp (Cyprinus carpio) never occurred in samples, whereas vimba bream (Vimba vimba) and piscivorous asp (Aspius aspius) occurred twice. Extremely rare in samples were also chub (Leuciscus cephalus), gudgeon (Gobio gobio), dace (L. leuciscus), and ide (L. idus). The gibel carp (Carassius gibelio), crussian carp (Carassius carassius), and tench (Tinca tinca) were caught mostly in coastal and closed lakes. Open lakes with in- and outlet were preferred by bream (Abramis brama), bleak (Alburnus alburnus), and white bream (Blicca bjoerkna). Numbers of cyprinid species co-increased with the numbers of individuals in a sample both either water basins or lake types along the water course were compared; coastal lakes were the only exception. We consider the ratio numbers of cyprinid individuals per cyprinid species to indicate directly the pressure of piscivory and hence indirectly the quality of lake water. Keywords: Cyprinidae, lake type, multimesh gill net, water quality Introduction The fish distribution of Northern Europe is described as a outcome of postglacial dispersal (Mooi, Gill, 2002) in the long-lasting processes of retreat southwards by ice formation and recolonization of ice- free areas (Paaver, Lõugas, 2003). Nowadays boreal Estonian fresh inland waters are inhabited by ten orders of bone fish (Pihu, Turovski, 2001) of which the order of Cypriniformes is represented by two families one of which is the Cyprinidae also known as cyprinids. According to M. Kottelat (Mooi, Gill, 2002) cyprinids as an order include mostly freshwater species inhabiting only the Northern Hermisphere and are considered to contribute about 36 % of the species diversity in the Palearctic. Most cyprinids of Estonia are moderately cold-tolerant either earlier invaders or later on adapted to temperate conditions; some species like asp Aspius aspius, sunbleak Leucaspius delineatus, and vimba bream Vimba vimba are considered to be thermophilic freshwater species, whereas carp Cyprinius carpio and gibel carp Carassius auratus are released into Estonian fresh waters by man. From the habitat point of view several cyprinid species like bleak prefer pelagial waters, while species like tench and bream are mostly caught in benthic regions. The wide range in the diversity of habitat is also highlighted by feeding customs as usual bottom dwellers consume on benthic animals and pelagial species prefer plankton as a food. According to classical standpoints the share of cyprinids in the whole fish assemblage tends to increase alongside with the load of nutrients in the water (Colby et al.,1972; Svärdson, 1976; Leach et al., 1977; Reshetnikov, 1980; Moss,1998). In this study we try to find differences in cyprinid species composition between and alongside the four major water basins of Estonia and point out the species characterizing lakes with different runoff conditions. Material and methods Study site Estonia (45,226 km2 in area) lies between 21.5o to 28.1oE and 57.3o to 59.5oN on the east European plain bordered on the Republic of Latvia in south, and the Russian Federation in north (Fig. 1) and has cool to cold temperate climate. Its mainland is flat - one fifth of it described as mire lowland. Four major drainage basins empty into the Gulf of Riga (GR), the Baltic Proper (BP), and either straight or through Lake Peipsi (LP) and the Narva River into the Gulf of Finland (GF). Waters are drained from catchments areas of 10,421 km2 (GR), 8017 km2 (BP), 10,314 km2 (GF), and 14,743 km2 (LP). BALWOIS 2012 - Ohrid, Republic of Macedonia – 27 May, 2 June 2012 1 Drainage divides between basins are mostly plateaus: lower (ca 80 m.a.s.l.) and marshy in north, higher in south (exceeding 190 m.a.s.l.). The vast majority of lakes locate in the south Estonia in the water basins LP (Table 1) and GR, whereas shallow still freshwaters are common at the coasts of the Gulf of Finland Narva River Baltic Proper 59 Lake Peipsi ° R U S S I A N Federation L.Võrtsjärv 58 ° Republic of L A T V I A Gulf of Riga 022° 027° Fig. 1. Schematic map of still waters in four main catchments sampled for cyprinid fish. Location on a tributary is denoted according to Arukaevu (1986), water basins according to Ojaveer and co- authors (2003). Baltic Sea and Lake Peipsi. Most still waters neighbour fen or bog, few are based on only sand and peel. Mud-covered base and densely vegetated littoral are common, whereas pebble and sand as sole base are rare. The history of replenishment still freshwaters with hatchery reared fish goes back to the 19th century (Mäemets, 1977). According to OECD (2009) of cyprinids the release of larvae or yearlings of T. tinca has been funded by the state. Lakes were ranked according to their location at the watercourse (Table 1; first suggested by Riikoja (1934) using also data published by Mäemets (1977) and Loopmann (1984)) ranging from closed to open and coastal waters. Coastal still freshwaters are extremely shallow, closely adjacent to the Baltic Sea or Lake Peipsi and located at the altitude less than 4 m.a.s.l. Our study covered the time period when water budget in all studied drainage basins was at their depression over the last thirty years of period (Jaani, Kullus 1999). Low water levels were in mild winters, in cold winters with snow cover was deep and vernal floods higher than an average. Neither serious summer nor winter fish kills were recorded in surveyed small lakes throughout the study period. Sampling Between 1995 and 2011, in total 121 lakes were sampled for fish numbers (NPUE) with ‘Nordic’ multimesh gill nets (N = 1557) according to CEN 14757 (2005), with an exception that each individual was separately measured for total length (TL) to the nearest 1 mm. Multimesh gill nets were set in all depth ranges of a lake but those measured to be anoxic. Gill nets were set overnight for 12 hours including dusk and dawn. Dissolved oxygen content (mg l-1) in water was measured with microprocessor ‘Marvet Junior’ (Estonia) in pelagial at the depth gaps of 1 m. BALWOIS 2012 - Ohrid, Republic of Macedonia – 27 May, 2 June 2012 2 Table 1. Average lake area (km2) (Loopmann, 1984; Mäemets, 1977, Tamre, 2006) describing still freshwaters sampled for fish species with multimesh gill nets. N Lake Peipsi Gulf of Riga Gulf of Finland Baltic Proper Lake type Mean Range Mean Range Mean Range Mean Range Closed 7 0,08 0,01-0,1 3,5 3.5 0,04 0,04-0,2 1,4 1,4 Open with runoff 62 1,1 0,02-7,2 1,4 0,06-4,6 0,9 0,1-3,5 1,3 0,1-3,4 Open with inlet 33 1,2 0.08-6,0 1,1 0,2-2,3 3,4 0,3-9,4 0,7 0,1-1,6 and runoff Coastal 19 1,7 0,86-2,8 3,1 0,8-5,3 2,1. 1,3-3,5 0,9 0,07-2,9 All studied lakes 121 1,1 0,01-7,2 1,7 0,01-5,3 1,7 9,94-9,4 1 0,06-3,4 N 61 30 15 15 Statistics To compare water basins and lake types, data collected only in August and September were used (in total 1469 ‘Nordic’ gill nets). Calculations were performed in MS Excel environment. For mean cyprinid NPUE values the catch within a single lake was treated as a single sample (Appelberg 2000) to calculate among-type variation. F-Test Two-Sample for Variances was used to estimate deviations. Correlation coefficient k was calculated to follow similarity in data. Results obtained Among surveyed waters lakes with only cyprinid species occurred as well as those with no cyprinid species at all. Although no clear lake-type pattern was found, lakes that lacked cyprinids started usually a brook or river i.e. had only runoff (table 2), while lakes with only cyprinid species were usually closed. In total, fifteen cyprinid species where caught, whereas the number of cyprinid species per lake averaged at 3,86 (range between 0 and 10). Most of the lakes harboured roach (90,98 %), about half of lakes were inhabited by rudd (52,46 %), bream (50,00 %), and bleak (46,08 %) followed by sunbleak (40,16 %) and a species widely released into the Estonian small lakes – tench (38,52 %). Approximately one third of studied waters were inhabited by white bream (31,97 %), while one fifth contained crussian carp (24,59 %). Significantly less lakes harboured gibel carp (9,84 %) and ide (4,92 %). Of the most sparse amongst cyprinids: gudgeon, and dace both inhabited 2,46 % of lakes, whereas chub and asp were both caught from only two lakes (1,64 %) that locate in the water basin of Lake Peisi. (Fig. 2). Vimba bream was fished from two water basins GR and GF (one lake in both). Only two water basins – LP and GR harboured gudgeon and ide. In total, LP harboured all but one of caught cyprinid species, lakes of GR lacked chub, asp, and gibel carp, while the rarest cyprinids in Estonian lakes - gudgeon, ide, chub, and asp were absent from lakes of GF.
Recommended publications
  • Length-Weight Relationship of Ten Species of Leuciscinae Sub-Family (Cyprinidae) from Iranian Inland Waters
    Int Aquat Res (2020) 12:133–136 https://doi.org/10.22034/IAR(20).2020.1891648.1004 SHORT COMMUNICATION Length-weight relationship of ten species of Leuciscinae sub-family (Cyprinidae) from Iranian inland waters Soheil Eagderi . Atta Mouludi-Saleh . Erdogan Çiçek Received: 23 January 2020 / Accepted: 16 April 2020 / Published online: 16 May 2020 © The Author(s) 2020 Abstract In this study, the length-weight relationships (LWRs) were estimated for 697 specimens belonging to ten species of Leuciscinae subfamily, viz. Squalius berak, S. namak, S. turcicus, Acanthobrama marmid, A. microlepis, Chondrostoma esmaeilii, Leuciscus latus, Alburnus doriae, Leucaspius delineates and Blicca bjoerkna from Iranian inland waters, including the Persian Gulf, Caspian Sea, Namak Lake, Dasht-e Kavir, Hari River and Isfahan basins. Total length and total weight of the examined specimens ranged 3.8-27.8 cm and 0.59-247 g, respectively. Fishes were collected using electrofishing device between July 2010 and August 2017. This study represents the first reports of LWRs data for A. doriae, C. esmaeilii, L. latus and L. delineates. The length-weight parameter b found to be 2.75 (A. microlepis) - 3.44 (B. bjoerkna) with regression coefficients (r2) ranging 0.87 to 0.99 for the studied fishes. The student’s t-test showed all studied species have a positive allometric growth pattern except A. doriae (isometric) and A. microlepis (negative allometric). Keywords LWRs . Leuciscinae . Chondrostoma esmaeilii . Leuciscus latus Introduction Study of fish species and their populations are important to understand their biological aspects in order to optimal management of their resources (Jalili et al.
    [Show full text]
  • Some Investigations on Incidence and Infestation Level in Cyprinid Postodiplostomosis
    Some investigations on incidence and infestation level in Cyprinid postodiplostomosis Octavian NEGREA1), Vioara 1), Camelia 1), Grigore ONACIU1), 1) 1) 1)* Octavia NEGREA , , Daniel COCAN MIREŞAN RĂDUCU 1University of AgriculturalCălin LAIU Sciences and Veterinary Medicine Cluj-Napoca, Faculty of Animal Science and Biotechnologies Cluj-Napoca, 3-5 Street, 400372, Romania *Corresponding author, e-mail: [email protected] Mănăştur Bulletin UASVM Animal Science and Biotechnologies 72(2) / 2015 Print ISSN 1843-5262; Electronic ISSN 1843-536X DOI:10.15835/buasvmcn-asb:11457 Abstract In our study, we sampled 82 fish specimens as follows: 62 rudd (Scardinius erythrophthalmus), 8 roach (Rutilus rutilus) and 12 silver bream (Blicca bjoerkna). The sampling was done in Mare Lake, Cluj County. The investigations took into account the incidence and infestation levels of fish with Posthodiplostomum cuticola metacercaria. The study results show an incidence of parasitosis of 80.60% for rudd, 75.00%aga for roach and 25.05% for silver bream. Regarding the intensity of infestation (low, medium and high), low levels of infestation are predominant (rudd 72%; roach 83.30%; silver bream 66.60%). The preferred body area for metacercaria (in descending order) are as follows: for rudd 90.00% on the body, 86.00 on the fins and caudal peduncle, and 28.80% on the head; for roach– - 50.00% on the body, 66.00% on the– fins and caudal peduncle, and 33.00% on the head; for silver bream 100.00% on the body, 33.00%– on the fins and caudal peduncle, and 33.00% on the head. Histopathological sections were taken from musculocutaneous tissue extracted from the dorsal –area of fish which was parasitized with cystic metacercariae.
    [Show full text]
  • Age, Growth and Reproductive Period of White Bream, Blicca Bjoerkna (L., 1758) in Lake Ladik, Turkey
    LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research 1(1): 9-18 (2015) Age, Growth and Reproductive Period of White Bream, Blicca bjoerkna (L., 1758) in Lake Ladik, Turkey Savaş YILMAZ1,*, Okan YAZICIOĞLU2, Ramazan YAZICI3, Nazmi POLAT1 1 Ondokuz Mayıs University, Faculty of Arts and Science, Department of Biology, Samsun-Turkey 2 Ahi Evran University, Technical Vocational Schools of Higher Education, Botanic and Animal Production Department, Organic Farming Program, Kırşehir-Turkey 3 Ahi Evran University, Çiçekdağı Technical Vocational Schools of Higher Education, Laboratory and Veterinary Health Department, Kırşehir-Turkey ABSTRACT ARTICLE INFO The white bream, Blicca bjoerkna (L., 1758) specimens (n=434) were collected RESEARCH ARTICLE from Lake Ladik between November 2009 and October 2010 in order to determine the age, growth, and reproductive season. Fork lengths and weights of Received : 08.01.2015 these samples varied between 11.5-24.3 cm and 22.80-259.00 g, respectively. Age Revised : 16.03.2015 estimates obtained from scales and vertebrae were compared to determine the most reliable bony structure for ageing. The precision analyses indicated that Accepted : 17.03.2015 scales were the most appropriate hard structures for determining the age of white Published : 20.04.2015 bream. Ages of all the specimens ranged from I to VI years and age group III was dominant. The parameters of the von Bertalanffy growth equations were -1 calculated as L∞ = 32.85 cm, W∞ = 707.76 g, k = 0.11 year and t0 = -2.64 year, and the growth performance index (Φ') value was computed as 2.074 for * CORRESPONDING AUTHOR combined sexes.
    [Show full text]
  • Aremu SO, Et Al. Putting the Spotlight on Opisthorchiasis: the Dread of the Western Siberian Copyright© Aremu SO, Et Al
    Public Health Open Access MEDWIN PUBLISHERS ISSN: 2578-5001 Committed to Create Value for researchers Putting the Spotlight on Opisthorchiasis: The Dread of the Western Siberian Region Aremu SO1,3*, Zephaniah HS2, Onifade EO3, Fatoke B1 and Bademosi O4 Review Article 1Faculty of General Medicine, Siberian State Medical University, Tomsk, Russian Federation Volume 4 Issue 1 2Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria Received Date: February 17, 2020 3Department of Biological Science, Federal University of Agriculture, Makurdi Benue State, Published Date: March 10, 2020 Nigeria DOI: 10.23880/phoa-16000151 4Department of Public Health, University College Dublin, Ireland *Corresponding author: Stephen Olaide Aremu, Faculty of General Medicine, Siberian State Medical University, Tomsk, Russian Federation, Email: [email protected] Abstract Introduction: Opisthorchiasis is no doubt one of the most neglected infectious disease inspite of its huge medical importance in some parts of the World. The past decade have seen a resurgence of interests in research relating to this public health issue, however there is still a lot to be done. Social Model: Not many models have been explored in Western Siberia to deal with the opisthorchiasis epidemic when compared to the different models that have been used for other regions affected by similar disease. Life Cycle: The complex life cycle of Opisthorchis felineus prevalent among the aboriginal population of the Western Siberian because of their habit of eating raw or undercooked fresh has humans and other feline species as definitive host and is really Diagnosis and Treatment: Diagnosis involve the use of stool microscopy, other methods such as mAb ELISA, LAMP and so on water fish (Cyprinidae) which are intermediate host of the parasite.
    [Show full text]
  • Beyond Fish Edna Metabarcoding: Field Replicates Disproportionately Improve the Detection of Stream Associated Vertebrate Specie
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437227; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 2 3 Beyond fish eDNA metabarcoding: Field replicates 4 disproportionately improve the detection of stream 5 associated vertebrate species 6 7 8 9 Till-Hendrik Macher1, Robin Schütz1, Jens Arle2, Arne J. Beermann1,3, Jan 10 Koschorreck2, Florian Leese1,3 11 12 13 1 University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141 Essen, 14 Germany 15 2German Environmental Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany 16 3University of Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 17 3, 45141 Essen, Germany 18 19 20 21 22 Keywords: birds, biomonitoring, bycatch, conservation, environmental DNA, mammals 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437227; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 24 Abstract 25 Fast, reliable, and comprehensive biodiversity monitoring data are needed for 26 environmental decision making and management. Recent work on fish environmental 27 DNA (eDNA) metabarcoding shows that aquatic diversity can be captured fast, reliably, 28 and non-invasively at moderate costs.
    [Show full text]
  • Beyond Fish Edna Metabarcoding: Field Replicates Disproportionately Improve the Detection of Stream Associated Vertebrate Species
    Metabarcoding and Metagenomics 5: 59–71 DOI 10.3897/mbmg.5.66557 Research Article Beyond fish eDNA metabarcoding: Field replicates disproportionately improve the detection of stream associated vertebrate species Till-Hendrik Macher1, Robin Schütz1, Jens Arle2, Arne J. Beermann1,3, Jan Koschorreck2, Florian Leese1,3 1 University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141 Essen, Germany 2 German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany 3 University of Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 3, 45141 Essen, Germany Corresponding author: Till-Hendrik Macher ([email protected]) Academic editor: Pieter Boets | Received 26 March 2021 | Accepted 10 June 2021 | Published 13 July 2021 Abstract Fast, reliable, and comprehensive biodiversity monitoring data are needed for environmental decision making and management. Recent work on fish environmental DNA (eDNA) metabarcoding shows that aquatic diversity can be captured fast, reliably, and non-invasively at moderate costs. Because water in a catchment flows to the lowest point in the landscape, often a stream, it can col- lect traces of terrestrial species via surface or subsurface runoff along its way or when specimens come into direct contact with water (e.g., when drinking). Thus, fish eDNA metabarcoding data can provide information on fish but also on other vertebrate species that live in riparian habitats. This additional data may offer a much more comprehensive approach for assessing vertebrate diversity at no additional costs. Studies on how the sampling strategy affects species detection especially of stream-associated communities, however, are scarce. We therefore performed an analysis on the effects of biological replication on both fish as well as (semi-)terrestrial species detection.
    [Show full text]
  • The Whitefin Gudgeon Romanogobio Belingi New for the Netherlands
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Lauterbornia Jahr/Year: 2005 Band/Volume: 2005_55 Autor(en)/Author(s): Soes Menno, Spaans Piet J., Veenvliet Paul Artikel/Article: The Whitefin gudgeon Romanogobio belingi new for the Netherlands. 141-144 ©Erik Mauch Verlag, Dinkelscherben, Deutschland,141 Download unter www.biologiezentrum.at Lauterbornia 55: 141-144, D-86424 Dinkelscherben, 2005-08-19 The Whitefin gudgeon Romanogobio belingi new for The Netherlands D. M. Soes, P. J. Spaans and P.Veenvliet With 2 figures Keywords: Romanogobio, Pisces, Waal, Rhine, The Netherlands, first record Schlagwörter: Romanogobio, Pisces, Waal, Rhein, Niederlande, Erstfund The whitefin gudgeon Romanogobia belingi (Lukasch, 1933) is recorded for he first time from The Netherlands 1 Introduction In the past years the fish fauna of the Dutch rivers belonging to the River Rhine system has been altered significantly. Species introduced to the Rhine system, such as Vimba (Vimba vimba), Asp (Aspius aspius) and Danube bream (Abramis sapa) are nowadays found in the Dutch waters (De Nie, 1996; Frey­ hof, et al., 2000; Van Emmerik, 2003). One Danubian species, the Tubenose goby (Proterorhinus marmoratus), invaded the River Rhine system via the Main-Danube-Canal and made it up to the Netherlands (Winter, 2002). Several other species of gobies are thought to follow (Freyhof, 2003). Already in 1998, Freyhof reported on another species in the River Rhine, which could be expected to occur in the Netherlands. This species, the White­ fin gudgeon (Romanogobio belingi (Lukasch, 1933), was found to be common and widespread in German parts of the River Rhine.
    [Show full text]
  • The Black Sea Region — Shores and Delta
    Black Sea region. page 1 European Environment Agency Europe’s biodiversity — biogeographical regions and seas Biogeographical regions in Europe The Black Sea Region — shores and delta Original contributions from ETC/NPB: Sophie Condé, Dominique Richard (coordinators) Nathalie Liamine (editor) Anne-Sophie Leclère (data collection and processing) Barbara Sotolargo (drafting) Ulla Pinborg (final co-editor) Map production: UNEP/GRID Warsaw (final production) Project manager: Tor-Björn Larsson, EEA ZooBoTech HB, Sweden, Linus Svensson (final edition) Black Sea region. page 2 Summary ............................................................................................................ 3 1. What are the main characteristics and trends of the Black Sea biogeographical region? ..................................................................................... 3 1.1 General characteristics.............................................................................. 3 1.1.1 Extent and limitations ............................................................................ 3 1.1.2 Geomorphological and topography ........................................................... 3 1.1.3 Soils .................................................................................................... 4 1.1.4 Climate ................................................................................................ 4 1.2 Present biodiversity status and trends: habitats, fauna and flora ............. 5 1.2.1 Habitats ..............................................................................................
    [Show full text]
  • Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
    Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput
    [Show full text]
  • AHNELT H. 2008. Bestimmungsschlüssel Für Die In
    Ahnelt H. 2008 Bestimmungsschlüssel 1 BESTIMMUNGSSCHLÜSSEL FÜR DIE IN ÖSTERREICH VORKOMMENDEN FISCHE HARALD AHNELT Department für Theoretische Biologie, Fakultät für Lebenswissenschaften, Universität Wien, Althanstrasse 14, 1090 Wien [email protected] Online: 10 September 2008 Zitiervorschlag: Ahnelt H. 2008 Bestimmungsschlüssel für die in Österreich vorkommenden Fische. http://homepage.univie.ac.at/harald.ahnelt/Harald_Ahnelts_Homepage/Publications.html [Download-Datum] Bestimmungsschlüssel heimischer Fische Dieser Bestimmungsschlüssel ist für die Fischarten Österreichs ausgelegt. Merkmale und Merkmalskombinationen können daher bei Anwendung auf Fische anderer Länder zu nicht korrekten Ergebnissen führen. Identification key for Austrian freshwater fishes This identification key should only be used for fishes from Austrian freshwaters. This key will possibly not work for fishes from other European countries. Nobody is perfect – schon gar nicht ein Bestimmungsschlüssel. Ein Bestimmungsschlüssel baut auf charakteristischen Merkmalen auf, er vereinfacht und kann keinen Anspruch auf Vollständigkeit erheben. Auch dieser Bestimmungsschlüssel ist nur ein Versuch ein komplexes System in einen übersichtliche Form zu bringen. Die Natur sieht aber oft anders aus. Die Bandbreite an Merkmalen ist bei vielen Arten groß. Manche Populationen sind an unterschiedliche Umweltbedingungen angepasst und bilden unterscheidbare ökologische Formen. Andere Populationen sind isoliert und einige davon sind systematisch noch ungenügend erforscht. Möglicherweise taucht ja in Österreich noch die eine oder andere neue Art auf. Sollte es einmal nicht passen, oder wenn sich ein Fehler eingeschlichen hat, ersuche ich um Information - [email protected] oder unter obiger Adresse. Verbesserungsvorschläge und Ergänzungen sind willkommen. Ahnelt H. 2008 Bestimmungsschlüssel 2 Einleitung 1858 erschien das Buch „Die Süßwasserfische der Österreichischen Monarchie mit Rücksicht auf die angrenzenden Länder“, verfasst von den Österreichern Johann Jakob Heckel und Rudolf Kner.
    [Show full text]
  • Growth, the Length-Weight Relationship, and Reproduction in Vimba (Vimba Vimba L
    Turk J Zool 2011; 35(1): 87-96 © TÜBİTAK Research Article doi:10.3906/zoo-0901-16 Growth, the length-weight relationship, and reproduction in vimba (Vimba vimba L. 1758) sampled from an oligo-mesotrophic lake in northwest Anatolia (Turkey) Hacer OKGERMAN1,*, Mahmut ELP2, Cumhur H. YARDIMCI1 1İstanbul University, Fisheries Faculty, Freshwater Biology Department, İstanbul - TURKEY 2Yüzüncü Yıl University, Agriculture Faculty, Van - TURKEY Received: 13.01.2009 Abstract: The growth parameters and reproduction period in vimba (Vimba vimba L. 1758) sampled from Sapanca Lake were determined monthly between September 2003 and July 2004. The 335 vimba specimens caught ranged in age from 2+ to 6+ years, and the majority of the samples consisted of individuals of the 4+-year-old age group. The length-weight relationship was estimated to be W = 0.0084 FL3.1797±0.0035 for males (r2 = 0.94, P < 0.05) and W = 0.0089 FL3.1572±0.0033 for females (r2 = 0.93, P < 0.05). Regression coefficients for sex were significant (t-test, P < 0.05). The slope (b) significantly differed (ANCOVA, P < 0.05) between months. The fact that the b values for male and female vimba specimens differed from 3.0 indicates that there was positive allometric growth. The von Bertalanffy equation was determined using Lt = 28.940 (1-exp {-0.123[t+2.193]}), ∅’: 2.030, (r = 0.999) for males and Lt = 24.708 [1-exp {-0.205[t+1.464]}), ∅’: 2.097, (r = 0.999) for females. The sex ratio was 1:1.86 (χ2; P < 0.05). The spawning period of vimba began at the end of April and continued until the beginning of July; the water temperature during this period was between 14.8 and 25.9 °C.
    [Show full text]
  • Reproduction Characteristics of the Vimba Vimba Persa (Pallas, 1811), in Coastal Waters of the Caspian Sea
    Reproduction characteristics of the Vimba vimba persa (Pallas, 1811), in coastal waters of the Caspian Sea Item Type article Authors Chaichi, A.R.; Vosoughi, G.H.; Kaymaram, F.; Jamili, S.; Fazli, H. Download date 28/09/2021 21:28:45 Link to Item http://hdl.handle.net/1834/37234 Iranian Journal of Fisheries Sciences 10(4) 585-595 2011 ‏Reproduction characteristics of the Vimba vimba persa (Pallas, 1811), in coastal waters of the Caspian Sea Chaichi A. R. 1*; Vosoughi G. h.1; Kaymaram F.2; Jamili S.1,2; Fazli H.3 Received: October 2010 Accepted: March 2011 Abstract Some reproduction characteristics of the Caspian Vimba, Vimba vimba persa, were studied from Oct. 2008 to Sep. 2009 in coastal waters of the Caspian Sea (Mazandaran province). 994 specimens were monthly collected from 6 fish landing sites of Ramsar, Tonekabon, Chalus, Mahmood Abad, Sari and Behshahr. The fecundity was measured using 92 specimens. This species was found to have more abundance in spring (especially April and May). The samples composed of 397(42.6%) male, 537(57.4%) female; the sex ratio was M: F = 1:1.35. The advanced stages of maturity (4th & 5th) were found in April and May. The highest Gonadosomatic Index in females was in May and the lowest one was in July. The average of absolute and relative fecundities was 17198±7710 and 171.85±48.8, respectively. Keywords: Caspian Vimba, Vimba vimba persa, Fecundity, GSI, Sex ratio, Caspian Sea Downloaded from jifro.ir at 16:34 +0330 on Monday February 12th 2018 ____________________ 1- Graduate School of Marine Science & Technology, Department of Marine Biology, Science and Research, Islamic Azad University, Tehran- Iran.
    [Show full text]