Reproduction Characteristics of the Vimba Vimba Persa (Pallas, 1811), in Coastal Waters of the Caspian Sea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of Field Trip (Guilan Province from 14 to 17 October 2019)
Third Plenary Conference and Field Trip of INQUA IFG 1709F Ponto-Caspian Stratigraphy and Geochronology Report of field trip (Guilan Province from 14 to 17 October 2019) First Day, 14 October 2019 Stations: (Manjil, Totkabon (Rashi cave), Rasht) On Monday, at 7:30 AM the group traveled to the Gilan province. The first station was Manjil City for visiting Manjil Dam and geology Formations (Shemshak formation) in Mnajil. Dr. Nazari from Geological Survey of Iran described that how the formations were formed and some short descriptions about its tectonic plate. The second station had been located in the Totkabon (near the Ruodbar city). After having lunch near the Rashi village, the group led by Dr. Biglari from the Ministry of Cultural Heritage, Tourism and Handicrafts moved to the Rashi cave. At 8:00 PM, the team accommodated in their Hotel and hostel in Rasht. Second day, 15 October 2019: Stations: Fuman city, Masuleh village On Tuesday, 15 October 2019, field work started at the 8:30 AM. The team traveled to near Rasht City to visit old beach deposition and to the Fuman city for visiting Qale-Rudkhan Castle that is located 25 km southwest of Fuman city. And it is built on two tips of a mount, with an area of 2.6 hectare at the elevations of 715 and 670 meters. To get to the Qale - Rudkhan Castle, the group had to climbed approximately 1000 steps. On Tuesday afternoon, team went to Masuleh for visiting old village. (Also, at night a city tour was organized by the Guilan University). -
Assessing Chlorophyll-A in the Southwestern Coastal Waters of the Caspian Sea
Journal of the Persian Gulf (Marine Science)/Vol. 5/No. 16/June 2014/14/1-14 Assessing Chlorophyll-a in the Southwestern Coastal Waters of the Caspian Sea Jamshidi, Siamak Iranian National Institute for Oceanography and Atmospheric Science, Tehran, IR Iran Received: October 2013 Accepted: April 2014 © 2014 Journal of the Persian Gulf. All rights reserved. Abstract Caspian Sea with an average depth of 27m is the largest enclosed water body in the world. Despite its enormity and valuable biotic and economic resources, investigations on the biota and seawater properties are mosaic at best. In previous studies, the monitoring of the chlorophyll-a concentrations in the Southern Caspian Sea was organized based on satellite data sets; however, vertical distribution of chlorophyll-a concentrations and its variations in deeper layers of the southern Caspian seawater are not well known. The aim of this research was to study the variations of seasonal distributions of chlorophyll-a near Anzali Port in northern Iran. Data collection was performed at 23 stations, 2 km apart, along four survey lines perpendicular to the coastline and two transects parallel to the coast every season using a research vessel. Field measurements in the study area were carried out. A portable CTD probe was applied for profiling from sea surface to bottom. Results of seasonal field measurements showed variations of the seawater properties (e.g. temperature, salinity, density and chlorophyll-a). Maximum depth of the profiling stations was more than 470 m and vertical structure of temperature in the southern Caspian Sea waters with a significant seasonal thermocline between 20-50 m depths in summer with a vertical difference of 16oC were characterized. -
The Whitefin Gudgeon Romanogobio Belingi New for the Netherlands
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Lauterbornia Jahr/Year: 2005 Band/Volume: 2005_55 Autor(en)/Author(s): Soes Menno, Spaans Piet J., Veenvliet Paul Artikel/Article: The Whitefin gudgeon Romanogobio belingi new for the Netherlands. 141-144 ©Erik Mauch Verlag, Dinkelscherben, Deutschland,141 Download unter www.biologiezentrum.at Lauterbornia 55: 141-144, D-86424 Dinkelscherben, 2005-08-19 The Whitefin gudgeon Romanogobio belingi new for The Netherlands D. M. Soes, P. J. Spaans and P.Veenvliet With 2 figures Keywords: Romanogobio, Pisces, Waal, Rhine, The Netherlands, first record Schlagwörter: Romanogobio, Pisces, Waal, Rhein, Niederlande, Erstfund The whitefin gudgeon Romanogobia belingi (Lukasch, 1933) is recorded for he first time from The Netherlands 1 Introduction In the past years the fish fauna of the Dutch rivers belonging to the River Rhine system has been altered significantly. Species introduced to the Rhine system, such as Vimba (Vimba vimba), Asp (Aspius aspius) and Danube bream (Abramis sapa) are nowadays found in the Dutch waters (De Nie, 1996; Frey hof, et al., 2000; Van Emmerik, 2003). One Danubian species, the Tubenose goby (Proterorhinus marmoratus), invaded the River Rhine system via the Main-Danube-Canal and made it up to the Netherlands (Winter, 2002). Several other species of gobies are thought to follow (Freyhof, 2003). Already in 1998, Freyhof reported on another species in the River Rhine, which could be expected to occur in the Netherlands. This species, the White fin gudgeon (Romanogobio belingi (Lukasch, 1933), was found to be common and widespread in German parts of the River Rhine. -
The Black Sea Region — Shores and Delta
Black Sea region. page 1 European Environment Agency Europe’s biodiversity — biogeographical regions and seas Biogeographical regions in Europe The Black Sea Region — shores and delta Original contributions from ETC/NPB: Sophie Condé, Dominique Richard (coordinators) Nathalie Liamine (editor) Anne-Sophie Leclère (data collection and processing) Barbara Sotolargo (drafting) Ulla Pinborg (final co-editor) Map production: UNEP/GRID Warsaw (final production) Project manager: Tor-Björn Larsson, EEA ZooBoTech HB, Sweden, Linus Svensson (final edition) Black Sea region. page 2 Summary ............................................................................................................ 3 1. What are the main characteristics and trends of the Black Sea biogeographical region? ..................................................................................... 3 1.1 General characteristics.............................................................................. 3 1.1.1 Extent and limitations ............................................................................ 3 1.1.2 Geomorphological and topography ........................................................... 3 1.1.3 Soils .................................................................................................... 4 1.1.4 Climate ................................................................................................ 4 1.2 Present biodiversity status and trends: habitats, fauna and flora ............. 5 1.2.1 Habitats .............................................................................................. -
AHNELT H. 2008. Bestimmungsschlüssel Für Die In
Ahnelt H. 2008 Bestimmungsschlüssel 1 BESTIMMUNGSSCHLÜSSEL FÜR DIE IN ÖSTERREICH VORKOMMENDEN FISCHE HARALD AHNELT Department für Theoretische Biologie, Fakultät für Lebenswissenschaften, Universität Wien, Althanstrasse 14, 1090 Wien [email protected] Online: 10 September 2008 Zitiervorschlag: Ahnelt H. 2008 Bestimmungsschlüssel für die in Österreich vorkommenden Fische. http://homepage.univie.ac.at/harald.ahnelt/Harald_Ahnelts_Homepage/Publications.html [Download-Datum] Bestimmungsschlüssel heimischer Fische Dieser Bestimmungsschlüssel ist für die Fischarten Österreichs ausgelegt. Merkmale und Merkmalskombinationen können daher bei Anwendung auf Fische anderer Länder zu nicht korrekten Ergebnissen führen. Identification key for Austrian freshwater fishes This identification key should only be used for fishes from Austrian freshwaters. This key will possibly not work for fishes from other European countries. Nobody is perfect – schon gar nicht ein Bestimmungsschlüssel. Ein Bestimmungsschlüssel baut auf charakteristischen Merkmalen auf, er vereinfacht und kann keinen Anspruch auf Vollständigkeit erheben. Auch dieser Bestimmungsschlüssel ist nur ein Versuch ein komplexes System in einen übersichtliche Form zu bringen. Die Natur sieht aber oft anders aus. Die Bandbreite an Merkmalen ist bei vielen Arten groß. Manche Populationen sind an unterschiedliche Umweltbedingungen angepasst und bilden unterscheidbare ökologische Formen. Andere Populationen sind isoliert und einige davon sind systematisch noch ungenügend erforscht. Möglicherweise taucht ja in Österreich noch die eine oder andere neue Art auf. Sollte es einmal nicht passen, oder wenn sich ein Fehler eingeschlichen hat, ersuche ich um Information - [email protected] oder unter obiger Adresse. Verbesserungsvorschläge und Ergänzungen sind willkommen. Ahnelt H. 2008 Bestimmungsschlüssel 2 Einleitung 1858 erschien das Buch „Die Süßwasserfische der Österreichischen Monarchie mit Rücksicht auf die angrenzenden Länder“, verfasst von den Österreichern Johann Jakob Heckel und Rudolf Kner. -
Growth, the Length-Weight Relationship, and Reproduction in Vimba (Vimba Vimba L
Turk J Zool 2011; 35(1): 87-96 © TÜBİTAK Research Article doi:10.3906/zoo-0901-16 Growth, the length-weight relationship, and reproduction in vimba (Vimba vimba L. 1758) sampled from an oligo-mesotrophic lake in northwest Anatolia (Turkey) Hacer OKGERMAN1,*, Mahmut ELP2, Cumhur H. YARDIMCI1 1İstanbul University, Fisheries Faculty, Freshwater Biology Department, İstanbul - TURKEY 2Yüzüncü Yıl University, Agriculture Faculty, Van - TURKEY Received: 13.01.2009 Abstract: The growth parameters and reproduction period in vimba (Vimba vimba L. 1758) sampled from Sapanca Lake were determined monthly between September 2003 and July 2004. The 335 vimba specimens caught ranged in age from 2+ to 6+ years, and the majority of the samples consisted of individuals of the 4+-year-old age group. The length-weight relationship was estimated to be W = 0.0084 FL3.1797±0.0035 for males (r2 = 0.94, P < 0.05) and W = 0.0089 FL3.1572±0.0033 for females (r2 = 0.93, P < 0.05). Regression coefficients for sex were significant (t-test, P < 0.05). The slope (b) significantly differed (ANCOVA, P < 0.05) between months. The fact that the b values for male and female vimba specimens differed from 3.0 indicates that there was positive allometric growth. The von Bertalanffy equation was determined using Lt = 28.940 (1-exp {-0.123[t+2.193]}), ∅’: 2.030, (r = 0.999) for males and Lt = 24.708 [1-exp {-0.205[t+1.464]}), ∅’: 2.097, (r = 0.999) for females. The sex ratio was 1:1.86 (χ2; P < 0.05). The spawning period of vimba began at the end of April and continued until the beginning of July; the water temperature during this period was between 14.8 and 25.9 °C. -
Effects of a Dispersal Barrier on Freshwater Migration of the Vimba Bream (Vimba Vimba)
BOREAL ENVIRONMENT RESEARCH 23: 339–353 © 2018 ISSN 1797-2469 (online) Helsinki 18 December 2018 Effects of a dispersal barrier on freshwater migration of the vimba bream (Vimba vimba) Meelis Tambets1, Einar Kärgenberg1,2, Eva B. Thorstad3, Odd Terje Sandlund3, Finn Økland3 and Mart Thalfeldt1 1) Wildlife Estonia, Veski 4, EE-51005 Tartu, Estonia 2) Estonian Marine Institute, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia 3) Norwegian Institute for Nature Research (NINA), P.O. Box 5685, NO-7485 Trondheim, Norway Received 1 Aug. 2018, final version received 12 Dec. 2018, accepted 14 Nov. 2018 Tambets M., Kärgenberg E., Thorstad E.B., Sandlund O.T., Økland F. & Thalfeldt M. 2018: Effects of a dispersal barrier on freshwater migration of the vimba bream (Vimba vimba). Boreal Env. Res. 23: 339–353. To study the effects of a dispersal barrier on migration of the semi-anadromous vimba bream in the Pärnu River, Estonia, we tagged thirty fish with acoustic transmitters and released above the barrier. Tagged fish showed variation in behaviour, and 16 different spawning movement patterns were identified. Several fish moved > 25 km upstream. Batch spawning was suggested by stops in up to four different spawning areas. The fish descended to the sea after spawning in spring; females earlier than males. After spending on average 137 days in the sea, they returned to the river during autumn and stayed in the river on average 174 days until the next spawning. The fish were most active during sunrise and sunset. In conclusion, the study shows that the dam prevents a diversification of migra- tion behaviour and the associated expansion of spawning areas. -
Mid-Term Plan for Conservation of the Anzali Wetland for 2020 – 2030
Japan International Department of Environment Cooperation Agency Gilan Provincial Government Islamic Republic of Iran Mid‐term Plan for Conservation of the Anzali Wetland for 2020 ‐ 2030 May 2019 Anzali Wetland Ecological Management Project ‐ Phase II Department of Environment Japan International Gilan Provincial Government Cooperation Agency Islamic Republic of Iran MID-TERM PLAN FOR CONSERVATION OF THE ANZALI WETLAND FOR 2020 – 2030 (Prepared under The Anzali Wetland Ecological Management Project - Phase II) May 2019 NIPPON KOEI CO., LTD. Exchange Rate JPY 100 = IRR 38,068 USD 1 = IRR 42,000 (as of 23 May, 2019) Source: Central Bank of the Islamic Republic of Iran Preface The Mid-term Plan for Conservation of the Anzali Wetland for 2020 – 2030 (Mid-term Plan) was prepared as a final product of the Anzali Wetland Ecological Management Project - Phase II (Phase II Project). The Phase II Project was a 5-year technical cooperation project of the Japan International Cooperation Agency (JICA) between May 2014 and May 2019. JICA has supported Iranian government on conservation of the Anzali Wetland since 2003 through “The Study on Integrated Management for Ecosystem Conservation of the Anzali Wetland (2003-2005)” (Master Plan Study) and “Anzali Wetland Ecological Management Project (2007-2008, 2011-2012)” (Phase I Project). The Mid-term Plan will succeed the previous Master Plan for 2005 - 2019, which was prepared under the Master Plan Study. In the 1st year of the Phase II Project, actual implementation status of the Master Plan was reviewed and an Action Plan for 5 years, which is the last 5-year of the Master Plan and period of the Phase II Project, was prepared to facilitate the conservation activity of the Anzali Wetland. -
Review of Fisheries and Aquaculture Development Potentials in Georgia
FAO Fisheries and Aquaculture Circular No. 1055/1 REU/C1055/1(En) ISSN 2070-6065 REVIEW OF FISHERIES AND AQUACULTURE DEVELOPMENT POTENTIALS IN GEORGIA Copies of FAO publications can be requested from: Sales and Marketing Group Office of Knowledge Exchange, Research and Extension Food and Agriculture Organization of the United Nations E-mail: [email protected] Fax: +39 06 57053360 Web site: www.fao.org/icatalog/inter-e.htm FAO Fisheries and Aquaculture Circular No. 1055/1 REU/C1055/1 (En) REVIEW OF FISHERIES AND AQUACULTURE DEVELOPMENT POTENTIALS IN GEORGIA by Marina Khavtasi † Senior Specialist Department of Integrated Environmental Management and Biodiversity Ministry of the Environment Protection and Natural Resources Tbilisi, Georgia Marina Makarova Head of Division Water Resources Protection Ministry of the Environment Protection and Natural Resources Tbilisi, Georgia Irina Lomashvili Senior Specialist Department of Integrated Environmental Management and Biodiversity Ministry of the Environment Protection and Natural Resources Tbilisi, Georgia Archil Phartsvania National Consultant Thomas Moth-Poulsen Fishery Officer FAO Regional Office for Europe and Central Asia Budapest, Hungary András Woynarovich FAO Consultant FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. -
Ecological Study of Phytoplankton of the Anzali Lagoon (N Iran) and Its Outflow Into the Caspian Sea
Czech Phycology, Olomouc, 4: 145-154, 2004 145 Ecological study of phytoplankton of the Anzali lagoon (N Iran) and its outflow into the Caspian Sea Ekologická studie fytoplanktonu laguny Anzali (severní Irán) a jejího vtoku do Kaspického moře Zohreh R a m e z a n p o o r International Sturgeon Research Institute. P. O. Box: 41635 – 3464 Rasht – Iran, e-mail: [email protected] Abstract A study of phytoplankton communities of western regions of the Anzali lagoon, rivers flowing from the lagoon, and Anzali Harbor (navigation channel), located in the southern coast of the Caspian Sea was carried out. Samples were collected monthly at nine sites from May 1992 to April 1993 from the surface, 1 m, 5 m and from the final depths of each sampling site using Ruttner sampler with 1 lit. volume. Water and air temperature, - 3- - 2- turbidity, pH, Cl , PO4 , NO3 , SO4 and salinity were measured. Phytoplankton samples were fixed in 4% formaldehyde solution and then identified and counted using inverted microscope. A total of 97 taxa of phytoplankton were identified during the studied period. Phytoplankton species and environmental variables confirmed that the western part of the Anzali Lagoon has fresh water and eutrophic character. However, alkalinity in this region was high and high amount of sulfate at this region indicates the influence of the Caspian Sea in the area. As the Harbor is under combined influence of the Caspian Sea and freshwater rivers, it showed mostly estuarine phytoplankton communities with some species of marine origin. Few sources of pollution were identified that reduced the species diversity and alternatively some other species became dominant. -
Astacus Leptodactylus) Based on Microsatellite DNA Loci
Archive of SID Iranian Journal of Animal Biosystematics (IJAB) Vol.14, No.1, 15-27, 2018 ISSN: 1735-434X (print); 2423-4222 (online) DOI: 10.22067/ijab.v14i1.54723 Population molecular analysis among the narrow-clawed crayfish (Astacus leptodactylus) based on microsatellite DNA loci Khoshkholgh, M.1* and Nazari, S. 2 1Department of Fisheries, School of Natural Resources, Guilan university, P.O. Box 1144 Sowmehsara, Iran 2Shahid Motahary Cold-water Fishes Genetic and Breeding Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Yasuj, Iran (Received: 15 October 2017; Accepted: 10 February 2018) The genetic variation of narrow-clawed crayfish (Astacus leptodactylus, Eschscholtz, 1823) from Caspian Sea including two sites (Astara and Kiashahr), Aras region, Anzali lagoon and three rivers (Chafrood, Masuleh, and Siah Darvishan) was evaluated and their genetic variation on the basis of DNA microsatellite loci was estimated. DNA from pleopods of 194 specimens extracted and was examined with six microsatellite markers. Genetic differences between the populations were discerned by pairwise comparison based on allelic distribution. The average numbers of alleles per locus ranged from 2 to 10, while the average observed heterozygosity (Ho) at various loci varied between 0.222 to 0.732, implying that a midway level of genetic variation. Among seven populations Siah Darvishan population displayed the highest level of variability in terms of heterozygosity. Tests of Hardy-Weinberg showed that the microsatellite loci deviated significantly in most populations indicating deficit of heterozygote. The results indicate that some of the above populations are significantly differentiated from one another based on pairwise FST estimates. -
National Biodiversity Strategy and Action Plan of Georgia
Biodiversity Strategy and Action Plan - Georgia – Tbilisi, 2005 Foreword Georgia signed the Convention on Biological Diversity in 1994, thus accepting responsibility to safeguard the nation’s rich diversity of plant, animal, and microbial life, to begin using biological resources in sustainable way, and to ensure equitable sharing of benefits from biodiversity. Later the country joined other conventions including the Convention on Climate Change, the Ramsar Convention on Wetlands, CITES and the Bonn Convention. As a signatory to these important international environmental treaties, Georgia enters the world scene with the potential for joining the most advanced nations in the field of environmental protection. At the present moment of transition, Georgia has a unique opportunity to use the early experiences of other countries, and avoid irreversible changes in the quality of its environment. The national legislation on environmental protection adopted over the past few years provides an adequate legal basis for this, although further elaboration and reinforcement of the existing legislation is needed. With the Ministry of Environment being currently reorganised and assuming broader responsibilities, Georgia’s institutional arrangements for environmental protection already has the necessary structure for improving the quality of the environment throughout the country. The role of non-governmental groups has been very important in resolving problems related to nature conservation. Georgia has shown an excellent example of co-operation between governmental and non-governmental organizations in the field of environment, and particularly in the field of biodiversity conservation. After signing the Convention on Biological Diversity, the Georgian Government immediately acted to develop a Biodiversity Country Study, in partnership with UNEP, and implemented by NACRES, a local conservation organisation.