Reproduction Characteristics of the Vimba Vimba Persa (Pallas, 1811), in Coastal Waters of the Caspian Sea

Total Page:16

File Type:pdf, Size:1020Kb

Reproduction Characteristics of the Vimba Vimba Persa (Pallas, 1811), in Coastal Waters of the Caspian Sea Reproduction characteristics of the Vimba vimba persa (Pallas, 1811), in coastal waters of the Caspian Sea Item Type article Authors Chaichi, A.R.; Vosoughi, G.H.; Kaymaram, F.; Jamili, S.; Fazli, H. Download date 28/09/2021 21:28:45 Link to Item http://hdl.handle.net/1834/37234 Iranian Journal of Fisheries Sciences 10(4) 585-595 2011 ‏Reproduction characteristics of the Vimba vimba persa (Pallas, 1811), in coastal waters of the Caspian Sea Chaichi A. R. 1*; Vosoughi G. h.1; Kaymaram F.2; Jamili S.1,2; Fazli H.3 Received: October 2010 Accepted: March 2011 Abstract Some reproduction characteristics of the Caspian Vimba, Vimba vimba persa, were studied from Oct. 2008 to Sep. 2009 in coastal waters of the Caspian Sea (Mazandaran province). 994 specimens were monthly collected from 6 fish landing sites of Ramsar, Tonekabon, Chalus, Mahmood Abad, Sari and Behshahr. The fecundity was measured using 92 specimens. This species was found to have more abundance in spring (especially April and May). The samples composed of 397(42.6%) male, 537(57.4%) female; the sex ratio was M: F = 1:1.35. The advanced stages of maturity (4th & 5th) were found in April and May. The highest Gonadosomatic Index in females was in May and the lowest one was in July. The average of absolute and relative fecundities was 17198±7710 and 171.85±48.8, respectively. Keywords: Caspian Vimba, Vimba vimba persa, Fecundity, GSI, Sex ratio, Caspian Sea Downloaded from jifro.ir at 16:34 +0330 on Monday February 12th 2018 ____________________ 1- Graduate School of Marine Science & Technology, Department of Marine Biology, Science and Research, Islamic Azad University, Tehran- Iran. 2- Iranian Fisheries Research Organization, P.o.Box:14155-6116, Tehran, Iran. 3- Ecologic Research Organization of Caspian Sea, Sari, Iran. *Corresponding author's email: [email protected] 586 Chaichi et al., Reproduction characteristics of the Vimba vimba persa…. Introduction There is a gap in the knowledge of absorption of eggs and sperm (Holčík and population biology, and catch assessment Oláh, 1992). Not much information on the of some species in the Caspian Sea biology of this fish is available in the area. (Karimzadeh et al., 2010). The enclosed The present study has been conducted to Caspian Sea is the world’s largest brackish determine the fecundity, spawning season, water body, comprising nearly 40% of the length of maturity and sex ratio of this fish earth’s continental surface water (Dumont, in the Iranian waters of the Caspian Sea 1998). The Caspian Sea is the biggest (Mazandaran province). enclosed body of water on Earth, between latitudes 47.07’N and 36.33N and Materials and methods longitudes 45.43 E and 54.20E. Its surface level at the moment is around –26.5 m The biological specimens were randomly below MSL. At this level, its surface area collected by different fishing gears of is 386,400 km2. The water of the Caspian beach seine ( 30 and 33 mm ), gill net (20 Sea is slightly saline; if we compare the and 28 mm) and cast net at six landing sites Caspian water with oceanic water, it of Ramsar,Tonkabon, Chalus, Mahmood contains 3 times less salt (Caspian Sea Abad, Sari and Behshahr, from Oct. 2008 Biodiversity, 2010). to Sep. 2009 (Fig. 1). Fish samples were selected randomly from landing sites. At The Caspian Sea possesses various least 70 specimens were randomly commercially important fish species. collected per month. Then they were Caspian Vimba, Vimba vimba persa transported in iceboxes to the laboratory (Pallas, 1811) locally called "Siah cooli"- is for further biological measurements. one of them. Caspian Vimba catch over the Laboratory works whole Caspian Sea basin was less than 100 The whole wet weight was recorded to 0.01g Downloaded from jifro.ir at 16:34 +0330 on Monday February 12th 2018 tons per year in the 1980s (Kuliev, 1988). and their fork length was measured to the In The past five years, the maximum nearest 1mm. The relationship of weight to amount of catch was recorded 474 tons in length was calculated with: 2009-10 and the minimum was 9 tons in 2005 -06 (Iranian Fishery Organization, W = a.Lb 2010). Kiabi et al., 1999 considered this species to be near threatened in the Where W is the total weight (g), L the fork southern Caspian Sea basin according to length (Cm), a is constant and b is slope IUCN criteria. Weirs are a problem for this (Ricker, 1975; Kaymaram et al., 2010). species in the Caspian Sea, as they block the spawning migration, the fish massing below the obstruction, causing re- Iranian Journal of Fisheries Sciences, 10(4), 2011 587 Figure 1: Geographical location of sampling sites for Vimba vimba persa (Taken from www.statemaster.com) If the calculated number for "b" does not difference, the below equation was used have a significant difference with 3, the (Pauly, 1984). species has isometric growth. To test this t= [(s.dx) / (s.dy)] × [(│b-3│) / (√ (1-r2))] × [√ (n-2)] s.d(x) = Std. fork length s.d(y) = Std. weight R2 = Coefficient of determination n= sample number The maturity stages of ovaries were also 1 Downloaded from jifro.ir at 16:34 +0330 on Monday February 12th 2018 P determined. They were based on seven 1 e(r(LLm)) macroscopic distinguishable stages in Where P is the mature proportion in each ovarian development as defined by size class, r is a parameter controlling the Kesteven (1960) method cited in Biswas shape of the curve, and Lm is the size at (1993). 50% maturity (Saila et al., 1988). The length of the females at first maturity was determined by plotting the Monthly gonad somatic index means (GSI) percent number of matured females (3rd- were calculated for both sexes using the 6th stage) to the total number of fishes following formula (Biswas, 1993) examined in a particular size group GSI = (Gonad weight (g) / Total body (King, 2007). weight (g)) ×100 A logistic function was fitted to the The gonads were removed and weighed proportion of the mature individuals by (0.001g). The spawning time was size class using a non-linear regression. established by plotting of fish by maturity The function used was: 588 Chaichi et al., Reproduction characteristics of the Vimba vimba persa…. stages and gonad-somatic index against the RF = AF/BW sample period (Biswas, 1993). AF: absolute fecundity Samples from the ovary were kept in BW: body weight (g) modified Gilson’s solution (100mL of 60% ethyl alcohol, 880mL of distilled water, Sex ratio was examined using Chi-square 15mL of 80% nitric acid, 18mL of glacial (χ2) goodness of fit tests. Independent tests acetic acid and 20 g of mercuric chloride) were conducted to determine whether sex until oocytes were completely dissociated ratio differed significantly from unity for (Biswas, 1993). the whole sample. The probability level Absolute fecundity (AF) was determined was set at 0.05. by using this formula (Bagenal and Tesch, 1978): AF =OVA×GW; Results A total of 994 specimens were collected OVA: oocyte number per ovary gram (Fig. 2) ranging in size from 95 to 234 mm. GW: gonad weight (g) The mean fork length was measured 168.4 ±26mm, with the highest abundance in Relative fecundity was estimated using the 170-180 mm lengths range. formula (Bagenal and Tesch, 1978): Downloaded from jifro.ir at 16:34 +0330 on Monday February 12th 2018 Figure 2: Length frequency of Vimba vimba persa in south of the Caspian Sea (2008-2009) Iranian Journal of Fisheries Sciences, 10(4), 2011 589 The b parameter value in the length-weight test was used for b parameter correctness relationship model W=0.012 L3.047, evaluation with a comparing to table value. R2=0.955 that are close to 3 for samples, The "b" value indicated no significant indicate isometric growth (Fig. 3). The t- difference (P>0.05). Figure 3: Length-weight relationship of Vimba vimba persa in the Southern Caspian Sea waters (2008-2009) The sample was composed of 397 April to January) (Fig. 4). The sex ratio (42.6%) male, 537 (57.4%) female. in the samples M: F = 1: 1.35 was According to the results, the sex ratio of significantly different (p < 0.05) in the the samples varied throughout the year. overall male to female sex ratio 1:1 (χ2 Downloaded from jifro.ir at 16:34 +0330 on Monday February 12th 2018 Less male in comparison with female test). were encountered in the samples (From 100% 80% 60% Female percent 40% 20% Male 0% Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar month Figure 4: Sex ratio percentage of Vimba vimba persa in south of the Caspian Sea (2008-2009) 590 Chaichi et al., Reproduction characteristics of the Vimba vimba persa…. The highest Gonadosomatic Index for gradually decreased in later months, females was found 12.7 in May and reaching its lowest level in July (Fig. 5). Downloaded from jifro.ir at 16:34 +0330 on Monday February 12th 2018 Figure 5: Monthly variation of Gonadosomatic Index for males and females of Vimba vimba persa in south of the Caspian Sea (2008-2009) The highest Gonadosomatic Index for sampled females, which occurred at 170 males was found 5.6 in May and gradually mm (Fig. 6). Regarding fecundity, the decreased in lat er months, reaching its maximum absolute and relative fecundities lowest level, 1.9 in Oct (Fig. 5). This fish were found to be 34636 and 260.9, was considered to be a spring spawner. respectively; the minimum absolute and Having various length groups as relative fecundities were 5400 and 94.5, well as percentage of high stage maturity respectively.
Recommended publications
  • Report of Field Trip (Guilan Province from 14 to 17 October 2019)
    Third Plenary Conference and Field Trip of INQUA IFG 1709F Ponto-Caspian Stratigraphy and Geochronology Report of field trip (Guilan Province from 14 to 17 October 2019) First Day, 14 October 2019 Stations: (Manjil, Totkabon (Rashi cave), Rasht) On Monday, at 7:30 AM the group traveled to the Gilan province. The first station was Manjil City for visiting Manjil Dam and geology Formations (Shemshak formation) in Mnajil. Dr. Nazari from Geological Survey of Iran described that how the formations were formed and some short descriptions about its tectonic plate. The second station had been located in the Totkabon (near the Ruodbar city). After having lunch near the Rashi village, the group led by Dr. Biglari from the Ministry of Cultural Heritage, Tourism and Handicrafts moved to the Rashi cave. At 8:00 PM, the team accommodated in their Hotel and hostel in Rasht. Second day, 15 October 2019: Stations: Fuman city, Masuleh village On Tuesday, 15 October 2019, field work started at the 8:30 AM. The team traveled to near Rasht City to visit old beach deposition and to the Fuman city for visiting Qale-Rudkhan Castle that is located 25 km southwest of Fuman city. And it is built on two tips of a mount, with an area of 2.6 hectare at the elevations of 715 and 670 meters. To get to the Qale - Rudkhan Castle, the group had to climbed approximately 1000 steps. On Tuesday afternoon, team went to Masuleh for visiting old village. (Also, at night a city tour was organized by the Guilan University).
    [Show full text]
  • Assessing Chlorophyll-A in the Southwestern Coastal Waters of the Caspian Sea
    Journal of the Persian Gulf (Marine Science)/Vol. 5/No. 16/June 2014/14/1-14 Assessing Chlorophyll-a in the Southwestern Coastal Waters of the Caspian Sea Jamshidi, Siamak Iranian National Institute for Oceanography and Atmospheric Science, Tehran, IR Iran Received: October 2013 Accepted: April 2014 © 2014 Journal of the Persian Gulf. All rights reserved. Abstract Caspian Sea with an average depth of 27m is the largest enclosed water body in the world. Despite its enormity and valuable biotic and economic resources, investigations on the biota and seawater properties are mosaic at best. In previous studies, the monitoring of the chlorophyll-a concentrations in the Southern Caspian Sea was organized based on satellite data sets; however, vertical distribution of chlorophyll-a concentrations and its variations in deeper layers of the southern Caspian seawater are not well known. The aim of this research was to study the variations of seasonal distributions of chlorophyll-a near Anzali Port in northern Iran. Data collection was performed at 23 stations, 2 km apart, along four survey lines perpendicular to the coastline and two transects parallel to the coast every season using a research vessel. Field measurements in the study area were carried out. A portable CTD probe was applied for profiling from sea surface to bottom. Results of seasonal field measurements showed variations of the seawater properties (e.g. temperature, salinity, density and chlorophyll-a). Maximum depth of the profiling stations was more than 470 m and vertical structure of temperature in the southern Caspian Sea waters with a significant seasonal thermocline between 20-50 m depths in summer with a vertical difference of 16oC were characterized.
    [Show full text]
  • The Whitefin Gudgeon Romanogobio Belingi New for the Netherlands
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Lauterbornia Jahr/Year: 2005 Band/Volume: 2005_55 Autor(en)/Author(s): Soes Menno, Spaans Piet J., Veenvliet Paul Artikel/Article: The Whitefin gudgeon Romanogobio belingi new for the Netherlands. 141-144 ©Erik Mauch Verlag, Dinkelscherben, Deutschland,141 Download unter www.biologiezentrum.at Lauterbornia 55: 141-144, D-86424 Dinkelscherben, 2005-08-19 The Whitefin gudgeon Romanogobio belingi new for The Netherlands D. M. Soes, P. J. Spaans and P.Veenvliet With 2 figures Keywords: Romanogobio, Pisces, Waal, Rhine, The Netherlands, first record Schlagwörter: Romanogobio, Pisces, Waal, Rhein, Niederlande, Erstfund The whitefin gudgeon Romanogobia belingi (Lukasch, 1933) is recorded for he first time from The Netherlands 1 Introduction In the past years the fish fauna of the Dutch rivers belonging to the River Rhine system has been altered significantly. Species introduced to the Rhine system, such as Vimba (Vimba vimba), Asp (Aspius aspius) and Danube bream (Abramis sapa) are nowadays found in the Dutch waters (De Nie, 1996; Frey­ hof, et al., 2000; Van Emmerik, 2003). One Danubian species, the Tubenose goby (Proterorhinus marmoratus), invaded the River Rhine system via the Main-Danube-Canal and made it up to the Netherlands (Winter, 2002). Several other species of gobies are thought to follow (Freyhof, 2003). Already in 1998, Freyhof reported on another species in the River Rhine, which could be expected to occur in the Netherlands. This species, the White­ fin gudgeon (Romanogobio belingi (Lukasch, 1933), was found to be common and widespread in German parts of the River Rhine.
    [Show full text]
  • The Black Sea Region — Shores and Delta
    Black Sea region. page 1 European Environment Agency Europe’s biodiversity — biogeographical regions and seas Biogeographical regions in Europe The Black Sea Region — shores and delta Original contributions from ETC/NPB: Sophie Condé, Dominique Richard (coordinators) Nathalie Liamine (editor) Anne-Sophie Leclère (data collection and processing) Barbara Sotolargo (drafting) Ulla Pinborg (final co-editor) Map production: UNEP/GRID Warsaw (final production) Project manager: Tor-Björn Larsson, EEA ZooBoTech HB, Sweden, Linus Svensson (final edition) Black Sea region. page 2 Summary ............................................................................................................ 3 1. What are the main characteristics and trends of the Black Sea biogeographical region? ..................................................................................... 3 1.1 General characteristics.............................................................................. 3 1.1.1 Extent and limitations ............................................................................ 3 1.1.2 Geomorphological and topography ........................................................... 3 1.1.3 Soils .................................................................................................... 4 1.1.4 Climate ................................................................................................ 4 1.2 Present biodiversity status and trends: habitats, fauna and flora ............. 5 1.2.1 Habitats ..............................................................................................
    [Show full text]
  • AHNELT H. 2008. Bestimmungsschlüssel Für Die In
    Ahnelt H. 2008 Bestimmungsschlüssel 1 BESTIMMUNGSSCHLÜSSEL FÜR DIE IN ÖSTERREICH VORKOMMENDEN FISCHE HARALD AHNELT Department für Theoretische Biologie, Fakultät für Lebenswissenschaften, Universität Wien, Althanstrasse 14, 1090 Wien [email protected] Online: 10 September 2008 Zitiervorschlag: Ahnelt H. 2008 Bestimmungsschlüssel für die in Österreich vorkommenden Fische. http://homepage.univie.ac.at/harald.ahnelt/Harald_Ahnelts_Homepage/Publications.html [Download-Datum] Bestimmungsschlüssel heimischer Fische Dieser Bestimmungsschlüssel ist für die Fischarten Österreichs ausgelegt. Merkmale und Merkmalskombinationen können daher bei Anwendung auf Fische anderer Länder zu nicht korrekten Ergebnissen führen. Identification key for Austrian freshwater fishes This identification key should only be used for fishes from Austrian freshwaters. This key will possibly not work for fishes from other European countries. Nobody is perfect – schon gar nicht ein Bestimmungsschlüssel. Ein Bestimmungsschlüssel baut auf charakteristischen Merkmalen auf, er vereinfacht und kann keinen Anspruch auf Vollständigkeit erheben. Auch dieser Bestimmungsschlüssel ist nur ein Versuch ein komplexes System in einen übersichtliche Form zu bringen. Die Natur sieht aber oft anders aus. Die Bandbreite an Merkmalen ist bei vielen Arten groß. Manche Populationen sind an unterschiedliche Umweltbedingungen angepasst und bilden unterscheidbare ökologische Formen. Andere Populationen sind isoliert und einige davon sind systematisch noch ungenügend erforscht. Möglicherweise taucht ja in Österreich noch die eine oder andere neue Art auf. Sollte es einmal nicht passen, oder wenn sich ein Fehler eingeschlichen hat, ersuche ich um Information - [email protected] oder unter obiger Adresse. Verbesserungsvorschläge und Ergänzungen sind willkommen. Ahnelt H. 2008 Bestimmungsschlüssel 2 Einleitung 1858 erschien das Buch „Die Süßwasserfische der Österreichischen Monarchie mit Rücksicht auf die angrenzenden Länder“, verfasst von den Österreichern Johann Jakob Heckel und Rudolf Kner.
    [Show full text]
  • Growth, the Length-Weight Relationship, and Reproduction in Vimba (Vimba Vimba L
    Turk J Zool 2011; 35(1): 87-96 © TÜBİTAK Research Article doi:10.3906/zoo-0901-16 Growth, the length-weight relationship, and reproduction in vimba (Vimba vimba L. 1758) sampled from an oligo-mesotrophic lake in northwest Anatolia (Turkey) Hacer OKGERMAN1,*, Mahmut ELP2, Cumhur H. YARDIMCI1 1İstanbul University, Fisheries Faculty, Freshwater Biology Department, İstanbul - TURKEY 2Yüzüncü Yıl University, Agriculture Faculty, Van - TURKEY Received: 13.01.2009 Abstract: The growth parameters and reproduction period in vimba (Vimba vimba L. 1758) sampled from Sapanca Lake were determined monthly between September 2003 and July 2004. The 335 vimba specimens caught ranged in age from 2+ to 6+ years, and the majority of the samples consisted of individuals of the 4+-year-old age group. The length-weight relationship was estimated to be W = 0.0084 FL3.1797±0.0035 for males (r2 = 0.94, P < 0.05) and W = 0.0089 FL3.1572±0.0033 for females (r2 = 0.93, P < 0.05). Regression coefficients for sex were significant (t-test, P < 0.05). The slope (b) significantly differed (ANCOVA, P < 0.05) between months. The fact that the b values for male and female vimba specimens differed from 3.0 indicates that there was positive allometric growth. The von Bertalanffy equation was determined using Lt = 28.940 (1-exp {-0.123[t+2.193]}), ∅’: 2.030, (r = 0.999) for males and Lt = 24.708 [1-exp {-0.205[t+1.464]}), ∅’: 2.097, (r = 0.999) for females. The sex ratio was 1:1.86 (χ2; P < 0.05). The spawning period of vimba began at the end of April and continued until the beginning of July; the water temperature during this period was between 14.8 and 25.9 °C.
    [Show full text]
  • Effects of a Dispersal Barrier on Freshwater Migration of the Vimba Bream (Vimba Vimba)
    BOREAL ENVIRONMENT RESEARCH 23: 339–353 © 2018 ISSN 1797-2469 (online) Helsinki 18 December 2018 Effects of a dispersal barrier on freshwater migration of the vimba bream (Vimba vimba) Meelis Tambets1, Einar Kärgenberg1,2, Eva B. Thorstad3, Odd Terje Sandlund3, Finn Økland3 and Mart Thalfeldt1 1) Wildlife Estonia, Veski 4, EE-51005 Tartu, Estonia 2) Estonian Marine Institute, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia 3) Norwegian Institute for Nature Research (NINA), P.O. Box 5685, NO-7485 Trondheim, Norway Received 1 Aug. 2018, final version received 12 Dec. 2018, accepted 14 Nov. 2018 Tambets M., Kärgenberg E., Thorstad E.B., Sandlund O.T., Økland F. & Thalfeldt M. 2018: Effects of a dispersal barrier on freshwater migration of the vimba bream (Vimba vimba). Boreal Env. Res. 23: 339–353. To study the effects of a dispersal barrier on migration of the semi-anadromous vimba bream in the Pärnu River, Estonia, we tagged thirty fish with acoustic transmitters and released above the barrier. Tagged fish showed variation in behaviour, and 16 different spawning movement patterns were identified. Several fish moved > 25 km upstream. Batch spawning was suggested by stops in up to four different spawning areas. The fish descended to the sea after spawning in spring; females earlier than males. After spending on average 137 days in the sea, they returned to the river during autumn and stayed in the river on average 174 days until the next spawning. The fish were most active during sunrise and sunset. In conclusion, the study shows that the dam prevents a diversification of migra- tion behaviour and the associated expansion of spawning areas.
    [Show full text]
  • Mid-Term Plan for Conservation of the Anzali Wetland for 2020 – 2030
    Japan International Department of Environment Cooperation Agency Gilan Provincial Government Islamic Republic of Iran Mid‐term Plan for Conservation of the Anzali Wetland for 2020 ‐ 2030 May 2019 Anzali Wetland Ecological Management Project ‐ Phase II Department of Environment Japan International Gilan Provincial Government Cooperation Agency Islamic Republic of Iran MID-TERM PLAN FOR CONSERVATION OF THE ANZALI WETLAND FOR 2020 – 2030 (Prepared under The Anzali Wetland Ecological Management Project - Phase II) May 2019 NIPPON KOEI CO., LTD. Exchange Rate JPY 100 = IRR 38,068 USD 1 = IRR 42,000 (as of 23 May, 2019) Source: Central Bank of the Islamic Republic of Iran Preface The Mid-term Plan for Conservation of the Anzali Wetland for 2020 – 2030 (Mid-term Plan) was prepared as a final product of the Anzali Wetland Ecological Management Project - Phase II (Phase II Project). The Phase II Project was a 5-year technical cooperation project of the Japan International Cooperation Agency (JICA) between May 2014 and May 2019. JICA has supported Iranian government on conservation of the Anzali Wetland since 2003 through “The Study on Integrated Management for Ecosystem Conservation of the Anzali Wetland (2003-2005)” (Master Plan Study) and “Anzali Wetland Ecological Management Project (2007-2008, 2011-2012)” (Phase I Project). The Mid-term Plan will succeed the previous Master Plan for 2005 - 2019, which was prepared under the Master Plan Study. In the 1st year of the Phase II Project, actual implementation status of the Master Plan was reviewed and an Action Plan for 5 years, which is the last 5-year of the Master Plan and period of the Phase II Project, was prepared to facilitate the conservation activity of the Anzali Wetland.
    [Show full text]
  • Review of Fisheries and Aquaculture Development Potentials in Georgia
    FAO Fisheries and Aquaculture Circular No. 1055/1 REU/C1055/1(En) ISSN 2070-6065 REVIEW OF FISHERIES AND AQUACULTURE DEVELOPMENT POTENTIALS IN GEORGIA Copies of FAO publications can be requested from: Sales and Marketing Group Office of Knowledge Exchange, Research and Extension Food and Agriculture Organization of the United Nations E-mail: [email protected] Fax: +39 06 57053360 Web site: www.fao.org/icatalog/inter-e.htm FAO Fisheries and Aquaculture Circular No. 1055/1 REU/C1055/1 (En) REVIEW OF FISHERIES AND AQUACULTURE DEVELOPMENT POTENTIALS IN GEORGIA by Marina Khavtasi † Senior Specialist Department of Integrated Environmental Management and Biodiversity Ministry of the Environment Protection and Natural Resources Tbilisi, Georgia Marina Makarova Head of Division Water Resources Protection Ministry of the Environment Protection and Natural Resources Tbilisi, Georgia Irina Lomashvili Senior Specialist Department of Integrated Environmental Management and Biodiversity Ministry of the Environment Protection and Natural Resources Tbilisi, Georgia Archil Phartsvania National Consultant Thomas Moth-Poulsen Fishery Officer FAO Regional Office for Europe and Central Asia Budapest, Hungary András Woynarovich FAO Consultant FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Ecological Study of Phytoplankton of the Anzali Lagoon (N Iran) and Its Outflow Into the Caspian Sea
    Czech Phycology, Olomouc, 4: 145-154, 2004 145 Ecological study of phytoplankton of the Anzali lagoon (N Iran) and its outflow into the Caspian Sea Ekologická studie fytoplanktonu laguny Anzali (severní Irán) a jejího vtoku do Kaspického moře Zohreh R a m e z a n p o o r International Sturgeon Research Institute. P. O. Box: 41635 – 3464 Rasht – Iran, e-mail: [email protected] Abstract A study of phytoplankton communities of western regions of the Anzali lagoon, rivers flowing from the lagoon, and Anzali Harbor (navigation channel), located in the southern coast of the Caspian Sea was carried out. Samples were collected monthly at nine sites from May 1992 to April 1993 from the surface, 1 m, 5 m and from the final depths of each sampling site using Ruttner sampler with 1 lit. volume. Water and air temperature, - 3- - 2- turbidity, pH, Cl , PO4 , NO3 , SO4 and salinity were measured. Phytoplankton samples were fixed in 4% formaldehyde solution and then identified and counted using inverted microscope. A total of 97 taxa of phytoplankton were identified during the studied period. Phytoplankton species and environmental variables confirmed that the western part of the Anzali Lagoon has fresh water and eutrophic character. However, alkalinity in this region was high and high amount of sulfate at this region indicates the influence of the Caspian Sea in the area. As the Harbor is under combined influence of the Caspian Sea and freshwater rivers, it showed mostly estuarine phytoplankton communities with some species of marine origin. Few sources of pollution were identified that reduced the species diversity and alternatively some other species became dominant.
    [Show full text]
  • Astacus Leptodactylus) Based on Microsatellite DNA Loci
    Archive of SID Iranian Journal of Animal Biosystematics (IJAB) Vol.14, No.1, 15-27, 2018 ISSN: 1735-434X (print); 2423-4222 (online) DOI: 10.22067/ijab.v14i1.54723 Population molecular analysis among the narrow-clawed crayfish (Astacus leptodactylus) based on microsatellite DNA loci Khoshkholgh, M.1* and Nazari, S. 2 1Department of Fisheries, School of Natural Resources, Guilan university, P.O. Box 1144 Sowmehsara, Iran 2Shahid Motahary Cold-water Fishes Genetic and Breeding Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Yasuj, Iran (Received: 15 October 2017; Accepted: 10 February 2018) The genetic variation of narrow-clawed crayfish (Astacus leptodactylus, Eschscholtz, 1823) from Caspian Sea including two sites (Astara and Kiashahr), Aras region, Anzali lagoon and three rivers (Chafrood, Masuleh, and Siah Darvishan) was evaluated and their genetic variation on the basis of DNA microsatellite loci was estimated. DNA from pleopods of 194 specimens extracted and was examined with six microsatellite markers. Genetic differences between the populations were discerned by pairwise comparison based on allelic distribution. The average numbers of alleles per locus ranged from 2 to 10, while the average observed heterozygosity (Ho) at various loci varied between 0.222 to 0.732, implying that a midway level of genetic variation. Among seven populations Siah Darvishan population displayed the highest level of variability in terms of heterozygosity. Tests of Hardy-Weinberg showed that the microsatellite loci deviated significantly in most populations indicating deficit of heterozygote. The results indicate that some of the above populations are significantly differentiated from one another based on pairwise FST estimates.
    [Show full text]
  • National Biodiversity Strategy and Action Plan of Georgia
    Biodiversity Strategy and Action Plan - Georgia – Tbilisi, 2005 Foreword Georgia signed the Convention on Biological Diversity in 1994, thus accepting responsibility to safeguard the nation’s rich diversity of plant, animal, and microbial life, to begin using biological resources in sustainable way, and to ensure equitable sharing of benefits from biodiversity. Later the country joined other conventions including the Convention on Climate Change, the Ramsar Convention on Wetlands, CITES and the Bonn Convention. As a signatory to these important international environmental treaties, Georgia enters the world scene with the potential for joining the most advanced nations in the field of environmental protection. At the present moment of transition, Georgia has a unique opportunity to use the early experiences of other countries, and avoid irreversible changes in the quality of its environment. The national legislation on environmental protection adopted over the past few years provides an adequate legal basis for this, although further elaboration and reinforcement of the existing legislation is needed. With the Ministry of Environment being currently reorganised and assuming broader responsibilities, Georgia’s institutional arrangements for environmental protection already has the necessary structure for improving the quality of the environment throughout the country. The role of non-governmental groups has been very important in resolving problems related to nature conservation. Georgia has shown an excellent example of co-operation between governmental and non-governmental organizations in the field of environment, and particularly in the field of biodiversity conservation. After signing the Convention on Biological Diversity, the Georgian Government immediately acted to develop a Biodiversity Country Study, in partnership with UNEP, and implemented by NACRES, a local conservation organisation.
    [Show full text]